

10–11–06 Vol. 71 No. 196 Wednesday Oct. 11, 2006

Pages 59649–60054

The **FEDERAL REGISTER** (ISSN 0097–6326) is published daily, Monday through Friday, except official holidays, by the Office of the Federal Register, National Archives and Records Administration, Washington, DC 20408, under the Federal Register Act (44 U.S.C. Ch. 15) and the regulations of the Administrative Committee of the Federal Register (1 CFR Ch. I). The Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402 is the exclusive distributor of the official edition. Periodicals postage is paid at Washington, DC.

The **FEDERAL REGISTER** provides a uniform system for making available to the public regulations and legal notices issued by Federal agencies. These include Presidential proclamations and Executive Orders, Federal agency documents having general applicability and legal effect, documents required to be published by act of Congress, and other Federal agency documents of public interest.

Documents are on file for public inspection in the Office of the Federal Register the day before they are published, unless the issuing agency requests earlier filing. For a list of documents currently on file for public inspection, see www.archives.gov.

The seal of the National Archives and Records Administration authenticates the Federal Register as the official serial publication established under the Federal Register Act. Under 44 U.S.C. 1507, the contents of the Federal Register shall be judicially noticed.

The **Federal Register** is published in paper and on 24x microfiche. It is also available online at no charge as one of the databases on GPO Access, a service of the U.S. Government Printing Office.

The online edition of the **Federal Register** www.gpoaccess.gov/nara, available through GPO Access, is issued under the authority of the Administrative Committee of the Federal Register as the official legal equivalent of the paper and microfiche editions (44 U.S.C. 4101 and 1 CFR 5.10). It is updated by 6 a.m. each day the **Federal Register** is published and includes both text and graphics from Volume 59, Number 1 (January 2, 1994) forward.

For more information about GPO Access, contact the GPO Access User Support Team, call toll free 1-888-293-6498; DC area 202-512-1530; fax at 202-512-1262; or via e-mail at gpoaccess@gpo.gov. The Support Team is available between 7:00 a.m. and 9:00 p.m. Eastern Time, Monday–Friday, except official holidays.

The annual subscription price for the Federal Register paper edition is \$749 plus postage, or \$808, plus postage, for a combined Federal Register, Federal Register Index and List of CFR Sections Affected (LSA) subscription; the microfiche edition of the Federal Register including the Federal Register Index and LSA is \$165, plus postage. Six month subscriptions are available for one-half the annual rate. The prevailing postal rates will be applied to orders according to the delivery method requested. The price of a single copy of the daily Federal Register, including postage, is based on the number of pages: \$11 for an issue containing less than 200 pages; \$22 for an issue containing 200 to 400 pages; and \$33 for an issue containing more than 400 pages. Single issues of the microfiche edition may be purchased for \$3 per copy, including postage. Remit check or money order, made payable to the Superintendent of Documents, or charge to your GPO Deposit Account, VISA, MasterCard, American Express, or Discover. Mail to: New Orders, Superintendent of Documents, P.O. Box 371954, Pittsburgh, PA 15250-7954; or call toll free 1-866-512-1800, DC area 202-512-1800; or go to the U.S. Government Online Bookstore site, see bookstore.gpo.gov.

There are no restrictions on the republication of material appearing in the **Federal Register**.

How To Cite This Publication: Use the volume number and the page number. Example: 71 FR 12345.

Postmaster: Send address changes to the Superintendent of Documents, Federal Register, U.S. Government Printing Office, Washington DC 20402, along with the entire mailing label from the last issue received.

SUBSCRIPTIONS AND COPIES

PUBLIC

Subscriptions:

Paper or fiche 202–512–1800
Assistance with public subscriptions 202–512–1806
General online information 202–512–1530; 1–888–293–6498

Single copies/back copies:

Paper or fiche
Assistance with public single copies

202–512–1800
1–866–512–1800
(Toll-Free)

FEDERAL AGENCIES

Subscriptions:

Paper or fiche 202–741–6005
Assistance with Federal agency subscriptions 202–741–6005

Contents

Federal Register

Vol. 71, No. 196

Wednesday, October 11, 2006

Agency for Healthcare Research and Quality NOTICES

Agency information collection activities; proposals, submissions, and approvals, 59791

Agriculture Department

See Animal and Plant Health Inspection Service See Energy Policy and New Uses Office, Agriculture Department

See Farm Service Agency

See Forest Service

NOTICES

Agency information collection activities; proposals, submissions, and approvals, 59715–59718

Animal and Plant Health Inspection Service RULES

Plant-related quarantine, domestic:
Asian longhorned beetle, 59649–59651
PROPOSED RULES

Hawaiian and territorial quarantine notices:

Bell pepper, eggplant, Italian squash, and tomato moved interstate from Hawaii; vapor heat treatment approval, 59694–59696

Centers for Disease Control and Prevention NOTICES

Agency information collection activities; proposals, submissions, and approvals, 59792–59793 Meetings:

HIV and STD Prevention and Treatment Advisory Committee, 59793

National Institute for Occupational Safety and Health— Radiation and Worker Health Advisory Board, 59793

Centers for Medicare & Medicaid Services NOTICES

Medicare:

Hospital inpatient prospective payment systems and 2007 FY rates, 59886–60043

Commerce Department

See Industry and Security Bureau See International Trade Administration

See National Institute of Standards and Technology See National Oceanic and Atmospheric Administration

NOTICES

Agency information collection activities; proposals, submissions, and approvals, 59719–59720 Senior Executive Service Performance Review Board; membership, 59720–59721

Defense Department

NOTICES

Meetings:

Science Board task forces, 59748-59749

Drug Enforcement Administration

NOTICES

Registration revocations, restrictions, denials, reinstatements:

Gregg Brothers Wholesale Co., Inc., 59830-59832

Integrity Wholesale, Inc., 59832–59834 Premier Holdings, Inc., 59834–59837

Education Department

NOTICES

Agency information collection activities; proposals, submissions, and approvals, 59749

Grants and cooperative agreements; availability, etc.:

Discretionary grant programs, 60046-60048

Postsecondary education—

Business and International Education Program, 59749–59753

Election Assistance Commission

NOTICES

Meetings; Sunshine Act, 59753

Energy Department

See Federal Energy Regulatory Commission ${f NOTICES}$

Reports and guidance documents; availability, etc.: Federal antidiscrimination, whistleblower protection, and retaliation laws; No FEAR Act notice, 59753–59754

Energy Policy and New Uses Office, Agriculture Department

PROPOSED RULES

Biobased products; designation guidance for Federal procurement, 59862–59883

Environmental Protection Agency

RULES

Air quality implementation plans; approval and promulgation; various States:

Alabama, 59674-59677

PROPOSED RULES

Air quality implementation plans; approval and promulgation; various States:

Alabama, 59697

Pesticide programs:

Plant-incorporated protectants derived from plant viral coat protein gene; submission to Secretary of Agriculture, 59697–59698

NOTICES

Meetings:

Science Advisory Board, 59779–59780 Pesticide, food, and feed additive petitions: Interregional Research Project (No. 4), 59780–59784 Natural Resources Defense Council, 59784–59785

Reports and guidance documents; availability, etc.: Pesticides—

Pesticide registration review; schedule availability, 59786–59787

Executive Office of the President

See Presidential Documents

Farm Credit Administration

NOTICES

Meetings; Sunshine Act, 59787

Farm Service Agency

NOTICES

Environmental statements; availability, etc.: Disaster Assistance Programs implementation, 59718

Federal Aviation Administration

RULES

Airworthiness directives: Boeing, 59651–59653

Federal Communications Commission

Agency information collection activities; proposals, submissions, and approvals, 59787–59788 Meetings; Sunshine Act, 59788–59789

Federal Energy Regulatory Commission

Electric rate and corporate regulation combined filings, 59768–59770

Electric utilities (Federal Power Act):

Municipal costs (2005 FY) and actual and estimated hydropower administrative charges (2006 FY); billing procedures, 59770–59771

Environmental statements; notice of intent:

UGI LNG, Inc., 59771-59772

Hydroelectric applications, 59773-59779

Applications, hearings, determinations, etc.:

Alliance Pipeline L.P., 59754-59755

ANR Pipeline Co., 59755-59756

CenterPoint Energy Gas Transmission Co., 59756

East Tennessee Natural Gas, LLC, 59756-59757

El Paso Natural Gas Co., 59757

Enbridge Pipelines (KPC), 59757

Gas Transmission Northwest Corp., 59757–59758

Great Lakes Gas Transmission LP, 59758

Ingleside Energy Center LLC, 59758–59759

Iroquois Gas Transmission System, L.P., 59759

Maritimes & Northeast Pipeline, L.L.C., 59759–59760

Natural Gas Pipeline Co. of America, 59760

Nevada Hydro Co., Inc., 59760–59761

Northern Natural Gas Co., 59761-59762

Panhandle Eastern Pipe Line Co., LP, 59763

Rockies Express Pipeline LLC, 59763

SCG Pipeline, Inc., 59763–59764

Southwest Gas Storage Co., 59764

Stingray Pipeline Co., L.L.C., 59764-59765

Transcontinental Gas Pipe Line Corp., 59765-59766

Transwestern Pipeline Co., LLC, 59766

Trunkline Gas Co., LLC, 59766-59767

White Creek Wind I, LLC, 59767

Williston Basin Interstate Pipeline Co., 59767-59768

Young Gas Storage Co., Ltd., 59768

Federal Highway Administration

Agency information collection activities; proposals, submissions, and approvals, 59851–59853

Federal Railroad Administration RULES

Track safety standards:

Continuous welded rail; joints inspection, 59677-59693 PROPOSED RULES

Practice and procedure:

Direct final rulemaking procedures; expedited processing of noncontroversial changes, 59698–59700

Federal Reserve System

NOTICES

Banks and bank holding companies:

Change in bank control, 59789

Formations, acquisitions, and mergers, 59789-59790

Permissible nonbanking activities, 59790

Federal Transit Administration

NOTICES

Reports and guidance documents; availability, etc.:

FTA-funded major capital projects; safety and security management guidance, 59853–59856

Fish and Wildlife Service

PROPOSED RULES

Endangered and threatened species:

Cow Head tui chub; withdrawn from list, 59700–59711

Findings on petitions, etc.:

Beaver cave beetle, 59711-59714

Food and Drug Administration

RULES

Food for human consumption and cosmetics:

Cattle materials; prohibited use; recordkeeping requirements, 59653–59669

NOTICES

Committees; establishment, renewal, termination, etc.:

Public advisory panels or committees; voting members,

59793-59797

Human drugs: Patent extension; regulatory review period

determinations—

BONIVA; correction, 59797-59798

Forest Service

NOTICES

Recreation fee areas:

Chugach National Forest, AK; Whistle Stop project area; group campsite, cabins, individual campsites, and backcountry permit fees, 59718–59719

Health and Human Services Department

See Agency for Healthcare Research and Quality

See Centers for Disease Control and Prevention

See Centers for Medicare & Medicaid Services

See Food and Drug Administration

See National Institutes of Health

See Substance Abuse and Mental Health Services
Administration

NOTICES

Meetings:

Minority Health Advisory Committee, 59790-59791

Homeland Security Department

See U.S. Citizenship and Immigration Services $\mbox{\bf NOTICES}$

Organization, functions, and authority delegations: National Communications System, Manager, 59803– 59804

Housing and Urban Development Department NOTICES

Agency information collection activities; proposals, submissions, and approvals, 59805–59806

Grant and cooperative agreement awards:

Hispanic-Serving Institutions Assisting Communities Program, 59806–59807

Historically Black Colleges and Universities Program, 59807–59808

Indian Affairs Bureau

NOTICES

Environmental statements; notice of intent: Flathead Indian Irrigation Project, MT, 59808–59809

Industry and Security Bureau

NOTICES

Meetings:

Sensors and Instrumentation Technical Advisory Committee, 59721

Information Security Oversight Office

NOTICES

Meetings:

Public Interest Declassification Board, 59837

Interior Department

See Fish and Wildlife Service See Indian Affairs Bureau See Land Management Bureau See National Park Service See Reclamation Bureau

Internal Revenue Service

RULES

Income taxes:

Partnership liabilities; disregarded entities treatment, 59669–59674

PROPOSED RULES

Procedure and administration:

Installment agreements; processing user fees Public hearing canceled, 59696–59697

NOTICE

Agency information collection activities; proposals, submissions, and approvals, 59857–59858

International Trade Administration NOTICES

Antidumping:

Activated carbon from— China, 59721–59738 Freshwater crawfish tail meat from—

China, 59738–59739 Stainless steel wire rod from—

Korea, 59739–59744

Meetings:

President's Export Council, 59744

International Trade Commission NOTICES

Import investigations:

Portable digital media players, 59817 Portable digital media players and components, 59816

Justice Department

See Drug Enforcement Administration NOTICES

Agency information collection activities; proposals, submissions, and approvals, 59817–59818

Pollution control; consent judgments:

CEMEX Inc. et al., 59818

Privacy Act; systems of records, 59818-59830

Land Management Bureau

NOTICES

Closure of public lands: Arizona, 59809

Meetings:

Resource Advisory Councils— Eastern Washington, 59810

Oil and gas leases:

Colorado, 59810-59811

Utah, 59811

Recreation management restrictions, etc.:

Colorado public lands; alcohol use by underage persons, driving under influence of alcohol or drugs, and drug paraphernalia possession; supplementary rules, 59811–59814

National Archives and Records Administration

See Information Security Oversight Office

National Council on Disability

NOTICES

Meetings:

Cultural Diversity Advisory Committee, 59837–59838 Youth Advisory Committee, 59838

National Institute for Literacy

NOTICES

Meetings:

Advisory Board, 59838

National Institute of Standards and Technology NOTICES

Meetings:

Autonomous Guided Vehicle Consortium, 59744 Reports and guidance documents; availability, etc.:

National Fire Protection Association codes and standards; proposed revisions, 59744–59746

National Institutes of Health

NOTICES

Meetings:

Clinical Center, 59798

Interagency Autism Coordinating Committee, 59798

National Cancer Institute, 59798–59799

National Heart, Lung, and Blood Institute, 59799

National Institute of Arthritis and Musculoskeletal and Skin Diseases. 59799–59800

National Institute of Child Health and Human Development, 59800

National Institute of General Medical Sciences, 59800

National Institute of Mental Health, 59799

National Institute of Neurological Disorders and Stroke, 59800

Treatment for inflammatory arthritis targeting the preligand assembly domain of tumor necrosis factor receptors; teleconference, 59801

National Oceanic and Atmospheric Administration NOTICES

Agency information collection activities; proposals, submissions, and approvals, 59746–59747

Gulf of Mexico Fishery Management Council, 59747 New England Fishery Management Council, 59747–59748 Senior Executive Service Performance Review Board; membership, 59748

National Park Service

PROPOSED RULES

Special regulations:

Golden Gate National Recreation Area Dog Management Negotiated Rulemaking Advisory Committee Meetings, 59697

NOTICES

Meetings:

Cheasapeake and Ohio Canal National Historical Park Advisory Commission, 59814

Concessions Management Advisory Board, 59814–59815 National Preservation Technology and Training Board, 59815

White House Preservation Committee, 59815

National Science Foundation

NOTICES

Meetings:

Education and Human Resources Advisory Committee, 59838–59839

Materials Research Proposal Review Panel, 59839

National Transportation Safety Board

NOTICES

Meetings; Sunshine Act, 59839

Nuclear Regulatory Commission

NOTICES

Environmental statements; availability, etc.:
Pennsylvania Environmental Protection Department;
Quehanna Facility, Karthaus, PA, 59839–59842
Meetings; Sunshine Act, 59842–59843

Overseas Private Investment Corporation NOTICES

Reports and guidance documents; availability, etc.: Federal antidiscrimination, whistleblower protection, and retaliation laws; No FEAR Act notice, 59843–59844

Presidential Documents

PROCLAMATIONS

Special observances:

Columbus Day (Proc. 8065), 60053–60054 National School Lunch Week (Proc. 8064), 60049–60052

Public Debt Bureau

NOTICES

Agency information collection activities; proposals, submissions, and approvals, 59858

Reclamation Bureau

NOTICES

Central Valley Project Improvement Act: Water management plans; district plans available for review, 59815–59816

Securities and Exchange Commission NOTICES

Self-regulatory organizations; proposed rule changes: International Securities Exchange, LLC, 59844–59845 National Association of Securities Dealers, Inc., 59845–59847

State Department

NOTICES

Emergency Supplemental Appropriations Act for Defense, the Global War on Terror, and Tsunami Relief: Lebanon and Kyrgyz Republic; determination to use 2005

FY supplemental peacekeeping operations funds, 59847–59849

Environmental statements; notice of intent:

TransCanada Keystone Pipeline, L.P.; floodplain and wetland involvement; public scoping meetings, 59849–59851

Substance Abuse and Mental Health Services Administration

NOTICES

Federal agency urine drug testing; certified laboratories meeting minimum standards, list, 59801–59803

Surface Transportation Board

NOTICES

Railroad operation, acquisition, construction, etc.: CSX Transportation, Inc., et al., 59856–59857

Transportation Department

See Federal Aviation Administration See Federal Highway Administration See Federal Railroad Administration See Federal Transit Administration See Surface Transportation Board

Treasury Department

See Internal Revenue Service See Public Debt Bureau

U.S.-China Economic and Security Review Commission NOTICES

Meetings:

Annual report preparation, 59858-59859

U.S. Citizenship and Immigration Services NOTICES

Agency information collection activities; proposals, submissions, and approvals, 59804–59805

Separate Parts In This Issue

Part II

Agriculture Department, Energy Policy and New Uses Office, Agriculture Department, 59862–59883

Part II

Health and Human Services Department, Centers for Medicare & Medicaid Services, 59886–60043

Part IV

Education Department, 60046-60048

Part V

Executive Office of the President, Presidential Documents, 60049–60052

Reader Aids

Consult the Reader Aids section at the end of this issue for phone numbers, online resources, finding aids, reminders, and notice of recently enacted public laws.

To subscribe to the Federal Register Table of Contents LISTSERV electronic mailing list, go to http://listserv.access.gpo.gov and select Online mailing list archives, FEDREGTOG-L, Join or leave the list (or change settings); then follow the instructions.

CFR PARTS AFFECTED IN THIS ISSUE

A cumulative list of the parts affected this month can be found in the Reader Aids section at the end of this issue.

3 01 11

Proclamations:	
8064	60051
8065	
7 CFR	50040
301	.59649
Proposed Rules:	
305	.59694
318	.59694
2902	.59862
14 CFR	
39	59651
21 CFR	
21 CFR 189	EOGEO
700	
	.59055
26 CFR	
1	
602	.59669
Proposed Rules:	
300	.59696
36 CFR	
Proposed Rules:	
Ch. I	.59697
40 CFR	
52	.59674
Proposed Rules:	
52	59697
174	59697
49 CFR	
213	.59677
Proposed Rules:	
211	.59698
50 CFR	
Proposed Rules:	
	E0700
17 (2 documents)	
	59711

Rules and Regulations

Federal Register

Vol. 71, No. 196

Wednesday, October 11, 2006

This section of the FEDERAL REGISTER contains regulatory documents having general applicability and legal effect, most of which are keyed to and codified in the Code of Federal Regulations, which is published under 50 titles pursuant to 44 U.S.C. 1510.

The Code of Federal Regulations is sold by the Superintendent of Documents. Prices of new books are listed in the first FEDERAL REGISTER issue of each week.

DEPARTMENT OF AGRICULTURE

Animal and Plant Health Inspection Service

7 CFR Part 301

[Docket No. APHIS-2006-0127]

Asian Longhorned Beetle; Additions to Quarantined Areas

AGENCY: Animal and Plant Health Inspection Service, USDA. **ACTION:** Interim rule and request for comments.

SUMMARY: We are amending the Asian longhorned beetle regulations by expanding the boundaries of the quarantined areas in New Jersey and restricting the interstate movement of regulated articles from these areas. This action is necessary to prevent the artificial spread of the Asian longhorned beetle to noninfested areas of the United States

DATES: This interim rule was effective October 4, 2006. We will consider all comments that we receive on or before December 11, 2006.

ADDRESSES: You may submit comments by either of the following methods:

- Federal eRulemaking Portal: Go to http://www.regulations.gov, select "Animal and Plant Health Inspection Service" from the agency drop-down menu, then click "Submit." In the Docket ID column, select APHIS-2006-0127 to submit or view public comments and to view supporting and related materials available electronically. Information on using Regulations.gov, including instructions for accessing documents, submitting comments, and viewing the docket after the close of the comment period, is available through the site's "User Tips" link
- Postal Mail/Commercial Delivery: Please send four copies of your comment (an original and three copies)

to Docket No. APHIS–2006–0127, Regulatory Analysis and Development, PPD, APHIS, Station 3A–03.8, 4700 River Road Unit 118, Riverdale, MD 20737–1238. Please state that your comment refers to Docket No. APHIS– 2006–0127.

Reading Room: You may read any comments that we receive on this docket in our reading room. The reading room is located in room 1141 of the USDA South Building, 14th Street and Independence Avenue, SW., Washington, DC. Normal reading room hours are 8 a.m. to 4:30 p.m., Monday through Friday, except holidays. To be sure someone is there to help you, please call (202) 690–2817 before coming.

Other Information: Additional information about APHIS and its programs is available on the Internet at http://www.aphis.usda.gov.

FOR FURTHER INFORMATION CONTACT: Mr. Michael B. Stefan, ALB National Coordinator, Emergency and Domestic Programs, PPQ, APHIS, 4700 River Road Unit 134, Riverdale, MD 20737–1231; (301) 734–7338.

SUPPLEMENTARY INFORMATION:

Background

The Asian longhorned beetle (ALB, Anoplophora glabripennis), an insect native to China, Japan, Korea, and the Isle of Hainan, is a destructive pest of hardwood trees. It attacks many healthy hardwood trees, including maple, horse chestnut, birch, poplar, willow, and elm. In addition, nursery stock, logs, green lumber, firewood, stumps, roots, branches, and wood debris of half an inch or more in diameter are subject to infestation. The beetle bores into the heartwood of a host tree, eventually killing the tree. Immature beetles bore into tree trunks and branches, causing heavy sap flow from wounds and sawdust accumulation at tree bases. They feed on, and over-winter in, the interiors of trees. Adult beetles emerge in the spring and summer months from round holes approximately threeeighths of an inch in diameter (about the size of a dime) that they bore through branches and trunks of trees. After emerging, adult beetles feed for 2 to 3 days and then mate. Adult females then lay eggs in oviposition sites that they make on the branches of trees. A new generation of ALB is produced each year. If this pest moves into the

hardwood forests of the United States, the nursery, maple syrup, and forest product industries could experience severe economic losses. In addition, urban and forest ALB infestations will result in environmental damage, aesthetic deterioration, and a reduction in public enjoyment of recreational spaces.

The regulations in 7 CFR 301.51–1 through 301.51–9 restrict the interstate movement of regulated articles from quarantined areas to prevent the artificial spread of ALB to noninfested areas of the United States. Recent surveys conducted in New Jersey by inspectors of State, county, and city agencies and by inspectors of the Animal and Plant Health Inspection Service (APHIS) have revealed that infestations of ALB have occurred outside the existing quarantined areas. Officials of the U.S. Department of Agriculture and officials of State, county, and city agencies in New Jersey are conducting intensive survey and eradication programs in the infested area, and the State of New Jersey has quarantined the infested area and is restricting the intrastate movement of regulated articles from the quarantined area to prevent the further spread of ALB within that State. However, Federal regulations are necessary to restrict the interstate movement of regulated articles from the quarantined area to prevent the spread of ALB to other States and other countries.

The regulations in § 301.51–3(a) provide that the Administrator of APHIS will list as a quarantined area each State, or each portion of a State, where ALB has been found by an inspector, where the Administrator has reason to believe that ALB is present, or where the Administrator considers regulation necessary because of its inseparability for quarantine enforcement purposes from localities where ALB has been found. Less than an entire State will be quarantined only if (1) the Administrator determines that the State has adopted and is enforcing restrictions on the intrastate movement of regulated articles that are equivalent to those imposed by the regulations on the interstate movement of regulated articles; and (2) the designation of less than an entire State as a quarantined area will be adequate to prevent the artificial spread of ALB. In accordance with these criteria and the recent ALB

findings described above, we are amending the list of quarantined areas in § 301.51–3(c) to include the City of Linden in Union County, as well as portions of the Borough of Roselle, the City of Elizabeth, and Clark Township, also in Union County. In addition, the quarantined area in the City of Carteret in Middlesex County is also being expanded. The expanded quarantined area is described in the regulatory text at the end of this document.

Emergency Action

This rulemaking is necessary on an emergency basis to to prevent the artificial spread of ALB to noninfested areas of the United States. Under these circumstances, the Administrator has determined that prior notice and opportunity for public comment are contrary to the public interest and that

there is good cause under 5 U.S.C. 553 for making this rule effective less than 30 days after publication in the **Federal Register**.

We will consider comments we receive during the comment period for this interim rule (see **DATES** above). After the comment period closes, we will publish another document in the **Federal Register**. The document will include a discussion of any comments we receive and any amendments we are making to the rule.

Executive Order 12866 and Regulatory Flexibility Act

This interim rule has been reviewed under Executive Order 12866. For this action, the Office of Management and Budget has waived its review under Executive Order 12866.

This interim rule amends the ALB regulations by expanding the

boundaries of the quarantined areas in New Jersey and restricting the interstate movement of regulated articles from these areas. This action is necessary to prevent the artificial spread of the ALB to noninfested areas of the United States.

The Regulatory Flexibility Act (RFA) requires that agencies consider the economic impact of their rules on small entities, i.e. small businesses, organizations, and governmental jurisdictions. We estimate that about 124 small entities, including 4 local governments, may be affected. Types and numbers of entities located within the newly quarantined areas, and corresponding small-entity criteria, are shown in table 1. We expect that most if not all of the affected entities are small.

TABLE 1.—TYPES OF ESTABLISHMENT, NUMBER, AND SMALL ENTITY SIZE STANDARD FOR BUSINESSES AND LOCAL GOVERNMENTS LOCATED WITHIN THE AREAS NEWLY QUARANTINED FOR ALB

Establishment type	Number of entities	Code	Industry title	Small entity size standard
Tree service Landscaping company Excavator Garden center Firewood dealer Local government Utility	5	454319 RFA § 601 237130	Landscaping services Site preparation contractors Nursery and garden centers Other fuel dealers Small governmental jurisdiction Power and communication lines and related structures construction.	< \$6.5m. < \$6.5m. < \$13.0m. < \$6.5m. < \$6.5m. < 50,000 population. < \$31.0m.
Waste management	10		Solid waste collection Other non-hazardous waste treatment and disposal.	< \$11.5m. < \$11.5m.

The regulations in § 301.51-4 set conditions for the interstate movement of regulated articles from quarantined areas. An affected entity may (1) enter into a compliance agreement with APHIS for the inspection and certification of regulated articles to be moved interstate, or (2) present its regulated articles for inspection and obtain a certificate or a limited permit, issued by an inspector, for the interstate movement of regulated articles. Inspections may be inconvenient, but they should not be costly in most cases, even for entities operating under a compliance agreement that would perform the inspections themselves. For those entities that elect not to enter into a compliance agreement, APHIS provides the services of an inspector without cost. There is also no fee for the compliance agreement, certificate, or limited permit for the interstate movement of regulated articles.

Second, there is a possibility that, upon inspection, a regulated article could be determined by the inspector to

be potentially infested by ALB and, as a result, the inspector would not be able to issue a certificate. In this case, the entity's ability to move regulated articles interstate would be restricted. However, the affected entity could conceivably obtain a limited permit under the conditions of § 301.51–5(b). Whether an affected entity would be denied certificates as a result of inspections of regulated articles is unknown. However, because the newly regulated area is primarily urban, the entities located in that area are more likely to be receiving regulated articles from outside the quarantined area than they are to be shipping regulated articles interstate to nonquarantined areas. It is unlikely, therefore, that most entities located in the newly regulated area would be moving regulated articles that would require inspection in the first place.

Under these circumstances, the Administrator of the Animal and Plant Health Inspection Service has determined that this action will not have a significant economic impact on a substantial number of small entities.

Executive Order 12372

This program/activity is listed in the Catalog of Federal Domestic Assistance under No. 10.025 and is subject to Executive Order 12372, which requires intergovernmental consultation with State and local officials. (See 7 CFR part 3015, subpart V.)

Executive Order 12988

This rule has been reviewed under Executive Order 12988, Civil Justice Reform. This rule: (1) Preempts all State and local laws and regulations that are inconsistent with this rule; (2) has no retroactive effect; and (3) does not require administrative proceedings before parties may file suit in court challenging this rule.

Paperwork Reduction Act

This interim rule contains no information collection or recordkeeping requirements under the Paperwork

Reduction Act of 1995 (44 U.S.C. 3501 *et seq.*).

List of Subjects in 7 CFR Part 301

Agricultural commodities, Plant diseases and pests, Quarantine, Reporting and recordkeeping requirements, Transportation.

■ Accordingly, we are amending 7 CFR part 301 as follows:

PART 301—DOMESTIC QUARANTINE NOTICES

■ 1. The authority citation for part 301 continues to read as follows:

Authority: 7 U.S.C. 7701–7772 and 7781–7786; 7 CFR 2.22, 2.80, and 371.3.

Section 301.75–15 issued under Sec. 204, Title II, Public Law 106–113, 113 Stat. 1501A–293; sections 301.75–15 and 301.75– 16 issued under Sec. 203, Title II, Public Law 106–224, 114 Stat. 400 (7 U.S.C. 1421 note).

■ 2. In § 301.51–3, paragraph (c), the entry for New Jersey is revised to read as follows:

§ 301.51-3 Quarantined areas.

* * * * *

New Jersey

Middlesex and Union Counties. That portion of the counties, including the municipalities of Roselle, Elizabeth City, Linden, Carteret, Woodbridge, Rahway, and Clark, that is bounded by a line drawn as follows: Beginning at the intersection of Locust Street (County Road 619) and West Grand Avenue (Union County 610) in Roselle, NJ; then east on West Grand Avenue to Chilton Street; then south on Chilton Street to South Street: then east on South Street to Broad Street; then south on Broad Street to Summer Street; then east on Summer Street to the Elizabeth River; then east along the Elizabeth River to the Arthur Kill; then south along the Arthur Kill (New Jersey and New York State border) to the point where Roosevelt Avenue (State Route 602) meets the Arthur Kill in Carteret, NJ; then south along Roosevelt Avenue to Port Reading Avenue (State Route 604); then west southwest along Port Reading Avenue to the Conrail railroad; then north and west along the Conrail railroad right-of-way to the NJ Transit railroad right-of-way; then north and northwest along the NJ Transit railroad right-of-way to the south branch of the Rahway River; then west along the south branch of the Rahway River to St. Georges Avenue (State Highway 27); then north along St. Georges Avenue to its intersection with the eastern border of Rahway River Park (Union County Park); then north along the eastern

border of Rahway River Park to the intersection of Valley Road and Union County Parkway; then north along Union County Parkway to North Stiles Street; then northwest along North Stiles Street to Raritan Road; then northeast along Raritan Road to the perpendicular intersection of Raritan Road and the Cranford/Linden township border (144 Raritan Road); then north along the Cranford/Linden border to Myrtle Street; then east along Myrtle Street to the intersection of Amsterdam Avenue and Wood Avenue; then southeast along Wood Avenue to 5th Avenue; then northeast along 5th Avenue to Locust Street; then north along Locust Street to the point of beginning.

Done in Washington, DC, this 4th day of October 2006.

Kevin Shea.

Acting Administrator, Animal and Plant Health Inspection Service.

[FR Doc. E6–16755 Filed 10–10–06; 8:45 am] BILLING CODE 3410–34–P

DEPARTMENT OF TRANSPORTATION

Federal Aviation Administration

14 CFR Part 39

[Docket No. FAA-2006-26028; Directorate Identifier 2006-NM-222-AD; Amendment 39-14786; AD 2006-20-51]

RIN 2120-AA64

Airworthiness Directives; Boeing Model 777–200LR Series Airplanes Powered by General Electric (GE) Model GE90–110B Engines, and Model 777–300ER Series Airplanes Powered by GE Model GE90–115B Engines

AGENCY: Federal Aviation Administration (FAA), Department of Transportation (DOT).

ACTION: Final rule; request for comments.

SUMMARY: This document publishes in the **Federal Register** an amendment adopting airworthiness directive (AD) 2006–20–51 that was sent previously to all known U.S. owners and operators of certain Boeing Model 777-200LR and -300ER series airplanes by individual notices. This AD requires revising the Airplane Flight Manual to prohibit takeoffs at less than full-rated thrust. This AD is prompted by a report of two occurrences of engine thrust rollback (reduction) during takeoff. We are issuing this AD to prevent dual-engine thrust rollback, which could result in the airplane failing to lift off before

reaching the end of the runway or failing to clear obstacles below the takeoff flight path.

DATES: This AD becomes effective October 16, 2006 to all persons except those persons to whom it was made immediately effective by emergency AD 2006–20–51, issued September 30, 2006, which contained the requirements of this amendment.

We must receive comments on this AD by December 11, 2006.

ADDRESSES: Use one of the following addresses to submit comments on this AD

- DOT Docket Web site: Go to http://dms.dot.gov and follow the instructions for sending your comments electronically.
- Government-wide rulemaking Web site: Go to http://www.regulations.gov and follow the instructions for sending your comments electronically.
- *Mail:* Docket Management Facility; U.S. Department of Transportation, 400 Seventh Street, SW., Nassif Building, Room PL-401, Washington, DC 20590.
 - Fax: (202) 493-2251.
- Hand Delivery: Room PL-401 on the plaza level of the Nassif Building, 400 Seventh Street, SW., Washington, DC, between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays.

FOR FURTHER INFORMATION CONTACT:

Margaret Langsted, Aerospace Engineer, Propulsion Branch, ANM–140S, FAA, Seattle Aircraft Certification Office, 1601 Lind Avenue, SW., Renton, Washington 98057–3356; telephone (425) 917–6500; fax (425) 917–6590.

SUPPLEMENTARY INFORMATION: On September 30, 2006, we issued emergency AD 2006–20–51, which applies to all Boeing Model 777–200LR series airplanes powered by General Electric (GE) Model GE90–110B engines, and Model 777–300ER series airplanes powered by GE Model GE90–115B engines.

Background

We have received a report of two occurrences of engine thrust rollback (reduction) during takeoff on Boeing Model 777–300 $E\bar{R}$ series airplanes powered by GE Model GE90-115B engines. In both cases, only one engine was affected. The N1 (fan speed—the normal thrust setting parameter for this engine type) thrust level on the affected engine progressively dropped resulting in a thrust loss of 65 to 77% due to an erroneous N1 command computed by the Full Authority Digital Engine Control (FADEC). In both cases, the engine recovered to the proper N1 thrust level as the airplane climbed beyond 400 feet above ground level. In one case,

the operator elected to return to the departure airport after reaching cruise. In the other case, the operator continued to its destination. There were no further anomalies reported during the remainder of the flights. No flight deck messages or maintenance indications occurred as a result of the event.

Investigation indicates that these events are the results of a software algorithm in the FADEC that was introduced in software version A.0.4.5 (GE90-100 Service Bulletin 73-0021). Investigation also indicates that a dualengine thrust rollback could occur just after V1 (takeoff decision speed after which takeoff is to proceed even after an engine failure), which would result in the airplane not having adequate thrust to safely complete the takeoff. A derated or a reduced thrust takeoff, in combination with specific ambient conditions, can result in the FADEC commanding a progressive reduction in the engine thrust. Airplane takeoffs are often performed with engine thrust levels at less than the maximum engine thrust approved for the airplane. This is done to reduce wear on the engines, increase fuel efficiency, and maximize passenger comfort. Operators are permitted to calculate airplane takeoff performance and required engine thrust using two different methods referred to as "derated takeoff thrust" (also known as fixed de-rate) and "reduced takeoff thrust" (also known as the assumed temperature method). Full-rated thrust takeoffs with the thrust levers at the full forward position are not exposed to the potential thrust rollback caused by the software anomaly described above.

A dual-engine thrust rollback, if not corrected, could result in the airplane failing to lift off before reaching the end of the runway or failing to clear obstacles below the takeoff flight path.

The FADEC software, version A.0.4.5, on certain Model 777–200LR powered by GE Model 90–110B engines is identical to that on the affected Model 777–300ER series airplanes powered by GE Model GE90–115B engines.

Therefore, both of these airplane models may be subject to the same unsafe condition.

Although the software anomaly was introduced by this version of software, the affected operators have a mixed fleet of airplanes with and without the affected software version. To avoid reliance on flight crews determining which software version is installed as they operate different airplanes, we have determined that this AD should apply to all airplanes equipped with the affected engines. If operators develop an acceptable method to ensure flight crews will consistently perform the

correct procedure on affected airplanes, they may request approval for an alternative method of compliance in accordance with paragraph (h) of this AD.

FAA's Determination and Requirements of This AD

Since the unsafe condition described is likely to exist or develop on other airplanes of the same type design, we issued emergency AD 2006–20–51 to prevent dual-engine thrust rollback, which could result in the airplane failing to lift off before reaching the end of the runway or failing to clear obstacles below the takeoff flight path. The AD requires revising the Airplane Flight Manual to prohibit takeoffs at less than full-rated thrust.

We found that immediate corrective action was required; therefore, notice and opportunity for prior public comment thereon were impracticable and contrary to the public interest, and good cause existed to make the AD effective immediately by individual notices issued on September 30, 2006, to all known U.S. owners and operators of all Boeing Model 777–200LR series airplanes powered by General Electric (GE) Model GE90-110B engines, and Model 777-300ER series airplanes powered by GE Model GE90-115B engines. These conditions still exist, and the AD is hereby published in the Federal Register as an amendment to section 39.13 of the Federal Aviation Regulations (14 CFR 39.13) to make it effective to all persons.

Interim Action

This is considered to be interim action. The engine manufacturer has advised that it currently is developing a modification that will eliminate the unsafe condition addressed by this AD. Once this modification is developed, approved, and available, we may consider additional rulemaking.

Comments Invited

This AD is a final rule that involves requirements that affect flight safety and was not preceded by notice and an opportunity for public comment; however, we invite you to submit any relevant written data, views, or arguments regarding this AD. Send your comments to an address listed in the ADDRESSES section. Include "Docket No. FAA-2006-26028; Directorate Identifier 2006-NM-222-AD" at the beginning of your comments. We specifically invite comments on the overall regulatory, economic, environmental, and energy aspects of the AD that might suggest a need to modify it.

We will post all comments we receive, without change, to http:// dms.dot.gov, including any personal information you provide. We will also post a report summarizing each substantive verbal contact with FAA personnel concerning this AD. Using the search function of that Web site, anyone can find and read the comments in any of our dockets, including the name of the individual who sent the comment (or signed the comment on behalf of an association, business, labor union, etc.). You may review the DOT's complete Privacy Act Statement in the Federal Register published on April 11, 2000 (65 FR 19477-78), or you may visit http://dms.dot.gov.

Examining the Docket

You may examine the AD docket on the Internet at http://dms.dot.gov, or in person at the Docket Management Facility office between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays. The Docket Management Facility office (telephone (800) 647–5227) is located on the plaza level of the Nassif Building at the DOT street address stated in the ADDRESSES section. Comments will be available in the AD docket shortly after the Docket Management System receives them.

Authority for This Rulemaking

Title 49 of the United States Code specifies the FAA's authority to issue rules on aviation safety. Subtitle I, Section 106, describes the authority of the FAA Administrator. Subtitle VII, Aviation Programs, describes in more detail the scope of the Agency's authority.

We are issuing this rulemaking under the authority described in Subtitle VII, Part A, Subpart III, Section 44701, "General requirements." Under that section, Congress charges the FAA with promoting safe flight of civil aircraft in air commerce by prescribing regulations for practices, methods, and procedures the Administrator finds necessary for safety in air commerce. This regulation is within the scope of that authority because it addresses an unsafe condition that is likely to exist or develop on products identified in this rulemaking action.

Regulatory Findings

We have determined that this AD will not have federalism implications under Executive Order 13132. This AD will not have a substantial direct effect on the States, on the relationship between the national government and the States, or on the distribution of power and responsibilities among the various levels of government.

The FAA has determined that this regulation is an emergency regulation that must be issued immediately to correct an unsafe condition in aircraft. and that it is not a "significant regulatory action" under Executive Order 12866. It has been determined further that this action involves an emergency regulation under DOT Regulatory Policies and Procedures (44 FR 11034, February 26, 1979). If this emergency regulation is later deemed significant under DOT Regulatory Policies and Procedures, we will prepare a final regulatory evaluation and place it in the AD Docket. See the ADDRESSES section for a location to examine the regulatory evaluation, if filed.

List of Subjects in 14 CFR Part 39

Air transportation, Aircraft, Aviation safety, Safety.

Adoption of the Amendment

■ Accordingly, under the authority delegated to me by the Administrator, the FAA amends 14 CFR part 39 as follows:

PART 39—AIRWORTHINESS DIRECTIVES

■ 1. The authority citation for part 39 continues to read as follows:

Authority: 49 U.S.C. 106(g), 40113, 44701.

§ 39.13 [Amended]

■ 2. The FAA amends § 39.13 by adding the following new airworthiness directive (AD):

2006–20–51 Boeing: Amendment 39–14786. Docket No. FAA–2006–26028; Directorate Identifier 2006–NM–222–AD.

Effective Date

(a) This AD becomes effective October 16, 2006, to all persons except those persons to whom it was made immediately effective by emergency AD 2006–20–51, issued on September 30, 2006, which contained the requirements of this amendment.

Affected ADs

(b) None.

Applicability

(c) This AD applies to airplanes in Table 1 of this AD certificated in any category.

TABLE 1.—APPLICABILITY

Boeing model	Powered by General Electric (GE) model
(1) 777–200LR series airplanes	GE90–110B engines. GE90–115B engines.

Unsafe Condition

(d) This AD results from a report of two occurrences of engine thrust rollback during takeoff. The Federal Aviation Administration is issuing this AD to prevent dual-engine thrust rollback, which could result in the airplane failing to lift off before reaching the end of the runway or failing to clear obstacles below the takeoff flight path.

Compliance

(e) You are responsible for having the actions required by this AD performed within the compliance times specified, unless the actions have already been done.

Revision of the Airplane Flight Manual

(f) Within 24 hours after the effective date of this AD, revise the Certificate Limitations Section of the AFM to include the following statement. This may be done by inserting a copy of this AD into the AFM.

"Use of reduced thrust takeoff ratings determined by either the assumed temperature method or the fixed de-rate method or a combination of both, is prohibited. Full-rated thrust must be used for takeoff."

Note 1: When a statement identical to that in paragraph (f) of this AD has been included in the general revisions of the AFM, the general revisions may be inserted into the AFM, and the copy of this AD may be removed from the AFM.

Special Flight Permit

(g) Special flight permits, as described in Section 21.197 and Section 21.199 of the Federal Aviation Regulations (14 CFR 21.197 and 21.199), are not allowed.

Alternative Methods of Compliance (AMOCs)

(h)(1) The Manager, Seattle Aircraft Certification Office (ACO), FAA, has the authority to approve AMOCs for this AD, if requested in accordance with the procedures found in 14 CFR 39.19.

(2) Before using any AMOC approved in accordance with § 39.19 on any airplane to which the AMOC applies, notify the appropriate principal inspector in the FAA Flight Standards Certificate Holding District Office.

Issued in Renton, Washington, on October 2, 2006.

Kalene C. Yanamura,

Acting Manager, Transport Airplane
Directorate, Aircraft Certification Service.
[FR Doc. E6–16670 Filed 10–10–06; 8:45 am]
BILLING CODE 4910–13–P

DEPARTMENT OF HEALTH AND HUMAN SERVICES

Food and Drug Administration

21 CFR Parts 189 and 700

[Docket No. 2004N-0257]

RIN 0910-AF48

Recordkeeping Requirements for Human Food and Cosmetics Manufactured From, Processed With, or Otherwise Containing, Material From Cattle

AGENCY: Food and Drug Administration, HHS.

ACTION: Final rule.

SUMMARY: The Food and Drug Administration (FDA) is requiring that manufacturers and processors of human food and cosmetics that are manufactured from, processed with, or otherwise contain, material from cattle establish and maintain records sufficient to demonstrate that the human food or cosmetic is not manufactured from, processed with, or does not otherwise contain, prohibited cattle materials. These recordkeeping requirements provide documentation for the provisions in FDA's interim final rule entitled "Use of Materials Derived From Cattle in Human Food and Cosmetics." FDA is requiring recordkeeping because manufacturers and processors of human food and cosmetics need records to ensure that their products do not contain prohibited cattle materials, and records are necessary to help FDA ensure compliance with the requirements of the interim final rule.

DATES: This rule is effective on January 9, 2007.

FOR FURTHER INFORMATION CONTACT:

Rebecca Buckner, Center for Food Safety and Applied Nutrition (HFS–306), Food and Drug Administration, 5100 Paint Branch Pkwy., College Park, MD 20740, 301–436–1486.

SUPPLEMENTARY INFORMATION:

I. Background

On July 14, 2004, FDA proposed a rule entitled "Recordkeeping Requirements for Human Food and Cosmetics Manufactured From, Processed With, or Otherwise Containing, Material From Cattle" (the proposed rule) (69 FR 42275) to require that manufacturers and processors of human food and cosmetics that are manufactured from, processed with, or otherwise contain, material from cattle establish and maintain records sufficient to demonstrate the food or cosmetic is not manufactured from, processed with, or does not otherwise contain, prohibited cattle materials. The proposed rule was a companion rulemaking to FDA's interim final rule (IFR) entitled "Use of Materials Derived From Cattle in Human Food and Cosmetics" (the IFR) (69 FR 42256). We believe that records sufficient to demonstrate the absence of prohibited cattle materials in human food and cosmetics are critical for manufacturers, processors, and FDA to ensure compliance with the ban on prohibited cattle materials. Therefore, we are finalizing the proposed rule to require that manufacturers and processors of human food and cosmetics that are manufactured from, processed with, or otherwise contain, material from cattle establish and maintain records sufficient to demonstrate that human food and cosmetics are not manufactured from, processed with, or do not otherwise contain, prohibited cattle materials. We also are finalizing the provision in the proposed rule that these records must be made available to FDA for inspection and copying. FDA notes that the requirement in the IFR that existing records relevant to compliance be made available to FDA remains and has been incorporated into the final record provisions.

In response to the December 2003 finding of an adult cow—imported from Canada—that tested positive for bovine spongiform encephalopathy (BSE) in the State of Washington, FDA published the IFR requiring that specified risk materials (SRMs), small intestine of all cattle, tissue from nonambulatory disabled cattle, tissue from cattle not inspected and passed for human consumption, and mechanically separated beef (MS beef) not be used for FDA-regulated human food and cosmetics. SRMs include the brain, skull, eyes, trigeminal ganglia, spinal cord, vertebral column (excluding the vertebrae of the tail, the transverse

process of the thoracic and lumbar vertebrae, and the wings of the sacrum), and dorsal root ganglia of cattle 30 months and older, as well as the tonsils and distal ileum of the small intestine of all cattle.

The U.S. Department of Agriculture (USDA) also published an IFR (69 FR 1862, January 12, 2004) to prohibit certain cattle material from use in human food. FDA's IFR extended the protection from BSE provided under USDA's BSE IFR to FDA-regulated human food and cosmetics. On September 7, 2005, both FDA (70 FR 53063) and USDA (70 FR 53043) published amendments to their respective IFRs to allow the use of small intestine in human food and cosmetics provided the distal ileum has been removed. This final rule on recordkeeping will help ensure compliance with the provisions of FDA's IFR and, thereby, will serve as an additional safeguard to reduce human exposure to the agent that causes BSE that may be present in human food and cosmetics that are manufactured from, processed with, or otherwise contain, material from cattle.

FDA believes that these recordkeeping requirements are necessary for manufacturers and processors to ensure that all cattle material they use is free from prohibited cattle materials. Furthermore, these requirements are necessary for FDA to ensure compliance with the provisions of the IFR. There is currently no validated premortem test to reliably detect the presence of the BSE agent or the presence of prohibited cattle material in human food and cosmetics. Once cattle material such as brain or spinal cord is separated from the source animal, it may not be possible to determine the age of the animal from which the material came without records and, therefore, whether the material is an SRM. In addition without records, it may not be possible to determine whether a product contains material from cattle that were not inspected and passed for human consumption. Also, a product might contain MS beef without its presence being evident from the appearance of the product.

FDA received 32 responses, each containing one or more comments, from industry, consumers, and other stakeholder groups in response to the proposed rule. We have responded in this document to the comments that were within the scope of this rulemaking. We received several comments that pertained to the prohibitions on the cattle materials themselves, as opposed to the recordkeeping requirements, and other

issues that are covered in the IFR. We will be responding to those comments when we finalize the IFR.

II. Response to Comments

A. Who Has to Keep Records? (§§ 189.5(c)(1) and 700.27(c)(1) (21 CFR 189.5(c)(1) and 700.27(c)(1)))

(Comment) We received several comments stating that only the manufacturer or processor of a finished product should have to maintain the required records. Conversely, other comments suggested that only the manufacturer or processor of an ingredient that directly incorporates cattle material from a slaughterhouse or a rendering establishment should have to keep records. The comments requesting that finished product manufacturers keep records stated that it was appropriate that the recordkeeping responsibility should be placed at the finished product stage because, in some cases, an ingredient manufacturer would be making an ingredient that may or may not be incorporated into a food or cosmetic; therefore, the ban on the use of prohibited cattle materials should not apply to the ingredient at the time of production. The comments that stated the opposite view maintained that only the ingredient manufacturers who are obtaining cattle material from slaughterhouses or rendering establishments know whether or not prohibited cattle materials were incorporated into the ingredient, so it is appropriate that the records be maintained by those who have firsthand knowledge of the source of the cattle material.

Comments also requested that rendering establishments and other similar establishments maintain additional records because they handle prohibited cattle materials. These records would include plans to prevent cross-contamination and cleaning and disinfection records.

We also received several comments requesting that we clarify that manufacturers and processors of certain cattle-derived products (e.g., tallow derivatives and milk and milk products) do not have to keep records because their products are exempt in the IFR.

(Response) We believe that manufacturers and processors of human food and cosmetics as well as ingredients used to produce human food and cosmetics must maintain records. To ensure that a finished human food or cosmetic does not contain prohibited cattle materials, it is necessary to ensure that all of the ingredients are free of prohibited cattle materials. This

 $^{^{1}}$ In June 2005, USDA confirmed the second case of BSE in the United States in a cow born in Texas.

requires information from ingredient suppliers as well as from the finished product manufacturer. A buyer who purchases cattle material from its producer or manufacturer (e.g., from a slaughter or rendering establishment) is in a better position than subsequent purchasers further downstream in the distribution chain to ensure that the purchased cattle material is free from prohibited cattle material.

Manufacturers and processors who use ingredients made of cattle material and incorporate it into final products can only ensure that the final products are free of prohibited cattle material if the upstream suppliers have done the same. Therefore, we have concluded that manufacturers and processors of finished human food and cosmetic products, as well as the manufacturers and processors who supply ingredients (e.g., tallow or gelatin) for those finished products, must maintain records.

We are not specifying particular additional records that must be kept by establishments that handle both prohibited and nonprohibited cattle materials. We note that food establishments are subject to the current good manufacturing practice requirements in 21 CFR part 110 and that the failure to take adequate measures to prevent crosscontamination could result in unsanitary conditions whereby the food may be rendered injurious to health and, therefore, adulterated under section 402(a)(4) of the Federal Food, Drug, and Cosmetic Act (the Act) (21 U.S.C. 342(a)(4)).

Comments asked that we clarify that manufacturers and processors of certain cattle-derived products (e.g., tallow derivatives and milk and milk products) are exempt from the recordkeeping requirements because these products are exempt from the provisions of the IFR. In the Federal Register of September 7, 2005 (70 FR 53063), FDA published amendments to the IFR. In that document, we also clarified that milk and milk products, hides and hidederived products, and tallow derivatives are excluded from the definition of prohibited cattle materials. We are not requiring that records be kept for cattle materials that are specifically exempted from the definition of "prohibited cattle material" without restrictions, such as milk and milk products, hides and hidederived products, and tallow derivatives. Although §§ 189.5(a)(1) and 700.27(a)(1) exclude tallow that contains no more than 0.15 percent insoluble impurities from the definition of prohibited cattle materials, tallow is not exempt from records requirements because there are restrictions on either

the amount of insoluble impurities it contains or the cattle material from which it is sourced.

B. What Type of Records Must Manufacturers and Processors of Human Food and Cosmetics Keep? (§§ 189.5(c)(1) and 700.27(c)(1))

(Comment) We received several comments related to the type of records that must be kept. Most stated that a requirement for lot-by-lot records for human food and cosmetics was overly burdensome relative to the risk posed by BSE. Many comments suggested that maintenance of a continuing letter of guarantee, renewable annually, would be sufficient to ensure that manufacturers and processors are not using prohibited cattle materials in their products.

Other comments stated that lot-by-lot records were necessary, particularly for imports. Some comments suggested that lot-by-lot records should be kept and should contain enough information to allow downstream tracing of the product and upstream tracing of products or ingredients.

(Response) We are requiring in §§ 189.5(c)(1) and 700.27(c)(1) that manufacturers and processors of human food and cosmetics manufactured from, processed with, or that otherwise contain, material from cattle maintain records sufficient to demonstrate that the human food and cosmetics are not manufactured from, processed with, or otherwise contain, prohibited cattle material. We recommend that manufacturers and processors accomplish this in part by maintaining records, which they renew at least annually, from suppliers of cattle materials and of products that are manufactured from, processed with, or otherwise contain, cattle material documenting that the products obtained from the supplier do not contain prohibited cattle materials. In addition. we recommend that manufacturers and processors maintain a record of the source, type, volume, and date of receipt for the cattle material or product manufactured from, processed with, or otherwise containing, cattle material. We intend to publish guidance describing in detail the types of records we recommend that manufacturers and processors maintain to demonstrate compliance with the ban on prohibited cattle materials.

Because we do not easily have access to records maintained at foreign establishments, we have included in this final rule a requirement, in §§ 189.5(c)(6) and 700.27(c)(6), that when filing entry with U.S. Customs and Border Protection, the importer of

record of a human food or cosmetic manufactured from, processed with, or otherwise containing, cattle material must affirm that the human food or cosmetic is manufactured from. processed with, or otherwise contains, cattle material and must affirm that the human food or cosmetic was manufactured in accordance with the applicable requirements. In addition, if a human food or cosmetic is manufactured from, processed with, or otherwise contains, cattle material, the importer of record must, if requested, provide within 5 days records sufficient to support the affirmation (i.e., to demonstrate that the human food or cosmetic is not manufactured from, processed with, or does not otherwise contain, prohibited cattle material). The importer of record must retain or have access to the same records that domestic manufacturers and processors must maintain to demonstrate compliance.

We have made several changes to the import provision in the proposed rule. First, we have clarified that the import provision is applicable to the importer of record because the importer of record is responsible for compliance with import requirements. Second, we have added a requirement for the importer of record to affirm that a human food or cosmetic is manufactured from, processed with, or otherwise contains, cattle material. FDA believes that the addition of this affirmation will minimize the number of importers affirming compliance based on the complete absence of cattle material and will help FDA focus its compliance efforts on products manufactured from, processed with, or otherwise containing, cattle material. We have also changed the time period for providing records from a "reasonable time" to 5 days. FDA believes that providing a specific time period will eliminate ambiguity and thereby facilitate compliance. FDA further believes that 5 days is a reasonable amount of time for the importer of record to provide the records while still allowing FDA sufficient time to review the documents to make an initial admissibility decision before the conditional release period for the product expires. If the importer of record fails to provide adequate records within 5 days, the product will be subject to detention because it appears to be adulterated under section 801 of the act (21 U.S.C. 381), and the owner or consignee will be afforded notice and an opportunity for hearing in accordance with section 801(a) of the

With regard to the comments that stated that the records required should allow tracing of the product in the event of a recall, we agree that it is beneficial to have records that will allow for traceback or trace-forward activities. We intend to recommend records in a guidance document that, in addition to being essential to ensure compliance, will provide useful information in the event of trace-back or trace-forward activities. We note that some manufacturers and processors of human food may already be maintaining such records as part of ordinary business practices to comply with FDA's recordkeeping requirements in "Establishment and Maintenance of Records Under the Public Health Security and Bioterrorism Preparedness and Response Act of 2002" (the Bioterrorism Act recordkeeping rule) (69 FR 71562, December 9, 2004).

C. Should There Be a Requirement That Records Be Certified?

(Comment) Several comments suggested that any records required should be certified by an appropriate government authority or that the required records be traceable to a record certified by a government authority. Other comments requested that FDA accept the certification of records by foreign governments, if those authorities choose to certify compliance with our records requirements. One comment suggested that records be certified for compliance through independent audit, though not necessarily by a government, and that FDA require documentation of the certification.

(Response) We do not agree that records need to be certified by an appropriate authority, governmental or otherwise. We did not propose certification in the proposed rule because we did not believe it was necessary to ensure compliance with the rule. In addition, we do not traditionally require certification for other FDA-regulated human food and cosmetic products with records requirements (e.g., seafood and juice hazard analysis critical control points (HACCP) records).

D. How Long Must the Records Be Kept? (§§ 189.5(c)(2) and 700.27(c)(2))

(Comment) We received several comments regarding the length of time that records must be retained. Several comments stated that the required records should be maintained for 1 year after the date they were created to be consistent with USDA's IFR. One comment suggested that the required records be maintained for 3 years after the date they were created to cover the potential shelf life of the products and any potential need to trace back products. Another comment suggested that records be retained for 40 years

after the date they were created because variant Creutzfeldt-Jakob disease (vCJD) has a long incubation period, and the records retention requirement should be commensurate with the potential for outbreak of disease. Finally, several comments requested that the records retention requirement vary with the expected shelf life of the human food or cosmetic, but should be no longer than 2 years.

(Response) We proposed in §§ 189.5(c)(2) and 700.27(c)(2) that all required records be retained for 2 years after the date the records were created. The comments received have not persuaded us to change this requirement. The recordkeeping requirement is intended to ensure compliance with the ban on the use of prohibited cattle material. FDA will verify compliance during inspections of facilities that use cattle material directly or that use human food or cosmetics manufactured from, processed with, or that otherwise contain, cattle material. We believe that a 2-year record retention requirement is an appropriate length of time for achieving the goal of this rulemaking. A 2-year record retention requirement will create a compliance history for the establishment. Furthermore, many of the products (e.g., canned soups, gelatin, dietary supplements, and cosmetics) that include material from cattle have shelf lives of several years. A 2-year record retention period will enable FDA to determine compliance of products on the market.

We do not agree that the records retention time should vary with the shelf life of the product as it does in the Bioterrorism Act recordkeeping rule. It is the goal of that rule to allow for traceback or trace-forward activities of food in an emergency; thus, shelf life of products was the critical determinant of the records retention period. In contrast, our goal in this rulemaking is to ensure compliance with the ban on the use of prohibited cattle material. As stated previously, the 2-year record retention requirement will enable creation of a compliance history for establishments over an extended period of time. Finally, we do not agree that the long incubation period of vCJD necessitates that records be retained for 40 years. This rulemaking is not intended to create a consumption or use history for individuals. Because vCJD has a long incubation period, potentially decades, it would be impractical to try to match disease development with previous consumption or use of a specific commodity.

It will be necessary for inspectors to review and copy records during an

inspection. A review of records is one way that we can determine whether an establishment is complying with the ban on the use of prohibited cattle material. It is also important that we be able to copy the required records. We may consider it necessary to copy records when, for example, our investigators need assistance in reviewing a certain record from relevant experts in our headquarters. If we are unable to copy records, we would have to rely solely on our investigator's notes and reports when drawing conclusions. Finally, copying records will facilitate followup regulatory actions.

E. When Do Manufacturers and Processors Have to Comply With the Recordkeeping Requirements?

(Comment) We received several comments requesting that industry be given 90 days after publication of this final rule to comply with the recordkeeping requirements, rather than the proposed 30 days. The comments requested the additional time because they stated that 30 days was not long enough to implement a new recordkeeping protocol in their establishments.

(Response) As we stated in the proposed rule, the agency believes that recordkeeping and records access requirements are necessary immediately. However, because we recognized that recordkeeping systems could not be put in place immediately, we did not include such provisions in the IFR but rather proposed them. The requirements in this rule are no more than are necessary for manufacturers, processors, and importers of record to ensure their compliance with the rule, and we informed industry of the anticipated timeframe for implementation in the proposed rule. These recordkeeping requirements are vital to ensuring compliance with the ban on the use of prohibited cattle material, and we strongly encourage industry to begin keeping them as soon as possible. However, in light of these comments we have decided to make these recordkeeping requirements become effective 90 days after the publication of this final rule in the Federal Register.

F. Legal Authority

(Comment) We received a comment that maintained that FDA has no authority to require manufacturers to disclose company records to inspectors.

(Response) We disagree with this comment because the agency has authority under the act both to require maintenance of records and to compel official access to such records for the efficient enforcement of the act. The act's statutory scheme, taken as a whole, including provisions related to adulteration, prohibited acts, injunction, and seizure, makes clear that FDA has authority to issue a regulation requiring recordkeeping and access to the records that are kept. Viewing the act in its entirety, the United States Court of Appeals for the District of Columbia Circuit has found that the agency has authority to require records notwithstanding the act's lack of express, general authority for records. (National Confectioners Ass'n v. Califano, 569 F.2d 690 (DC Cir. 1978)). The Supreme Court has recognized that FDA has authority that "is implicit in the regulatory scheme, not spelled out in haec verba" in the statute (Weinberger v. Bentex Pharmaceuticals, Inc., 412 U.S. 645, 653 (1973)). Indeed, "it is a fundamental principle of administrative law that the powers of an administrative agency are not limited to those expressly granted by the statutes, but include, also, all of the powers that may fairly be implied therefrom. * * * In the construction of a grant of powers, it is a general principle of law that where the end is required the appropriate means are given and that every grant of power carries with it the use of necessary and lawful means for its effective execution" (Morrow v. Clayton, 326 F.2d 35, 44 (10th Cir. 1963)).

In Toilet Goods Ass'n, Inc. v. Gardner (387 U.S. 158 (1967)), cosmetic manufacturers and distributors challenged an FDA regulation, issued under authority of the Color Additive Amendments of 1960 and section 701(a) of the act (21 U.S.C. 371(a)),² authorizing FDA to stop certifying the color additives of any person who had refused to provide FDA with access to its manufacturing facilities, processes, and formulae. The cosmetic manufacturers and distributors argued that the regulation exceeded FDA's statutory authority and maintained that FDA had long sought Congressional authorization for the access required by the regulation but had been denied that power, except for prescription drugs (id. at 162). In finding that the controversy was not ripe for review, the Supreme Court set forth an approach to determining FDA's rulemaking authority under section 701(a) that extends beyond consideration of whether a specific section of the act includes a particular requirement.

Rather, the approach extends to consideration of the act as a whole and the need to accomplish its purposes:

Whether the regulation is justified thus depends, not only, as petitioners appear to suggest, on whether Congress refused to include a specific section of the Act authorizing such inspections, although this factor is to be sure a highly relevant one, but also on whether the statutory scheme as a whole justified promulgation of the regulation. This will depend not merely on the inquiry into statutory purpose, but concurrently on an understanding of what types of enforcement problems are encountered by the FDA, the need for various sorts of supervision in order to effectuate the goals of the Act, and the safeguards devised to protect legitimate trade secrets.

Id. at 163–64 (internal citation omitted).

In National Confectioners Ass'n v. Califano (569 F.2d 690 (DC Cir. 1978)), the United States Court of Appeals for the District of Columbia Circuit cited Toilet Goods in upholding an FDA regulation, issued under the authority of sections 701(a) and 402(a)(4) of the act,3 requiring recordkeeping by candy manufacturers (id. at 691). The Association challenged FDA's recordkeeping requirement on several grounds, including that it exceeded FDA's statutory authority. The DC Circuit rejected the Association's analysis of FDA's statutory authority as "unreasonably cramped" and considered enforcement practicalities as suggested by the Supreme Court in Toilet Goods:

There is no persuasive evidence that Congress intended to immunize food manufacturers from * * * record-keeping. Therefore, in assessing the validity of regulations promulgated under section 701(a) for the efficient enforcement of the Act, we must consider "whether the statutory scheme as a whole justified promulgation of the regulation." Toilet Goods Ass'n v. Gardner, 387 U.S. 158, 163 (1967). The consideration concerns "not merely an inquiry into statutory purpose" but also practicalities, such as "an understanding of what types of enforcement problems are encountered by the FDA (and) the need for various sorts of supervision in order to effectuate the goals of the Act." Id. at 163-64. The Act is not concerned with purification of the stream of commerce in the abstract. The problem is a practical one of consumer protection, not dialectics. United States v. Urbuteit, 335 U.S. 355, 357-58 (1948).

Id. at 613 (footnote omitted).

In *National Confectioners*, the DC Circuit considered the act's statutory scheme as a whole, specifically citing

certain of the act's provisions relating to adulteration, prohibited acts, injunction, and seizure. Viewing the act in its entirety, the court found no basis to distinguish between FDA's roles in preventing and in remedying commerce in adulterated foods (id. at 693). The court concluded that FDA's intention to prevent the introduction of adulterated foods into commerce and to hasten their removal from circulation once there "reflect the objective of the Act and carry out its mandate" (id. at 694). The regulation upheld in National Confectioners required the creation and retention of records by candy makers of the initial distribution of candy. Although FDA's access to the records was not explicitly addressed, the DC Circuit implicitly recognized that FDA had the authority to access those records: In particular, the court stated that "[r]egulations that require source codes and distribution records may be based legitimately on the need to expedite seizure when voluntary recalls are refused" (id. at 695). The only way for records to expedite seizure is if FDA has access to them.

The comment questioning FDA's authority to inspect records cites the Bioterrorism Act's specific grant of authority to FDA to access certain records as "proof that neither FDA nor Congress believes that the agency has general statutory power to require records inspection for food." FDA's belief in its statutory power to inspect food records is evident in the records requirements it has previously issued, such as regulations that provide FDA with access to records for fish and fishery products (21 CFR 123.9(c)) and records for juice (21 CFR 120.12(e)). Further, the Bioterrorism Act provides in section 306 (21 U.S.C. 414), Maintenance and Inspection of Records, that "[t]his section shall not be construed * * * to limit the authority of the Secretary to inspect records or to require establishment and maintenance of records under any other provision of this Act." In addition, Congress indicated its understanding of FDA's records authority in the legislative history of the Bioterrorism Act. The Conference Committee responsible for the Bioterrorism Act acknowledged FDA's recordkeeping authority independent of the Bioterrorism Act in a joint explanatory statement:

The Managers did not adopt a Senate proposal to authorize the Secretary to require the maintenance and retention of other records for inspection relating to food safety, because the Secretary has authority under section 701(a) of the [Act] to issue regulations for the "efficient enforcement of this Act" and this authority, in combination with other

² Section 701(a) provides that "[t]he authority to promulgate regulations for the efficient enforcement of this Act, except as otherwise provided in this section, is hereby vested in the Secretary."

³ Section 402(a)(4) states that a food shall be deemed adulterated "if it has been prepared, packed, or held under insanitary conditions whereby it may have become contaminated with filth, or whereby it may have been rendered injurious to health."

provisions (such as section 402), gives the Secretary the authority to require appropriate record keeping in food safety regulations. H.R. Conf. Rep. No. 107–481, at 135 (2002).

The comment questioning FDA's authority to inspect food records further argues that "if Congress had intended FDA to have broad records inspection authority, section 703, [Records of Interstate Shipment], would have been completely superfluous and meaningless." As FDA recognized in a previous rulemaking, the National Confectioners court concluded that "the narrow scope of section 703 of the act is not a limitation on the right of the agency to require recordkeeping and have access to records that are outside the scope of section 703 of the act, so long as [1] the recordkeeping requirement is limited, [2] clearly assists the efficient enforcement of the act, and [3] the burden of recordkeeping is not unreasonably onerous" (60 FR 65096 at 65100 (citing National Confectioners, 569 F.2d at 693 n.9)).

The recordkeeping requirement in this rule satisfies the three criteria in National Confectioners for the agency to require records and have access to records. First, the requirement is limited to only manufacturers and processors of human food and cosmetics that are manufactured from, processed with, or otherwise contain, material from cattle and to importers of record of human food and cosmetics that are manufactured from, processed with, or otherwise contain, material from cattle. FDA has excluded all of the other persons who may be involved in the distribution of human food or cosmetics before they reach consumers but who do not manufacture or process the food.

Second, the recordkeeping requirement not only clearly assists the efficient enforcement of the act, but is critical to its enforcement because it is vital to determining compliance with the ban on prohibited cattle material. There is currently no test to detect reliably the presence of prohibited cattle material in human food and cosmetics. If FDA cannot require and access records demonstrating compliance, FDA may not be able to determine whether a human food or cosmetic contains cattle material that is prohibited. For example, without records, FDA may not be able to determine whether cattle material that may be specified risk material (e.g., brain or spinal cord) came from an animal that was less than 30 months old, whether the source animal for cattle material was inspected and passed, whether the source animal for cattle material was nonambulatory

disabled, and whether tallow in a human food or cosmetic contains less than 0.15 percent insoluble impurities.

Under the IFR, failure of a manufacture or processor to operate in compliance with the ban on prohibited cattle materials renders a food or cosmetic adulterated as a matter of law. The introduction or delivery for introduction into interstate commerce of an adulterated food or cosmetic is a prohibited act under section 301(a) of the act (21 U.S.C. 331(a)), and the adulteration of any food or cosmetic in interstate commerce violates section 301(b) of the act (21 U.S.C. 331(b)). Thus, in order for us to determine whether a human food or cosmetic is adulterated and whether a manufacturer or processor has committed a prohibited act, we must have access to the manufacturer or processor's records.

Third, the burden of the recordkeeping requirement in this rule is not unreasonably onerous. The only records that must be retained are those sufficient to demonstrate that a human food or cosmetic is not manufactured from, processed with, or does not otherwise contain, prohibited cattle materials. First and foremost, FDA believes that it is only requiring records that a manufacturer or processor itself would need to keep to ensure its compliance with the rule. Just as there is no way for FDA to determine whether a product contains prohibited cattle material because there is currently no test to detect such material, there is no way for a manufacturer or processor to know without records. For example, without records, a manufacturer or processor of human food or cosmetics manufactured from, processed with, or otherwise containing, cattle material cannot determine whether cattle material that may be specified risk material (e.g., brain or spinal cord) came from an animal that was less than 30 months old, whether the source animal for cattle material was inspected and passed, whether the source animal for cattle material was nonambulatory disabled, and whether tallow in a human food or cosmetic contains less than 0.15 percent insoluble impurities.

Further, the rule does not dictate specific records but allows for covered manufacturers and processors to comply in the way that is least burdensome for them while demonstrating compliance. Also, many of the records that covered manufacturers and processors of human food may choose to retain are similar to those that are required by FDA's Bioterrorism Act recordkeeping rule. Finally, by allowing for efficient enforcement of the requirements that minimize human exposure to materials

that scientific studies have demonstrated are highly likely to contain the BSE agent in cattle infected with the disease, FDA's recordkeeping rule "reflect[s] the objective of the [Federal Food, Drug, and Cosmetic] Act and carr[ies] out its mandate" (National Confectioners, 569 F.2d at 694).

III. Summary of Requirements

The recordkeeping provisions of this rule apply to food and cosmetics covered by the IFR, including food additives, dietary supplements, and dietary ingredients.

As discussed in section II of this document, we have modified the codified section based on comments we received on the proposed rule. In this final rule, in §§ 189.5(c)(1) and 700.27(c)(1), we are requiring that manufacturers and processors of human food and cosmetics that are manufactured from, processed with, or otherwise contain, material from cattle establish and maintain records sufficient to demonstrate that the human food or cosmetic is not manufactured from, processed with, or does not otherwise contain, prohibited cattle materials. We intend to publish guidance that will describe in detail the records we recommend that manufacturers and processors maintain to demonstrate compliance with the ban on the use of prohibited cattle materials.

In $\S\S 189.5(c)(2)$ and 700.27(c)(2), we specify the period of time (2 years) that records must be retained. In §§ 189.5(c)(3) and 700.27(c)(3), we require that records be maintained at the manufacturing or processing establishment or at a reasonably accessible location. Sections 189.5(c)(4) and 700.27(c)(4) provide that maintenance of electronic records is acceptable and that electronic records are considered to be reasonably accessible if they are accessible from an onsite location. Sections 189.5(c)(5) and 700.27(c)(5) provide that records required by these sections and existing records relevant to compliance with these sections must be available to FDA for inspection and copying.

Because we do not easily have access to records maintained at foreign establishments, we are requiring in §§ 189.5(c)(6) and 700.27(c)(6), respectively, that when filing entry with U.S. Customs and Border Protection, the importer of record of a human food or cosmetic manufactured from, processed with, or otherwise containing, cattle material must affirm that the human food or cosmetic is manufactured from, processed with, or otherwise contains, cattle material and must affirm that the human food or cosmetic was

manufactured in accordance with this rule. In addition, if a human food or cosmetic is manufactured from, processed with, or otherwise contains, cattle material, then the importer of record must, if requested, provide within 5 days records sufficient to demonstrate that the human food or cosmetic is not manufactured from, processed with, or does not otherwise contain, prohibited cattle material.

Sections 189.5(c)(7) and 700.27(c)(7) provide that records established or maintained to satisfy the requirements of this subpart that meet the definition of electronic records in part 11 (21 CFR part 11) in § 11.3(b)(6) are exempt from the requirements of part 11. Records that satisfy the requirements of this rulemaking, but that are also required under other applicable statutory provisions or regulations, remain subject to part 11.

IV. Regulatory Impact Analysis

A. Benefit-Cost Analysis

FDA has examined the economic implications of this final rule as required by Executive Order 12866. Executive Order 12866 directs agencies to assess all costs and benefits of available regulatory alternatives and, when regulation is necessary, to select regulatory approaches that maximize net benefits (including potential economic, environmental, public health and safety, and other advantages; distributive impacts; and equity). Executive Order 12866 classifies a rule as significant if it meets any one of a number of specified conditions, including the following conditions: Having an annual effect on the economy of \$100 million, adversely affecting a sector of the economy in a material way, adversely affecting competition, or adversely affecting jobs. A regulation is also considered a significant regulatory action if it raises novel legal or policy issues. FDA has determined that this final rule is a significant regulatory action because it raises novel policy issues; however, we have determined that this final rule is not an economically significant regulatory action.

The Regulatory Flexibility Act requires agencies to analyze regulatory options that would minimize any significant impact of a rule on small entities. FDA finds that this final rule will have a significant economic impact on a substantial number of small entities.

Section 202(a) of the Unfunded Mandates Reform Act of 1995 requires that agencies prepare a written statement, which includes an assessment of anticipated costs and benefits, before proposing "any rule that includes any Federal mandate that may result in the expenditure by State, local, and tribal governments, in the aggregate, or by the private sector, of \$100,000,000 or more (adjusted annually for inflation) in any one year." The current threshold after adjustment for inflation is \$122 million, using the most current (2005) Implicit Price Deflator for the Gross Domestic Product (Ref 1). FDA does not expect this final rule to result in any 1-year expenditure that would meet or exceed this amount.

The Small Business Regulatory Enforcement Fairness Act of 1996 (Public Law No. 104–121) defines a major rule for the purpose of congressional review as having caused or being likely to cause one or more of the following: An annual effect on the economy of \$100 million or more; a major increase in costs or prices; significant adverse effects on competition, employment, productivity, or innovation; or significant adverse effects on the ability of U.S.-based enterprises to compete with foreignbased enterprises in domestic or export markets. In accordance with the Small **Business Regulatory Enforcement** Fairness Act, OMB has determined that this final rule will not be a major rule for the purpose of congressional review.

1. Need for Regulation

As explained in this document, USDA's amended BSE IFR requires that SRMs, tissue from nonambulatory disabled cattle, material from cattle not inspected and passed for human consumption, and MS beef not be used for human food. SRMs include the brain, skull, eyes, trigeminal ganglia, spinal cord, vertebral column (excluding the vertebrae of the tail, the transverse process of the thoracic and lumbar vertebrae, and the wings of the sacrum), and dorsal root ganglia of cattle 30 months and older, as well as the tonsils and distal ileum of the small intestine of all cattle. USDA's BSE IFR requires that all of the prohibited materials be destroyed or sent to inedible rendering. This final rule implements recordkeeping for the provisions of the IFR on use of materials from cattle and responds to the same public health concerns. This final rule will not affect the incidence of BSE in cattle, which is addressed in other FDA regulations. This final rule will serve as an additional safeguard to reduce human exposure to the agent that causes BSE that may be present in cattlederived products from domestic and imported sources. Without the recordkeeping requirements in this final

rule manufacturers and processors might not establish and maintain records to ensure that cattle material does not contain prohibited cattle materials, it may not be possible to determine whether cattle material that may be specified risk material (e.g., brain or spinal cord) came from an animal that was less than 30 months old, it may not be possible to determine whether the source animal for cattle material was inspected and passed, and a product might contain MS beef without its presence being evident.

2. Final Rule Coverage

This final rule will require recordkeeping to ensure and document compliance with the provisions of the IFR (on use of materials from cattle) that prohibit the use of "prohibited cattle materials." This final rule will require that manufacturers and processors of human foods and cosmetics that are manufactured from, processed with, or otherwise contain, cattle materials maintain records indicating that prohibited cattle materials have not been used in the manufacture or processing of a human food or cosmetic, and make such records available to FDA for inspection and copying. Because we do not easily have access to records maintained at foreign establishments, we have included in this final rule a requirement that, when filing entry with U.S. Customs and Border Protection, importers of human food and cosmetics manufactured from, processed with, or otherwise containing, cattle material must affirm that the food or cosmetic was manufactured from, processed with, or otherwise contains, cattle material and must affirm that the food or cosmetic was manufactured in accordance with this rule. In addition, if a human food or cosmetic is manufactured from, processed with, or otherwise contains, cattle material, then the importer of record must, if requested, provide within 5 days records sufficient to demonstrate that the human food or cosmetic is not manufactured from, processed with, or does not otherwise contain, prohibited cattle material.

3. Comments Received on the Proposed

(Comment) We received several comments that stated that FDA underestimated the economic impact of the proposed rule by omitting entire industries that would be subject to the rule. According to the comments, FDA had only estimated the costs of the rule to end-users of cattle material and had not considered the costs of the rule to those persons that produce intermediate

cattle-derived products. Specifically, manufacturers of collagen casings, intestinal casings, flavoring extracts, and gelatin are not appropriately accounted for in the proposed rule analysis.

(Response for gelatin) In the case of gelatin, FDA did estimate the impact of the proposed rule on food manufacturers of intermediate products that are from cattle-derived gelatin. Depending on the product, FDA had information on cattle-derived materials manufactured by intermediate producers (e.g., input suppliers to cosmetics manufacturers) or information on end products that contained cattle materials (e.g., foods). Whether our information was on intermediate manufacturers or end products, we estimated the impact of the rule on both the upstream and downstream facilities. FDA did not include estimates of bovine gelatin use in cosmetics in the analysis of the proposed rule. We have included these estimates in the final analysis.

(Response for small intestine) FDA did not estimate any costs, other than recordkeeping, for the requirement that the distal ileum be removed from the small intestine because costs other than recordkeeping are linked to the prohibition in FDA's IFR.

(Response for flavoring extracts) In the case of flavoring extracts, manufacturers and the buyers of flavoring extracts for use in food products were accounted for in the proposed rule. We assessed recordkeeping costs for the 32 facilities (out of 127 facilities) that we estimated were likely to manufacture flavoring extracts using cattle-derived materials and for the buyers of these flavoring extracts. FDA assumed three scenarios for sensitivity analyses: (1) Recordkeeping costs are borne entirely by the flavoring extract manufacturers as the input supplier, (2) recordkeeping costs are borne entirely by the manufacturers of products that use flavoring extracts as an ingredient in their products, and (3) recordkeeping costs are shared between the two types

(Response for collagen) FDA did not estimate the impacts of our proposed rule on collagen manufacturers or collagen casing manufacturers. This rule does not require recordkeeping for hidederived collagen. Therefore we do not include the costs of recordkeeping to manufacturers who use hide-derived collagen. We do include costs for some collagen use in cosmetic manufacturing.

4. Costs and Benefits of the Final Rule

This final rule will require manufacturers and processors of FDA-

regulated human food and cosmetics manufactured from, processed with, or otherwise containing, cattle material to maintain records demonstrating that prohibited cattle materials are not used in their products. This final rule will require that the manufacturer or processor retain records for 2 years from the date they were created. Records must be kept at the manufacturing or processing establishment or another reasonably accessible location. Manufacturers and processors must provide FDA with access to the required records and other records relevant to compliance for inspection and copying.

a. Costs of final rule to domestic facilities. FDA used establishment data from the FDA Small Business Model (which includes information on all establishments in a manufacturing sector regardless of size) (Ref. 2) to determine the number of food manufacturers and processors that will need to comply with the proposed recordkeeping requirements. The model contains information on the number of establishments in certain food producing sectors, but does not have information on specific ingredients used by the food establishments in making products. Data from the model indicates that 181 establishments produce spreads, 127 establishments produce flavoring extracts, 40 establishments produce canned soups and stews, 625 establishments produce nonchocolate candy, 88 establishments produce yogurt, and 451 establishments produce ice cream. FDA cannot verify that all of these establishments actually use cattle materials that fall under the jurisdiction of this final rule; many may not. It is likely that some of the 132 establishments that produce fats and oils currently use tallow or tallow derivatives,⁴ so FDA assumes that records will be required to be kept by only 75 percent of the facilities (99 of 132) in this establishment group. We assume that only 25 percent of the establishments from the remaining production sectors listed previously actually produce food that is manufactured from, processed with, or otherwise contains, material from cattle and are therefore required to keep records. We include only 25 percent of the establishments in our estimates because most of the manufacturers likely do not use cattle-derived materials in their products.

FDA research shows that 42 establishments with U.S. addresses supply cattle-derived ingredients that are used in cosmetics (Ref. 3). These

cattle-derived ingredients include bovine serum albumin, cholesterol and cholesterol compounds, fibronectin, sphingolipids, spleen extract, tallow, gelatin, and keratin and keratin compounds. From FDA's dietary supplement database (Ref. 4), we are able to tell that there are about 131 U.S.-based dietary supplement brand names that use cattle material as ingredients in their products. We assume that each brand name represents a facility that produces multiple dietary supplement products containing cattle-derived ingredients.

Recordkeeping costs to domestic facilities. USDA's BSE rule requires that those establishments that slaughter cattle or that process the carcasses or parts of carcasses of cattle maintain daily records sufficient to document the implementation and monitoring of procedures for removal, segregation, and disposition of SRMs. USDA's BSE requirements will reduce, but likely not eliminate, the startup costs of recordkeeping required by this final rule. We do not expect the USDA rule to completely eliminate start-up costs to recordkeeping for this rule because the beef products under USDA's jurisdiction differ from the food products under FDA's jurisdiction. To the extent that manufacturers of products containing cattle-derived materials produce a variety of food products, some of which are under USDA jurisdiction and some of which are under FDA jurisdiction, the following estimates of recordkeeping costs (for foods only) are likely an over estimate.

Recordkeeping costs include one-time costs and recurring costs. One-time costs include the costs of designing records and training personnel in the maintenance of the records. The recurring costs are the costs of ensuring that the records adequately document that the shipment of cattle materials to an FDA-regulated facility is free of prohibited cattle materials. The costs of retaining records and planning for an FDA request for records access are assumed to be negligible. Current business practices already dictate that records are kept for at least 1 year for tax purposes and product liability purposes. FDA has found that records are usually kept much longer for internal business purposes; therefore, in most cases the marginal private benefits to facilities from retaining records for a second year are apparently greater than the private marginal costs, so they keep most records. Because records retention is already standard practice in many cases, we assume that the additional retention costs associated with this final

 $^{^4\,\}mathrm{Tallow}$ derivatives are exempt from record keeping.

rule are approximately zero. The rule provides no specific time period for providing records, except for importers of record, who are given 5 days. In research conducted for FDA's Bioterrorism Act recordkeeping rule (69 FR 71562, December 9, 2004), FDA found that record request costs are not a significant burden under that rule's requirement to submit records to FDA within 24 hours of a request. Therefore, we assume the cost to provide records to FDA under the requirements of this final rule is approximately zero.

We assume that the one-time training burden incurred for each facility is approximately one-third of an hour. This time includes both the training required for personnel to learn how to verify that the appropriate records have been received or created, and the training required for personnel to learn how to file and maintain those records. As part of current business practices, personnel are familiar with recordkeeping. Therefore, the requirement to maintain additional records will be learned quickly. This training burden estimated for recordkeeping in this final rule is consistent with the recordkeeping training burden in the analysis for the Bioterrorism Act recordkeeping rule and the records maintenance burden in the analysis of the juice hazard analysis critical control points (HACCP) rule (66 FR 6137-6202). Consistent with the analysis conducted for the Bioterrorism Act recordkeeping rule, FDA assumes an hourly cost of an administrative worker, \$25.10 per hour, which includes overhead costs.

We use the FDA Labeling Cost Model to estimate the one-time records design costs per facility of \$1,190 per stock keeping unit (SKU) (Ref. 5). It is likely that facilities using cattle-derived ingredients, whether the ingredients are for human food or cosmetics, will take advantage of their economies of scope and produce more than one product with these ingredients. It is probable that each establishment has several SKUs associated with products containing cattle-derived ingredients that will now require recordkeeping. To account for additional products and SKUs we take the record design costs per facility times 1.5 for a total design cost per facility of \$1,785 (\$1,095 in labor costs and \$690 in capital costs).

We multiplied the cost per product per SKU by 1.5 to account for the additional records design required for the additional SKUs. The record design cost for the first affected product or SKU will be more expensive than the marginal cost of adding records for additional SKUs. This marginal cost of record design for additional SKUs could be negligible, or it could come close to doubling the costs. We therefore pick 1.5, the midpoint of 1 and 2, to be the cost multiplier.

Consistent with the analysis conducted for the Bioterrorism Act recordkeeping rule, this record design cost is assumed to be shared between two facilities—the upstream facility and the downstream facility—as both will need to be involved in record production that meets the needs of both

the supplier and customer for the

product containing cattle-derived material.

Unlike for the analysis of the Bioterrorism Act recordkeeping rule (69 FR 71562, December 9, 2004), we do not have direct information on all the facilities covered; we do not have data on all the intermediate cattle material suppliers or finished product manufacturers that make use of cattlederived material for human food and cosmetics under FDA jurisdiction. Using information on the number of human food manufacturers and cosmetic ingredient suppliers that may use cattle-derived ingredients subject to this final rule, we can account for the total shared records costs by assuming that each food manufacturer or processor in table 1 of this document procures ingredients from one upstream input supplier for particular cattlederived ingredients. Even if multiple input suppliers are used by the manufacturing facility, or an input supplier is used by multiple manufacturing facilities, the marginal record setup costs would decrease for additional suppliers or additional manufacturers. Once a facility has designed the required records, it is less costly to generate records for additional input suppliers or additional end product manufacturers. Table 1 of this document shows estimated set-up costs for U.S. facilities. Dietary supplement facilities listed represent end product manufacturers of dietary supplements that contain cattle-derived material; cosmetics facilities are represented by intermediate cattle-derived ingredients used in cosmetics products from domestic cosmetic input suppliers.

TABLE 1.—FIRST-YEAR RECORDS COSTS FOR DOMESTIC FACILITIES

Type of product using cattle material	Number of facilities estimated to use cattle materials	Costs per facility for designing records	Costs per facility for training (1/3 hour × \$25.10 per hour)	Total setup costs		
Canned soups and stews	10	\$1,785	\$8.37	\$17,934		
Fats and oils	99	1,785	8.37	177,544		
Flavoring extracts	32	1,785	8.37	57,388		
Spreads	45	1,785	8.37	80,702		
Candy	156	1,785	8.37	279,766		
Yogurt	22	1,785	8.37	39,454		
Ice cream	113	1,785	8.37	202,651		
Small intestine-derived casings	47	1,785	8.37	84,288		
Dietary supplements	131	1,785	8.37	234,931		
Cosmetics	42	1,785	8.37	75,322		
Color additives	0	1,785	8.37			
Total	697	1,785	8.37	1,249,978		
Startup Costs Annualized over 10 years (7%)						
Startup Costs Annualized over 10 years (3%)	Startup Costs Annualized over 10 years (3%)					

The recurring recordkeeping cost is the cost of ensuring that appropriate records document the absence of prohibited cattle materials in human food and cosmetics. The framework for estimating the amount of time required for FDA-regulated facilities to ensure adequate records for each shipment of materials is based on the regulatory impact analysis of the Bioterrorism Act recordkeeping rule (69 FR 71562, December 9, 2004). In that analysis we estimated that 30 minutes per week would be needed to ensure that records on each shipment to and from a facility contain adequate information regarding the contents of the package, the transporter, supplier, and receiver.

The recordkeeping requirements of this final rule will cover only a small fraction of all ingredients used in food and cosmetic manufacturing and only require that records of cattle-derived ingredient origin from the input supplier be verified and maintained by the food or cosmetic manufacturer and

processor. Because this recordkeeping requirement is less complex than the recordkeeping requirements under the Bioterrorism Act and affects fewer ingredients, we estimate the average burden per facility to be about one-half of the burden estimated for the Bioterrorism Act recordkeeping rule: 15 minutes per week, or 13 hours per year. FDA assumes that this recordkeeping burden will be shared between two entities (i.e., the ingredient supplier and the manufacturer of finished products containing cattle-derived ingredients). For facilities using records that are renewable annually, the time pattern of the burden may be different from the assumed 15 minutes per week. We are, however, unable to quantify by how much time, if any, the annual burden will fall for those facilities using that option.

In addition to the recurring costs to domestic firms in the industry, as new firms enter the industry they will bear one-time costs. As in the analysis of the Bioterrorism Act recordkeeping rule, we assume that the average annual rate of turnover is 10 percent. We therefore estimate the annual one-time costs for new domestic firms entering the industry to be 10 percent of the one-time costs of existing domestic firms estimated in table 1 of this document.

Table 2 of this document shows the recurring recordkeeping costs that would be incurred by food and cosmetics input suppliers and manufacturers to comply with this final rule. As stated earlier, information on food producing facilities in table 2 represents U.S. facilities; dietary supplement facilities listed represent end product manufacturers of dietary supplements that contain cattle-derived material and cosmetics facilities are represented by intermediate cattlederived ingredients used in cosmetics products from domestic cosmetic input suppliers.

TABLE 2.—RECURRING ANNUAL RECORDS COSTS FOR DOMESTIC FACILITIES

Type of product (from raw or rendered material that needs accompanying documentation)	Number of facilities	Annual costs per facility of ensuring that appropriate records accompany each shipment received (13 hours × \$25.10/hour)	Total recurring annual costs
Canned soups and stews	10	\$326.30	\$3,263
Fats and oils	99	326.30	32,304
Flavoring extracts	32	326.30	10,442
Spreads	45	326.30	14,684
Candy	156	326.30	50,903
Yogurt	22	326.30	7,179
Ice Cream	113	326.30	36,872
Small intestine-derived casings	47	326.30	15,336
Dietary supplements	131	326.30	42,745
Cosmetics	42	326.30	13,705
Color additives	0		
Total recurring costs for existing firms	697	326.30	227,430
One-time costs for new firms			124,998
Total annual costs			352,428
Total costs of recordkeeping for domestic firms (annualized startup costs (7%) + annual costs)			530,397
Total costs of recordkeeping for domestic firms (annualized startup costs (3%) + annual costs)			498,964

b. Costs of final rule to importers. This final rule requires that, when filing entry with U.S. Customs and Border Protection, importers of record of human food and cosmetics that are manufactured from, processed with, or otherwise contain, cattle material must affirm that the food or cosmetic was manufactured from, processed with, or otherwise contains, cattle material and must affirm that the human food or cosmetic was manufactured in

accordance with this rule. If a human food or cosmetic is manufactured from, processed with, or otherwise contains, cattle material, then the importer of record must, if requested, provide within 5 days records sufficient to demonstrate that the human food or cosmetic is not manufactured from, processed with, or does not otherwise contain, prohibited cattle material.

The affirmation that foods or cosmetics are manufactured from,

processed with, or otherwise contain, cattle material and are manufactured in accordance with the rule will be made by the importer of record to FDA through the Agency's Operational and Administrative System for Import Support (OASIS). Table 3, using OASIS data from fiscal year 2004, shows 2,195,000 entry lines of food and cosmetics for the product codes that FDA expects may contain products with cattle materials entered the U.S.; 0 to

100 percent of these imported product lines will be for products that actually do contain cattle material and require affirmation. We use the information in table 3 to generate recordkeeping costs to importers (in tables 4 and 5) whose products actually do contain cattlederived materials.

TABLE 3.—ANNUAL LINES PER FDA INDUSTRY PRODUCT CODE FOR WHICH IMPORTERS MUST VERIFY USE OF CATTLE-DERIVED MATERIALS ¹

Industry description	FDA industry product code	Fiscal year 2004 line count
Bakery products, dough, mix, and icing	03	700,222
Macaroni and noodle products	04	24,011
Milk, butter, and dried milk products	09	12,228
Cheese and cheese products	12	2,712
Ice cream products	13	2,698
Filled milk and imitation milk products	14	990
Fishery and seafood products	16	4,775
Meat, meat products and poultry	17	5,322
Vegetable protein products	18	16,702
Fruit and fruit products	20	16,410
Fruit and fruit products	21	13,112
Fruit and fruit products	22	1,532
Nuts and edible seeds	23	24,216
Vegetables and vegetable products	24	323,004
Vegetables and vegetable products	25	321,032
Vegetable oils	26	1,532
Dressings and condiments	27	16,386
Spices, flavors, and salts	28	203
Candy (except chocolate candy), chewing gum	33	275,733
Chocolate and cocoa products	34	126,719
Gelatin, rennet, pudding mix, pie filling	35	22,485
Multiple food dinners, gravy, and sauces	37	82,105
Soup	38	37,923
Prepared salad products	39	13,357
Baby food products	40	576
Dietary convenience foods and meal replacements	41	18,189
Food additives (human use)	45	23,877
Food additives (human use)	46	14,699
Miscellaneous food related items	52	1,501
Cosmetics	53	27,867
Vitamins, minerals, proteins, unconventional dietary specialties	54	63,184
Total annual lines		2,195,302

¹Note that not every import within each two-digit FDA product code will be required to make an affirmation of bovine materials in their products.

Recordkeeping costs to foreign facilities. Facilities producing products required to give affirmation on import into the U.S. whose products actually do contain cattle-derived materials will have to create and maintain records of cattle-derived materials used in product production. Therefore, a certain percentage of the firms whose products are listed in Table 3 above will have to incur startup and recurring recordkeeping costs, as domestic facilities do, to comply with the recordkeeping requirements of this final rule.

We do not expect many imported food products under FDA jurisdiction will actually contain cattle-derived materials. Table 4 below revises table 3 to only include the percentage (10 percent) of certain imported products likely to contain cattle materials and whose manufacturing firms will keep records. We do not include the

categories of food from table 3 where affirmation could be required but it is not likely that products from that category actually contain cattle-derived materials. We estimate only 10 percent of lines rather than 25 percent or 75 percent as we did for domestic products because import category codes tend to be broader in scope than the categories we used for determining the number of domestic facilities that produced products using cattle-derived materials.

To estimate the number of foreign firms associated with the 10 percent of line entries listed in table 4, we take *all foreign* firms registered in the Food Facilities Registration Database as of the end of the fiscal year 2004 (approximately 125,000) and divide that number of firms by *all imported food entry lines* for fiscal year 2004

(7,486,650).⁵ The result is a multiplier (0.0167) that we apply to entry lines to estimate the average number of firms by product category that exported food or cosmetics to the U.S. in fiscal year 2004, and whose products actually contained cattle-derived materials for which records would need to be kept.

Table 4 below shows that about 916 foreign firms will need to keep records of cattle-derived materials. The startup costs to keeping these records will be about \$1.6 million. Since we do not have good information on the number of firms that actually produce and export products that contain cattle-derived materials to the U.S., the costs in table 4 below may overestimate recordkeeping costs to firms in some product categories and may

⁵Cosmetic lines have been subtracted from the line total because cosmetics manufacturers do not have to register.

underestimate recordkeeping costs to firms in other product categories.

TABLE 4.—FIRST YEAR RECORDS COSTS FOR FOREIGN FACILITIES

Industry description	Fiscal year 2004 line count	10 percent of lines	Number of facilities	Total setup costs (\$1,793 per firm)	
Milk, butter, and dried milk products	12,228	1,223	20	\$36,614	
Ice cream products	2,698	270	5	8,079	
Meat, meat products and poultry	5,322	532	9	15,936	
Vegetable oils	1,532	153	3	4,587	
Dressings and condiments	16,386	1,639	27	49,065	
Spices, flavors, and salts	203	20	0	0	
Candy (except chocolate candy), chewing gum	275,733	27,5723	460	825,630	
Gelatin, rennet, pudding mix, pie filling	22,485	2,249	38	67,327	
Multiple food dinners, gravy, and sauces	82,105	8,211	137	245,848	
Soup	37,923	3,792	63	113,553	
Baby food products	576	58	1	1,725	
Cosmetics	27,867	2,787	47	83,442	
Vitamins, minerals, proteins, unconventional dietary specialties	63,184	6,318	106	189,192	
Total			916	1,640,999	
Startup Costs Annualized over 10 years (7%)				233,641	
Startup Costs Annualized over 10 years (3%)					

The recurring recordkeeping cost to importers whose products contain cattle-derived materials is the cost of ensuring that appropriate records document the absence of prohibited cattle materials in human food and cosmetics. We use the same method and rationale to calculate the recurring recordkeeping cost burden to foreign facilities that we used for domestic facilities.

In addition to the recurring costs to foreign firms in the industry, as new firms enter the industry they will bear one-time costs. As in the analysis of the Bioterrorism Act recordkeeping rule, we assume that the average annual rate of turnover is 10 percent. We therefore estimate the annual one-time costs for new foreign firms entering the industry to be 10 percent of the one-time costs of existing foreign firms estimated in table 4.

Also shown in table 5 are the annual costs to importers to affirm that the human food or cosmetics that they are importing do contain cattle material and are in compliance with this rule. Importers of approximately 54,825 lines of food and cosmetics are expected to

affirm annually that the products they are importing contain cattle materials. This total represents 10 percent of the total lines imported for fiscal year 2004 for products under FDA product codes that FDA will be looking to for importer affirmation. Using an importer hourly wage cost of \$46.58 (Ref. 6), which includes overhead, FDA estimates that importer affirmation will take about two minutes per line at a cost of \$1.55 per affirmation for total annual affirmation costs of \$84,979.

TABLE 5.—RECURRING ANNUAL RECORDS COSTS FOR FOREIGN FACILITIES

Industry description	Fiscal year 2004 line count	10 percent of lines	Number of facilities	Total recurring annual costs (\$326.30 per firm)	
Milk, butter, and dried milk products	12,228	1,223	20	\$6,663	
Ice cream products	2,698	270	5	1,470	
Meat, meat products and poultry	5,322	532	9	2,900	
Vegetable oils	1,532	153	3	835	
Dressings and condiments	16,386	1,639	27	8,929	
Spices, flavors, and salts	203	20	0	111	
Candy (except chocolate candy), chewing gum	275,733	27,573	460	150,253	
Gelatin, rennet, pudding mix, pie filling	22,485	2,249	38	12,253	
Multiple food dinners, gravy, and sauces	82,105	8,211	137	44,741	
Soup	37,923	3,792	63	20,665	
Baby food products	576	58	1	314	
Cosmetics	27,867	2,787	47	15,185	
Vitamins, minerals, proteins, unconventional dietary specialties	63,184	6,318	106	34,430	
Total		54,825	916	298,638	
Total Annual Importer Affirmation Costs (\$1.55 per line for 54,825 lines) One-time costs for new firms Total annual costs Total costs of recordkeeping for foreign firms (annualized startup costs (7%) + annual costs Total costs of recordkeeping for foreign firms (annualized startup costs (3%) + annual costs)					

c. Benefits of the final rule. The benefits of this final rule are derived from the benefits of the interim final rule on use of material from cattle, which are the value of the public health benefits. The public health benefit is the reduction in the risk of the human illness associated with consumption of the agent that causes BSE.

If we define the baseline risk as the expected annual number of cases of variant Creutzfeldt-Jakob disease (vCJD) per year, then the annual benefits of banning prohibited cattle materials for use in foods and cosmetics would be: (baseline annual cases of vCJD — annual cases of vCJD under FDA IFR on use of materials from cattle) × (value of preventing a case of vCJD).

An alternative way to characterize benefits is:

(reduction in annual cases in vCJD under FDA IFR on use of materials from cattle) × (value of preventing a case of vCJD).

We do not know the baseline expected annual number of cases. But based on the epidemiology of vCJD in the United Kingdom, we anticipate much less than one case of vCJD per year in the United States. Because the IFR on use of materials from cattle and this final rule will reduce, rather than eliminate, risk of exposure to BSE infectious materials, the reduction in the number of cases will be some fraction of the expected number. The value of preventing a case of vCJD is the value of a statistical life plus the value of preventing a year-long or longer

illness that precedes certain death for victims of vCID. In a recent rulemaking regarding labeling of trans fatty acids (68 FR 41434, July 11, 2003), we used a range of \$5 million to \$6.5 million for the value of a statistical life. The value of preventing a vCJD case may be similar. FDA uses the concept of the Value of a Statistical Life (VSL) in order to describe the value of preventing a case of vCJD. This term refers to the sum of risk reductions expected in a population exposed to small changes in risk. It has no application to identifiable individuals or large reductions in risk. Most recent studies suggest values ranging from about \$1 million to \$10 million. In recent rulemakings, we have used \$5 million and \$6.5 million as the value of a statistical life, and we believe it is reasonable to use a similar VSL to value the cases of vCJD avoided.

As discussed in FDA's IFR on use of materials from cattle, the Harvard-Tuskegee study has stated that a ban on SRMs, including cattle brains, spinal cord, and vertebral column, from inclusion in human and animal food would reduce the very few potential BSE cases in cattle by 88 percent and potential human exposure to infectivity in meat and meat products by 95 percent (Ref. 7). The FDA IFR on use of materials from cattle, in conjunction with USDA's BSE IFR, will help achieve this reduction in potential human exposure. FDA's IFR on use of materials from cattle will also reduce potential human exposure to BSE infectivity in other human food not covered by the

Harvard-Tuskegee study and from cosmetics. This final rule will help ensure that the provisions of the IFR on use of materials from cattle are carried out. For example, this final rule will require documentation that a domestically-produced or foreign-produced dietary supplement or ingredient contains cattle material (e.g., brain) only from animals of an appropriate age.

d. Summary of costs and benefits of the final rule. For this final rule, the costs are to set up and then to maintain a recordkeeping system to document that cattle-derived ingredients used in FDA-regulated food and cosmetics do not contain prohibited cattle material. The first year costs of this final rule are about \$1.2 million to domestic facilities and about \$1.6 million to foreign facilities. The annual costs of this final rule are about \$352 thousand in recordkeeping costs to domestic facilities, \$548 thousand in recordkeeping costs to foreign facilities. Costs of this final rule annualized at 7 percent over 10 years are about \$530 thousand to domestic facilities and \$781 thousand to foreign facilities; costs annualized at 3 percent over 10 years are \$500 thousand to domestic facilities and \$740 thousand to foreign facilities.

The benefits of this final rule are to ensure that cattle-derived products that may possibly be contaminated with BSE do not find their way into food and cosmetic products, thus further reducing the risk of vCJD to humans.

TABLE 6.—SUMMARY OF COSTS AND BENEFITS

	Number of facilities	Start-up recordkeeping costs	Recurring recordkeeping costs	Total costs annualized at 7% for 10 years	Total costs annualized at 3% for 10 years
Costs to Domestic Facilities	697 916	\$1,249,978 \$1,640,999	\$352,428 \$547,717	\$530,397 \$781,358	\$498,964 740,092
Total	1613	\$2,890,977	\$900,145	\$1,311,755	1,239,056

Benefits—To ensure that cattle-derived products that may possibly be contaminated with BSE do not find their way into food and cosmetic products, thus further reducing the risk of vCJD to humans.

B. Regulatory Flexibility Analysis

FDA has examined the economic implications of this final rule as required by the Regulatory Flexibility Act (5 U.S.C. 601–612). If a rule has a significant economic impact on a substantial number of small entities, the Regulatory Flexibility Act requires agencies to analyze regulatory options that would lessen the economic effect of the rule on small entities. FDA finds that this final rule will have a

significant economic impact on a substantial number of small entities.

First-year costs of this final rule are about \$1,800 per facility pair, with this cost divided between the upstream facility (ingredient input supplier) and downstream facilities (manufacturers of food or cosmetics). FDA cannot determine if the cost sharing between the two firms would be equal. If the cost sharing is equal, then each facility would have to bear about a \$900 first-year cost to comply with the recordkeeping required by the final rule;

if the cost sharing is not equal, then one facility in the partnership may bear zero costs all the way up to the total first-year costs of \$1,800. Recurring costs of this final rule are about \$326 per facility relationship, which may be borne by only one facility or may be shared between facilities.

Using FDA's Small Business Model, we can estimate, when recordkeeping costs are shared and when they are not shared, the number of facilities that may go out of business as a result of this final rule. Table 7 of this document shows

that if facilities are only responsible for one-half of the recordkeeping cost burden (the burden is equally shared between the upstream and downstream facilities), then only two very small facilities (fewer than 20 employees) may be affected by having to comply with this final rule. If the recordkeeping cost burden is borne by only one facility in the business relationship (either the upstream or the downstream firm), then six very small facilities (fewer than 20 employees) may have trouble complying with this final rule and staying in business. The option to use a continuing letter of guarantee, however, may introduce sufficient flexibility to reduce the burden on some small facilities,

which may reduce the number of very small facilities that will have trouble staying in business. Facilities with 20 to 499 employees and facilities with at least 500 employees that must comply with this final rule are not in danger of having to stop operating as a result of the final rule.

TABLE 7.—POTENTIAL FOR DOMESTIC FACILITY SHUTDOWN

Industry	Estimated number of facilities affected	Regulation burden on each facility (shared burden or total burden)	Number of facilities in industry that may shut down
Canned soups and stews	10	\$900	0
Canned soups and stews	10	1,800	0
Fats and oils	99	900	0
Fats and oils	99	1,800	0
Flavoring extracts	32	900	0
Flavoring extracts	32	1,800	0
Spreads	45	900	0
Spreads	45	1,800	1
Candy	156	900	1
Candy	156	1,800	2
Yogurt	22	900	0
Yogurt	22	1,800	0
Ice cream	113	900	0
Ice cream	113	1,800	1
Small intestine-derived casings	47	900	0
Small intestine-derived casings	47	1,800	0
Dietary supplements	131	900	1
Dietary supplements	131	1,800	2
Cosmetics	42	900	0
Cosmetics	42	1,800	0

We would expect the potential for small business shutdown would be similar for foreign firms that continue to import their products with cattlederived materials into the United States. It is possible that some foreign firms would choose to cease doing business with the United States if the recordkeeping requirements of this rule are too burdensome.

V. Paperwork Reduction Act Analysis

This final rule contains information collection provisions that are subject to review by OMB under the Paperwork Reduction Act of 1995 (44 U.S.C. 3501–3520). A description of these provisions follows with an estimate of the annual recordkeeping burden. Included in the estimate is the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing each collection of information.

Title: Recordkeeping Requirements for Human Food and Cosmetics

Manufactured From, Processed With, or Otherwise Containing, Material from

Description: This final rule will require records on FDA-regulated human food, including dietary supplements, and cosmetics that are manufactured from, processed with, or otherwise contain, material derived from cattle. This final rule implements recordkeeping for the provisions of FDA's interim final rule entitled "Use of Materials Derived From Cattle in Human Food and Cosmetics." This final rule will require that manufacturers and processors of human food and cosmetics manufactured from, processed with, or that otherwise contain, material from cattle maintain records demonstrating that the food or cosmetic has not been manufactured from, processed with, or does not otherwise contain, prohibited cattle materials and make such records available to FDA for inspection and copying.

These requirements are necessary because, once materials are separated from an animal, it may not be possible without records to know the following: (1) Whether cattle material that may be specified risk material (e.g., brain or spinal cord) came from an animal that was less than 30 months old, (2) whether the source animal for cattle material was inspected and passed, (3) whether the source animal for cattle material was nonambulatory disabled, and (4) whether tallow in a human food or cosmetic contains less than 0.15 percent insoluble impurities. Under the final rule, manufacturers and processors must retain records for 2 years at the manufacturing or processing establishment or another reasonably accessible location.

A. Information Collection Burden Estimate

FDA estimates the burden for this information collection as follows:

21 CFR Section	Number of recordkeepers	Annual frequency per record	Total annual records	Hours per record	Total capital costs	Total hours
189.5(c) and 700.27(c)	697 697 54,825 69.7	1 52 1 1	697 36,244 54,825 69.7	44.33 0.25 0.033 44.33	\$480,930 0 0 48,093	30,898 9,061 1,809 3,090
Total one time burden hours Total recurring burden hours						30,898 13,960

TABLE 8.—ESTIMATED ANNUAL RECORDKEEPING BURDEN 1

B. Hour Burden Estimate

FDA has determined that there are 697 domestic facility relationships, consisting of the following facilities: An input supplier of cattle-derived materials that require records (the upstream facility) and a purchaser of cattle-derived materials requiring documentation—this may be a human food or cosmetic manufacturer or processor. Together, the upstream and downstream facilities are responsible for designing records, verifying records, and storing records that contain information on sources of cattle materials.

In this hour burden estimate, as in the economic analysis, we treat these recordkeeping activities as shared activities between the upstream and downstream facilities. It is in the best interests of both facilities in the relationship to share the burden necessary to comply with this final rule; therefore we estimate the time burden of developing these records as a joint task between the two facilities.

C. One Time Burden

The one-time burden of the final recordkeeping requirement consists of the facilities training their employees on how to keep the records necessary to comply with this rule and designing the records. The one-time training burden incurred for each facility is assumed to be approximately one-third of an hour. This time includes both the training required for personnel to verify that appropriate records have been received or created, and also the training required by personnel to file and maintain those records. Therefore, the total one-time training burden is $697 \times$ 0.33 hrs = 230 hours.

We use the FDA Labeling Cost Model to estimate the one-time records design costs per facility of \$1,785 (Ref. 5). This cost includes the costs of designing records for multiple products and consists of \$1,095 in labor costs (and \$690 in capital costs which we deal with in the next section of this document). Dividing the \$1,095 of labor costs by the hourly wage for workers of \$25.10 (doubled to include overhead), we have a design-time burden per facility of about 44 hours; we multiplied the burden per facility by 697 facilities to get an estimated total training and design burden of 30,668 hours.

Row 1 of table 8 of this document shows the total hour burden from training and records design to be 44.33 hours per facility \times 697 recordkeepers = 30,898 hours for the year.

D. Recurring Burden

The recurring recordkeeping burden is the burden of sending and verifying documents regarding shipments of cattle material that is to be used in human food and cosmetics. We estimate that this recurring recordkeeping burden will be about 15 minutes per week, or 13 hours per year. FDA assumes that this recordkeeping burden will be shared between two entities (i.e., the ingredient supplier and the manufacturer of finished products). Therefore the total recurring burden will be 13 hours \times 697 = 9,061 hours, as shown in row 2 of table 8 of this document.

There will also be a recurring recordkeeping burden for importers of human food and cosmetics that are manufactured from, processed with, or otherwise contain, cattle material. Importers of these products must affirm that the food or cosmetic is not manufactured from, processed with, or does not otherwise contain, prohibited cattle materials. Affirmation by importers is expected to take approximately 2 minutes per entry line. Row 3 of table 8 of this document shows that 54,825 lines of food and cosmetics that likely contain cattle materials are imported annually. This total represents 10 percent of the total lines imported for fiscal year 2004 for products under FDA product codes that FDA will be looking to for importer affirmation. The annual reporting burden of affirming whether import entry lines contain cattle-derived materials is estimated to take 1,809

hours annually (54,825 lines \times 2 minutes per line).

In addition, there will be an annual burden associated with new firms entering the industry. As in the analysis of the Bioterrorism Act recordkeeping rule, we assume that the average annual rate of turnover is 10 percent. We therefore estimate (row 4 of table 8 of this document) the annual one-time burden for new firms entering the industry to be 10 percent of the one-time burden of existing firms estimated.

E. Capital Cost and Operating and Maintenance Cost Burden

We use the FDA Labeling Cost Model to estimate the one-time record design costs per facility of \$1,875 per facility, based on the facility producing multiple products with ingredients that now require records (Ref. 5). Over \$1,000 of the record design cost is due to labor, but \$690 of the records design represents capital costs to each facility. The total capital costs for records design for all facilities is $$690 \times 697 =$ \$480,930. These one time costs are shown in row 1 of table 5 of this document. We estimate the annual capital costs for new firms entering the industry to be 10 percent of the onetime burden of existing firms, or \$48,093. These annual costs are shown in row 4 of table 8.

The information collection provisions of this final rule have been submitted to OMB for review. Prior to the effective date of this final rule, FDA will publish a notice in the **Federal Register** announcing OMB's decision to approve, modify, or disapprove the information collection provisions in this final rule. An agency may not conduct or sponsor, and a person is not required to respond to, a collection of information unless it displays a currently valid OMB control number.

VI. Federalism

FDA has analyzed this final rule in accordance with the principles set forth in Executive Order 13132. FDA has determined that the final rule does not

¹ There are no operating and maintenance costs associated with this collection of information.

contain policies that have substantial direct effects on the States, on the relationship between the National Government and the States, or on the distribution of power and responsibilities among the various levels of government. Accordingly, the agency concludes that the final rule does not contain policies that have federalism implications as defined in the Executive order and, consequently, a federalism summary impact statement is not required.

VII. References

The following references have been placed on public display in the Division of Dockets Management (see ADDRESSES) and may be seen by interested persons between 9 a.m. and 4 p.m., Monday through Friday. (FDA has verified the Web site addresses, but FDA is not responsible for any subsequent changes to the Web sites after this document publishes in the Federal Register.)

- 1. Department of Commerce, Bureau of Economic Analysis, National Economic Accounts, http://www.bea.gov/bea/dn.1.htm.
- 2. Model for Estimating the Impacts of Regulatory Costs on the Survival of Small Businesses and its Application to Four FDA-Regulated Industries, Final Report, Eastern Research Group, July 2002.
- 3. CTFA International Buyer's Guide, produced by the Cosmetic, Toiletry, and Fragrance Association (CTFA), http://www.ctfa-buyersguide.org.
- 4. FDA Database of Dietary Supplement Products that Contain Animal Ingredients (DSPD–A), RTI International, September 2002.
- 5. FDA Labeling Cost Model, Final Report, RTI International, January 2003.
- 6. May 2004 Occupational Employment and Wage Estimates, National Cross-Industry estimates, U.S. Department of Labor, Bureau of Labor Statistics, accessed October 2, 2006, http://www.bls.gov/oes/oes dl.htm.
- 7. Harvard Center for Risk Analysis, Harvard School of Public Health, "Evaluation of the Potential for Bovine Spongiform Encephalopathy in the United States," accessed online at http:// www.hcra.harvard.edu/pdf/madcow.pdf, 2003.

List of Subjects

21 CFR Part 189

Food additives, Food packaging, Reporting and recordkeeping requirements.

21 CFR Part 700

Cosmetics, Packaging and containers, Reporting and recordkeeping requirements.

■ Therefore, under the Federal Food, Drug, and Cosmetic Act, and under authority delegated to the Commissioner of Food and Drugs, the Food and Drug Administration amends 21 CFR parts 189 and 700 as follows:

PART 189—SUBSTANCES PROHIBITED FROM USE IN HUMAN FOOD

■ 1. The authority citation for 21 CFR part 189 is revised to read as follows:

Authority: 21 U.S.C. 321, 342, 348, 371, 381.

■ 2. Section 189.5 is amended by revising paragraph (c) to read as follows:

§ 189.5 Prohibited cattle materials.

* * * *

- (c) Records. (1) Manufacturers and processors of a human food that is manufactured from, processed with, or otherwise contains, material from cattle must establish and maintain records sufficient to demonstrate that the food is not manufactured from, processed with, or does not otherwise contain, prohibited cattle materials.
- (2) Records must be retained for 2 years after the date they were created.
- (3) Records must be retained at the manufacturing or processing establishment or at a reasonably accessible location.
- (4) The maintenance of electronic records is acceptable. Electronic records are considered to be reasonably accessible if they are accessible from an onsite location.
- (5) Records required by this section and existing records relevant to compliance with this section must be available to FDA for inspection and conving
- (6) When filing entry with U.S. Customs and Border Protection, the importer of record of a human food manufactured from, processed with, or otherwise containing, cattle material must affirm that the food was manufactured from, processed with, or otherwise contains, cattle material and must affirm that the food was manufactured in accordance with this section. If a human food is manufactured from, processed with, or otherwise contains, cattle material, then the importer of record must, if requested, provide within 5 days records sufficient to demonstrate that the food is not manufactured from, processed with, or does not otherwise contain, prohibited cattle material.
- (7) Records established or maintained to satisfy the requirements of this subpart that meet the definition of electronic records in § 11.3(b)(6) of this chapter are exempt from the requirements of part 11 of this chapter. Records that satisfy the requirements of this subpart but that are also required under other applicable statutory

provisions or regulations remain subject to part 11 of this chapter.

* * * * *

PART 700—GENERAL

■ 3. The authority citation for 21 CFR part 700 continues to read as follows:

Authority: 21 U.S.C. 321, 331, 352, 355, 361, 362, 371, 374.

■ 4. Section 700.27 is amended by revising paragraph (c) to read as follows:

§ 700.27 Use of prohibited cattle materials in cosmetic products.

* * * *

- (c) Records. (1) Manufacturers and processors of a cosmetic that is manufactured from, processed with, or otherwise contains, material from cattle must establish and maintain records sufficient to demonstrate that the cosmetic is not manufactured from, processed with, or does not otherwise contain, prohibited cattle materials.
- (2) Records must be retained for 2 years after the date they were created.
- (3) Records must be retained at the manufacturing or processing establishment or at a reasonably accessible location.
- (4) The maintenance of electronic records is acceptable. Electronic records are considered to be reasonably accessible if they are accessible from an onsite location.
- (5) Records required by this section and existing records relevant to compliance with this section must be available to FDA for inspection and conving
- (6) When filing entry with U.S. Customs and Border Protection, the importer of record of a cosmetic manufactured from, processed with, or otherwise containing, cattle material must affirm that the cosmetic was manufactured from, processed with, or otherwise contains, cattle material and must affirm that the cosmetic was manufactured in accordance with this section. If a cosmetic is manufactured from, processed with, or otherwise contains, cattle material, then the importer of record must, if requested, provide within 5 days records sufficient to demonstrate that the cosmetic is not manufactured from, processed with, or does not otherwise contain, prohibited cattle material.
- (7) Records established or maintained to satisfy the requirements of this subpart that meet the definition of electronic records in § 11.3(b)(6) of this chapter are exempt from the requirements of part 11 of this chapter. Records that satisfy the requirements of this subpart but that are also required under other applicable statutory

provisions or regulations remain subject to part 11 of this chapter.

Dated: October 4, 2006.

Jeffrey Shuren,

Assistant Commissioner for Policy. [FR Doc. E6–16830 Filed 10–10–06; 8:45 am]

BILLING CODE 4160-01-P

DEPARTMENT OF THE TREASURY

Internal Revenue Service

26 CFR Parts 1 and 602

[TD 9289]

RIN 1545-BD48

Treatment of Disregarded Entities Under Section 752

AGENCY: Internal Revenue Service (IRS),

Treasury.

ACTION: Final regulations.

SUMMARY: This document contains final regulations under section 752 for taking into account certain obligations of a business entity that is disregarded as separate from its owner under section 856(i) or section 1361(b)(3) of the Internal Revenue Code, or §§ 301.7701-1 through 301.7701–3 of the Procedure and Administration Regulations. These final regulations clarify the existing regulations concerning when a partner may be treated as bearing the economic risk of loss for a partnership liability based upon an obligation of a disregarded entity. The rules affect partnerships and their partners.

DATES: *Effective Date:* These regulations are effective on October 11, 2006.

Applicability Date: These regulations generally are applicable for liabilities incurred or assumed by a partnership on or after October 11, 2006.

FOR FURTHER INFORMATION CONTACT: Charlotte Chyr, 202–622–3070 (not a toll-free number).

SUPPLEMENTARY INFORMATION:

Paperwork Reduction Act

The collection of information contained in these final regulations has been reviewed and approved by the Office of Management and Budget in accordance with the Paperwork Reduction Act of 1995 (44 U.S.C. 3507(d)) under control number 1545–1905. Response to this collection of information is mandatory.

An agency may not conduct or sponsor, and a person is not required to respond to, a collection of information, unless the collection of information displays a valid control number.

The estimated annual burden per respondent varies from 6 minutes to 4 hours, depending on individual circumstances, with an estimated average of 2 hours. Comments concerning the accuracy of this burden estimate and suggestions for reducing this burden should be sent to the Internal Revenue Service, Attn: IRS Reports Clearance Officer, SE:W:CAR:MP:T:T:SP, Washington, DC 20224, and to the Office of Management and Budget, Attn: Desk Officer for the Department of Treasury, Office of Information and Regulatory Affairs, Washington, DC 20503.

Books and records relating to these collections of information must be retained as long as their contents may become material in the administration of any internal revenue law. Generally, tax returns and return information are confidential, as required by 26 U.S.C. 6103.

Background

On August 12, 2004, the IRS and the Treasury Department issued proposed regulations under section 752 providing rules for taking into account certain obligations of disregarded entities (69 FR 49832). Comments were received in response to the notice of proposed rulemaking, and a public hearing was scheduled. However, the public hearing was later cancelled when no one requested to speak. After consideration of all the comments, the proposed regulations are adopted as amended by this Treasury decision.

Summary of Comments and Explanation of Provisions

1. Net Value Approach In General

The proposed regulations provide that a payment obligation under § 1.752–2(b)(1) (§ 1.752–2(b)(1) payment obligation) of a disregarded entity for which a partner is treated as bearing the economic risk of loss is taken into account only to the extent of the net value of the disregarded entity. Certain commentators disagreed with the approach taken in the proposed regulations, arguing that the regulations will result in inconsistent treatment of similar economic situations and unwarranted complexity.

Some commentators argued that the presumption of deemed satisfaction of § 1.752–2(b)(1) payment obligations of partners and related persons that is provided in § 1.752–2(b)(6) (presumption of deemed satisfaction) should be applied to disregarded entities that have § 1.752–2(b)(1) payment obligations. Other commentators argued that the

presumption of deemed satisfaction should apply only to certain disregarded entities, such as disregarded entities that comprise substantially all of the owner's assets, or disregarded entities that hold active trades or businesses.

The IRS and the Treasury Department believe that applying the presumption of deemed satisfaction to a disregarded entity that shields the federal tax partner from liability for the entity's obligations would, in many cases, cause partnership liabilities that are economically indistinguishable from nonrecourse liabilities to be classified as recourse for purposes of section 752. Applying the presumption of deemed satisfaction to disregarded entities would distort the allocation of partnership liabilities in those cases. Accordingly, these comments are not adopted in the final regulations.

One commentator suggested that § 1.752–2 be amended to provide that, in addition to statutory and contractual obligations, statutory and contractual limitations should be taken into account in determining a partner's economic risk of loss. The IRS and the Treasury Department believe that such limitations are already taken into account under § 1.752–2(b)(3). As a result, the comment is not adopted.

Another commentator suggested that the goal of the proposed regulation could be better achieved by adding an example to the current anti-abuse rule in § 1.752-2(j) (or by publishing a revenue ruling) to illustrate a situation under which a partner's § 1.752-2(b)(1) payment obligation is limited because the partner holds its interest in a partnership through a disregarded entity with a principal purpose to eliminate the partner's economic risk of loss with respect to the partnership's liabilities. The IRS and the Treasury Department agree that, in certain circumstances, the current anti-abuse rule under section 752 prevents allocation of partnership liabilities to a partner that is a disregarded entity. However, if a partner holds a partnership interest through a disregarded entity, and only the assets of the disregarded entity are available to satisfy § 1.752-2(b)(1) payment obligations undertaken by the disregarded entity, the IRS and the Treasury Department believe that a partner should be treated as bearing the economic risk of loss for a partnership liability only to the extent of the net value of a disregarded entity's assets, whether or not the principal purpose of the arrangement is to limit the partner's economic risk of loss. As a result, the comment is not adopted.

2. Net Value Approach Not Extended to Other Entities

The proposed regulations requested comments regarding whether the rules of the proposed regulations should be extended to the § 1.752-2(b)(1) payment obligations of other entities, such as entities that are capitalized with nominal equity. Some commentators opposed expanding the approach of the proposed regulations to thinly capitalized entities as unnecessary. Other commentators suggested that the anti-abuse rule of § 1.752-2(j) could be expanded to cover certain situations involving thinly capitalized entities. Specifically, a commentator suggested that the anti-abuse rule should apply if a substantially undercapitalized subsidiary of a consolidated group of corporations or a substantially undercapitalized passthrough entity (other than a disregarded entity) is utilized as the partner (or related obligor) for a principal purpose of limiting its owner's risk of loss in respect of existing partnership liabilities, and obtaining tax benefits for its owners (or other members of the consolidated group) that would not be available but for the additional tax basis in the partnership interest that results from the presumption of deemed satisfaction rule. The commentator also suggested that the regulations provide a safe harbor for determining entities that are not substantially undercapitalized.

Under the anti-abuse rule of \S 1.752– 2(j), a § 1.752-2(b)(1) payment obligation of a partner or a related person may be disregarded if the facts and circumstances indicate that a principal purpose of the arrangement between the parties is to eliminate the partner's economic risk of loss with respect to that obligation or to create the appearance of the economic risk of loss where the substance of the arrangement is otherwise. Thus, the anti-abuse rule of § 1.752–2(j) can apply to abusive transactions involving thinly capitalized entities. Although these regulations do not modify the anti-abuse rule of § 1.752-2(j) and do not extend the net value approach to thinly capitalized entities, the IRS and the Treasury Department may continue to study these issues in connection with future guidance projects.

3. Calculating the Net Value of a Disregarded Entity

Under the proposed regulations, the net value of a disregarded entity equals the fair market value of all assets owned by the disregarded entity that may be subject to creditors' claims under local law, including the disregarded entity's

enforceable rights to contributions from its owner but excluding the disregarded entity's interest in the partnership for which the net value is being determined (if any) and the fair market value of property pledged to secure a partnership liability (which is already taken into account under § 1.752–2(h)(1)), less obligations of the disregarded entity that do not constitute, and are senior or of equal priority to, § 1.752–2(b)(1) payment obligations of the disregarded entity.

One commentator suggested that the final regulations should provide (or clarify) that the net value of a disregarded entity can vary depending upon the priority of the § 1.752-2(b)(1) payment obligation for which the value is being computed. A commentator also suggested that obligations of the disregarded entity that are of equal priority to § 1.752-2(b)(1) payment obligations of the disregarded entity should not be subtracted in their entirety. Instead, the commentator suggested that in determining the net value of the disregarded entity, the final regulations should subtract only the pro rata portion of the amount of any obligation of the disregarded entity that is not a § 1.752-2(b)(1) payment obligation of the disregarded entity and that is of equal priority to the § 1.752-2(b)(1) payment obligation of the disregarded entity. Other commentators suggested that prorating a disregarded entity's net value among equal priority obligations would add unnecessary complexity.

The comments illustrate the difficulty of taking into account priorities among obligations of the disregarded entity in determining the net value of the entity and the divergent views regarding the approach that best measures the economic risk of loss of a partner. The IRS and the Treasury Department believe that the regulations should provide clear and administrable rules that avoid unwarranted complexity. As a result, the final regulations provide that the net value of a disregarded entity is determined by subtracting all obligations (regardless of priority) of the disregarded entity that do not constitute § 1.752–2(b)(1) payment obligations from the fair market value of the assets of the entity. That net value is reported by the owner to each partnership for which the disregarded entity may have one or more § 1.752-2(b)(1) payment obligations. Each such partnership independently takes the net value of the disregarded entity into account under $\S 1.752-2(k)(3)$ and allocates the net value among liabilities of that partnership in a reasonable and

consistent manner, taking into account the relative priorities of those liabilities.

One commentator suggested that the final regulations clarify that a disregarded entity's interest in another partnership (other than the one for which the net value is being determined) is included as an asset to be valued for purposes of the net value calculation. This comment is adopted.

4. Valuation Events

Under the proposed regulations, after the net value of a disregarded entity is initially determined, the net value of the disregarded entity is not redetermined unless (1) the obligations of the disregarded entity that do not constitute, and are senior or of equal priority to, $\S 1.752-2(b)(1)$ payment obligations of the disregarded entity change by more than a de minimis amount or (2) there is more than a de minimis contribution to or distribution from the disregarded entity, of property other than property pledged to secure a partnership liability under § 1.752-2(h)(1). In the preamble to the proposed regulations, the IRS and the Treasury Department requested comments on whether other events (such as a sale of substantially all of a disregarded entity's assets) should be specified as valuation events.

One commentator suggested that the disposition of a non-de minimis asset should require an adjustment to the net value of the disregarded entity only to the extent such asset changed in value, without valuing other assets held by the disregarded entity. The final regulations adopt this suggestion.

A commentator suggested that the regulations provide that changes in the owner's legally enforceable obligation to contribute to the disregarded entity be a valuation event. The final regulations adopt this comment.

Commentators suggested that certain events that would require the net value of a disregarded entity to be redetermined under the proposed regulations be eliminated as valuation events. For example, one commentator suggested that net value should not be redetermined if a disregarded entity refinances an obligation of the disregarded entity in the same amount. The IRS and the Treasury Department believe that the refinancing of a disregarded entity's obligation is an appropriate and administrable time to redetermine the net value of a disregarded entity. Accordingly, this suggestion is not adopted.

Another commentator suggested that the net value of a disregarded entity should not be redetermined with respect to a particular partnership in which the disregarded entity holds an interest if (1) a contribution by the owner of the disregarded entity to the disregarded entity corresponds to an equal contribution by the disregarded entity to the partnership or (2) a distribution from the partnership to the disregarded entity corresponds to an equal distribution by the disregarded entity to the owner of the disregarded entity. The IRS and the Treasury Department agree that these transfers to a disregarded entity, which remain in the disregarded entity only briefly, should not be valuation events. Accordingly, the final regulations adopt this comment.

5. Timing Issues

Commentators requested that the final regulations clarify the timing of the reallocation of partnership liabilities that may occur as a result of a change in the net value of a disregarded entity. The commentators suggested that, under the proposed regulations, a change in net value could result in a deemed distribution under section 752(b) that would require a determination of a partner's share of partnership liabilities for basis purposes under §§ 1.705–1(a) and 1.752–4(d).

The final regulations clarify when the net value of a disregarded entity initially must be determined if a partnership interest is held by a disregarded entity, and the partnership has or incurs a liability, all or a portion of which may be allocable to the owner of the disregarded entity under § 1.752– 2(k). The final regulations clarify that a disregarded entity's net value generally is determined as of the earlier of (A) the first date occurring on or after the date on which the requirement to determine the net value of a disregarded entity arises on which the partnership otherwise determines a partner's share of partnership liabilities under §§ 1.705–1(a) and 1.752–4(d), or (B) the end of the partnership's taxable year in which the requirement to determine the net value of a disregarded entity arises. For example, if a valuation event occurs during the partnership's taxable year, and subsequently, but before the end of the taxable year, the partnership makes a distribution that requires a determination of the distributee partner's basis in the partnership, the net value of the disregarded entity must be redetermined as of the date of the distribution.

Several commentators requested that the final regulations permit an election to redetermine the net value of a disregarded entity annually, regardless of the occurrence of a valuation event, and that if only one valuation event occurs during a partnership's taxable

year, the owner have the option of using the net value of the disregarded entity as of the date of the valuation event rather than as of the date on which the partnership allocates liabilities under section 752. Because a change in the net value of a disregarded entity may require a shift of liabilities among partners, the IRS and the Treasury Department believe that valuations should be limited and should be required only as the result of a valuation event. Moreover, the timing of the net value determination should generally coincide with the date on which the partnership otherwise determines partners' shares of partnership liabilities. Accordingly, the final regulations do not adopt these comments.

6. Value of Pledged Property

Some commentators suggested that the final regulations conform the rules regarding the valuation of property pledged by partners as security for partnership liabilities with the rules regarding the determination of the net value of a disregarded entity. The commentators also suggested allowing, but not requiring, partners to revalue pledged property annually. In response to these comments, the final regulations provide that if additional property is made subject to a pledge, the addition is treated as a new pledge and the net fair market value of all of the pledged property must be determined at that time. The IRS and the Treasury Department may continue to study whether further modifications to the pledge rule are necessary.

7. Compliance, Reporting, and Effective Date

Some commentators asked that the regulations provide that the partnership may make certain assumptions if a partner does not provide the information required. The IRS and the Treasury Department believe that partnerships are responsible for obtaining the required information in order to allocate partnership liabilities correctly among the partners, and that the partnership agreement should require that partners comply with the reporting requirements in the regulations. Thus, the final regulations do not adopt this comment.

Some commentators suggested that the estimated burden of complying with the paperwork requirements in the proposed regulations was too low. The estimated number of respondents has been increased from 500 to 1,500, and the average estimated time per respondent has been increased from 1 hour to 2 hours.

A commentator also suggested certain grandfathering provisions for partnerships with existing liabilities as of the effective date of the regulations. The IRS and the Treasury Department believe that the same rules should apply to all partnership liabilities incurred or assumed by a partnership on or after the date the regulations are final. Accordingly, this comment is not adopted.

Effective Date

The final regulations apply to liabilities incurred or assumed by a partnership on or after October 11, 2006 other than liabilities incurred or assumed by a partnership pursuant to a written binding contract in effect prior to October 11, 2006.

Special Analyses

It has been determined that this Treasury decision is not a significant regulatory action as defined in Executive Order 12866. Therefore, a regulatory assessment is not required. It also has been determined that section 553(b) of the Administrative Procedure Act (5 U.S.C. chapter 5) does not apply to these regulations. It is hereby certified that the collection of information in these regulations will not have a significant economic impact on a substantial number of small entities. This certification is based on the fact that the amount of time necessary to report the required information will be minimal. Accordingly, a Regulatory Flexibility Analysis under the Regulatory Flexibility Act (5 U.S.C. chapter 6) does not apply. Pursuant to section 7805(f) of the Internal Revenue Code, the notice of proposed rulemaking preceding these final regulations was submitted to the Chief Counsel for Advocacy of the Small Business Administration for comment on its impact on small business.

Drafting Information

The principal author of these regulations is Charlotte Chyr, Office of Associate Chief Counsel (Passthroughs and Special Industries).

List of Subjects

26 CFR Part 1

Income taxes, Reporting and recordkeeping requirements.

26 CFR Part 602

Reporting and recordkeeping requirements.

Adoption of Amendments to the Regulations

■ Accordingly, 26 CFR parts 1 and 602 are amended as follows:

PART 1—INCOME TAXES

- Paragraph 1. The authority citation for part 1 continues to read, in part, as
 - Authority: 26 U.S.C. 7805 * * *
- Par. 2. Section 1.704–2 is amended as follows:
- 1. The text of paragraph (f)(2), the first sentence of paragraph (g)(3), and the third sentence of paragraph (i)(4) are revised.
- 2. Paragraph (l)(1)(iv) is added. The revisions and addition read as

§ 1.704-2 Allocations attributable to nonrecourse liabilities.

* * (f) * * *

- (2) * * * A partner is not subject to the minimum gain chargeback requirement to the extent the partner's share of the net decrease in partnership minimum gain is caused by a recharacterization of nonrecourse partnership debt as partially or wholly recourse debt or partner nonrecourse debt, and the partner bears the economic risk of loss (within the meaning of § 1.752–2) for the liability.
- (g) * * * (3) * * * A partner's share of partnership minimum gain is increased to the extent provided in this paragraph (g)(3) if a recourse or partner nonrecourse liability becomes partially

* * * (i) * * * *

or wholly nonrecourse. * *

(4) * * * A partner is not subject to this minimum gain chargeback, however, to the extent the net decrease in partner nonrecourse debt minimum gain arises because a partner nonrecourse liability becomes partially or wholly a nonrecourse liability. * *

* * (]) * * *

(1) * * *

- (iv) Paragraph (f)(2), the first sentence of paragraph (g)(3), and the third sentence of paragraph (i)(4) of this section apply to liabilities incurred or assumed by a partnership on or after October 11, 2006 other than liabilities incurred or assumed by a partnership pursuant to a written binding contract in effect prior to October 11, 2006. The rules applicable to liabilities incurred or assumed (or subject to a binding contract in effect) prior to October 11, 2006 are contained in this section in effect prior to October 11, 2006. (See 26 CFR part 1 revised as of April 1, 2006.)
- Par. 3. Section 1.752–2 is amended as follows:

- 1. Paragraph (a), the last sentence of paragraph $(\bar{b})(6)$, and paragraph (h)(3)are revised.
- 2. Paragraphs (k) and (l) are added. The revisions and additions read as

§ 1.752-2 Partner's share of recourse liabilities.

(a) * * * A partner's share of a recourse partnership liability equals the portion of that liability, if any, for which the partner or related person bears the economic risk of loss. The determination of the extent to which a partner bears the economic risk of loss for a partnership liability is made under the rules in paragraphs (b) through (k) of this section.

* (b) * * *

(6) * * * See paragraphs (j) and (k) of this section.

(h) * * *

- (3) Valuation. The extent to which a partner bears the economic risk of loss for a partnership liability as a result of a direct pledge described in paragraph (h)(1) of this section or an indirect pledge described in paragraph (h)(2) of this section is limited to the net fair market value of the property (pledged property) at the time of the pledge or contribution. If a partner provides additional pledged property, the addition is treated as a new pledge and the net fair market value of the pledged property (including but not limited to the additional property) must be determined at that time. For purposes of this paragraph (h), if pledged property is subject to one or more other obligations, those obligations must be taken into account in determining the net fair market value of pledged property at the time of the pledge or contribution.
- * * (k) Effect of a disregarded entity—(1) In general. In determining the extent to which a partner bears the economic risk of loss for a partnership liability, an obligation under paragraph (b)(1) of this section ($\S 1.752-2(b)(1)$ payment obligation) of a business entity that is disregarded as an entity separate from its owner under sections 856(i) or 1361(b)(3) or §§ 301.7701–1 through 301.7701-3 of this chapter (disregarded entity) is taken into account only to the extent of the net value of the disregarded entity as of the allocation date (as defined in paragraph (k)(2)(iv) of this section) that is allocated to the partnership liability as determined under the rules of this paragraph (k). The rules of this paragraph (k) do not apply to a § 1.752-2(b)(1) payment

obligation of a disregarded entity to the extent that the owner of the disregarded entity is otherwise required to make a payment (that satisfies the requirements of paragraph (b)(1) of this section) with respect to the obligation of the disregarded entity.

(2) Net value of a disregarded entity— (i) Definition. For purposes of this paragraph (k), the net value of a disregarded entity equals the

following-

(A) The fair market value of all assets owned by the disregarded entity that may be subject to creditors' claims under local law (including the disregarded entity's enforceable rights to contributions from its owner and the fair market value of an interest in any partnership other than the partnership for which net value is being determined, but excluding the disregarded entity's interest in the partnership for which the net value is being determined and the net fair market value of property pledged to secure a liability of the partnership under paragraph (h)(1) of this section); less

(B) All obligations of the disregarded entity that do not constitute § 1.752-2(b)(1) payment obligations of the

disregarded entity.

- (ii) Timing of the net value determination—(A) Initial determination. If a partnership interest is held by a disregarded entity, and the partnership has or incurs a liability, all or a portion of which may be allocable to the owner of the disregarded entity under this paragraph (k), the disregarded entity's net value must be initially determined on the allocation date described in paragraph (k)(2)(iv) of this section.
- (B) Other events. If a partnership interest is held by a disregarded entity, and the partnership has or incurs a liability, all or a portion of which may be allocable to the owner of the disregarded entity under this paragraph (k), then, if one or more valuation events (as defined in paragraph (k)(2)(iii) of this section) occur during the partnership taxable year, except as provided in paragraph (k)(2)(iii)(E) of this section, the net value of the disregarded entity is determined on the allocation date described in paragraph (k)(2)(iv) of this section.

(iii) Valuation events. The following are valuation events for purposes of this

paragraph (k):

(A) A more than de minimis contribution to a disregarded entity of property other than property pledged to secure a partnership liability under paragraph (h)(1) of this section, unless the contribution is followed immediately by a contribution of equal

net value by the disregarded entity to the partnership for which the net value of the disregarded entity otherwise would be determined, taking into account any obligations assumed or taken subject to in connection with such contributions.

(B) A more than de minimis distribution from a disregarded entity of property other than property pledged to secure a partnership liability under paragraph (h)(1) of this section, unless the distribution immediately follows a distribution of equal net value to the disregarded entity by the partnership for which the net value of the disregarded entity otherwise would be determined, taking into account any obligations assumed or taken subject to in connection with such distributions.

(C) A change in the legally enforceable obligation of the owner of the disregarded entity to make contributions to the disregarded entity.

(D) The incurrence, refinancing, or assumption of an obligation of the disregarded entity that does not constitute a § 1.752–2(b)(1) payment obligation of the disregarded entity.

- (E) The sale or exchange of a non-de minimis asset of the disregarded entity (in a transaction that is not in the ordinary course of business). In this case, the net value of the disregarded entity may be adjusted only to reflect the difference, if any, between the fair market value of the asset at the time of the sale or exchange and the fair market value of the asset when the net value of the disregarded entity was last determined. The adjusted net value is taken into account for purposes of § 1.752–2(k)(1) as of the allocation date.
- (iv) Allocation Date. For purposes of this paragraph (k), the allocation date is the earlier of—
- (A) The first date occurring on or after the date on which the requirement to determine the net value of a disregarded entity arises under paragraph (k)(2)(ii)(A) or (B) of this section on which the partnership otherwise determines a partner's share of partnership liabilities under §§ 1.705–1(a) and 1.752–4(d); or

(B) The end of the partnership's taxable year in which the requirement to determine the net value of a disregarded entity arises under paragraph (k)(2)(ii)(A) or (B) of this section.

(3) Multiple liabilities. If one or more disregarded entities have § 1.752–2(b)(1) payment obligations with respect to one or more liabilities of a partnership, the partnership must allocate the net value of each disregarded entity among partnership liabilities in a reasonable and consistent manner, taking into

account the relative priorities of those liabilities.

(4) Reduction in net value of a disregarded entity. For purposes of this paragraph (k), the net value of a disregarded entity is determined by taking into account a subsequent reduction in the net value of the disregarded entity if, at the time the net value of the disregarded entity is determined, it is anticipated that the net value of the disregarded entity will subsequently be reduced and the reduction is part of a plan that has as one of its principal purposes creating the appearance that a partner bears the economic risk of loss for a partnership liability.

(5) Information to be provided by the owner of a disregarded entity. A partner that may be treated as bearing the economic risk of loss for a partnership liability based upon a § 1.752–2(b)(1) payment obligation of a disregarded entity must provide information to the partnership as to the entity's tax classification and the net value of the disregarded entity that is appropriately allocable to the partnership's liabilities on a timely basis.

(6) *Examples*. The following examples illustrate the rules of this paragraph (k):

Example 1. Disregarded entity with net value of zero. (i) In 2007, A forms a wholly owned domestic limited liability company, LLC, with a contribution of \$100,000. A has no liability for LLC's debts, and LLC has no enforceable right to contribution from A. Under § 301.7701–3(b)(1)(ii) of this chapter, LLC is a disregarded entity. Also in 2007, LLC contributes \$100,000 to LP, a limited partnership with a calendar year taxable year, in exchange for a general partnership interest in LP, and B and C each contributes \$100,000 to LP in exchange for a limited partnership interest in LP. The partnership agreement provides that only LLC is required to make up any deficit in its capital account. On January 1, 2008, LP borrows \$300,000 from a bank and uses \$600,000 to purchase nondepreciable property. The \$300,000 debt is secured by the property and is also a general obligation of LP. LP makes payments of only interest on its \$300,000 debt during 2008. LP has a net taxable loss in 2008, and under §§ 1.705-1(a) and 1.752-4(d), LP determines its partners' shares of the \$300,000 debt at the end of its taxable year, December 31, 2008. As of that date, LLC holds no assets other than its interest in LP.

(ii) Because LLC is a disregarded entity, A is treated as the partner in LP for Federal tax purposes. Only LLC has an obligation to make a payment on account of the \$300,000 debt if LP were to constructively liquidate as described in paragraph (b)(1) of this section. Therefore, under this paragraph (k), A is treated as bearing the economic risk of loss for LP's \$300,000 debt only to the extent of LLC's net value. Because that net value is \$0 on December 31, 2008, when LP determines its partners' shares of its \$300,000 debt, A is

not treated as bearing the economic risk of loss for any portion of LP's \$300,000 debt. As a result, LP's \$300,000 debt is characterized as nonrecourse under § 1.752–1(a) and is allocated as required by § 1.752–3.

Example 2. Disregarded entity with positive net value. (i) The facts are the same as in Example 1 except that on January 1, 2009, A contributes \$250,000 to LLC. On January 5, 2009, LLC borrows \$100,000 and LLC shortly thereafter uses the \$350,000 to purchase unimproved land. LP makes payments of only interest on its \$300,000 debt during 2009. As of December 31, 2009, LLC holds its interest in LP and the land, the value of which has declined to \$275,000. LP has a net taxable loss in 2009, and under §\$1.705–1(a) and 1.752–4(d), LP determines its partners' shares of the \$300,000 debt at the end of its taxable year, December 31, 2009.

(ii) A's contribution of \$250,000 to LLC on January 1, 2009, constitutes a more than de minimis contribution of property to LLC under paragraph (k)(2)(iii)(A) of this section and the debt incurred by LLC on January 5, 2009, is a valuation event under paragraph (k)(2)(iii)(D) of this section. Accordingly, under paragraph (k)(2)(ii) of this section, LLC's value must be redetermined as of the end of the partnership's taxable year. At that time LLC's net value is \$175,000 (\$275,000 land—\$100,000 debt). Accordingly, \$175,000 of LP's \$300,000 debt will be recharacterized as recourse under § 1.752-1(a) and allocated to A under this section, and the remaining \$125,000 of LP's \$300,000 debt will remain characterized as nonrecourse under § 1.752-1(a) and is allocated as required by § 1.752-

Example 3. Multiple partnership liabilities. (i) The facts are the same as in Example 2 except that on January 1, 2010, A forms another wholly owned domestic limited liability company, LLC2, with a contribution of \$120,000. Shortly thereafter, LLC2 uses the \$120,000 to purchase stock in X corporation. A has no liability for LLC2's debts, and LLC2 has no enforceable right to contribution from A. Under § 301.7701-3(b)(1)(ii) of this chapter, LLC2 is a disregarded entity. On July 1, 2010, LP borrows \$100,000 from a bank and uses the \$100,000 to purchase nondepreciable property. The \$100,000 debt is secured by the property and is also a general obligation of LP. The \$100,000 debt is senior in priority to LP's existing \$300,000 debt. Also, on July 1, 2010, LLC2 agrees to guarantee both LP's \$100,000 and \$300,000 debts. LP makes payments of only interest on both its \$100,000 and \$300,000 debts during 2010. LP has a net taxable loss in 2010 and, under §§ 1.705-1(a) and 1.752-4(d), must determine its partners' shares of its \$100,000 and \$300,000 debts at the end of its taxable year, December 31, 2010. As of that date, LLC holds its interest in LP and the land, and LLC2 holds the X corporation stock which has appreciated in value to \$140,000.

(ii) Both LLC and LLC2 have obligations to make a payment on account of LP's debts if LP were to constructively liquidate as described in paragraph (b)(1) of this section. Therefore, under paragraph (k)(1) of this section, A is treated as bearing the economic risk of loss for LP's \$100,000 and \$300,000 debts only to the extent of the net values of

LLC and LLC2, as allocated among those debts in a reasonable and consistent manner pursuant to paragraph (k)(3) of this section.

(iii) No events have occurred that would allow a valuation of LLC under paragraph (k)(2)(iii) of this section. Therefore, LLC's net value remains \$175,000. LLC2's net value as of December 31, 2010, when LP determines its partners' shares of its liabilities, is \$140,000. Under paragraph (k)(3) of this section, LP must allocate the net values of LLC and LLC2 between its \$100,000 and \$300,000 debts in a reasonable and consistent manner. Because the \$100,000 debt is senior in priority to the \$300,000 debt, LP first allocates the net values of LLC and LLC2, pro rata, to its \$100,000 debt. Thus, LP allocates \$56,000 of LLC's net value and \$44,000 of LLC2's net value to its \$100,000 debt, and A is treated as bearing the economic risk of loss for all of LP's \$100,000 debt. As a result, all of LP's \$100,000 debt is characterized as recourse under § 1.752-1(a) and is allocated to A under this section. LP then allocates the remaining \$119,000 of LLC's net value and LLC2's \$96,000 net value to its \$300,000 debt, and A is treated as bearing the economic risk of loss for a total of \$215,000 of the \$300,000 debt. As a result, \$215,000 of LP's \$300,000 debt is characterized as recourse under § 1.752-1(a) and is allocated to A under this section, and the remaining \$85,000 of LP's \$300,000 debt is characterized as nonrecourse under § 1.752-1(a) and is allocated as required by § 1.752-3. This example illustrates one reasonable method of allocating net values of disregarded entities among multiple partnership liabilities.

Example 4. Disregarded entity with interests in two partnerships. (i) In 2007, B forms a wholly owned domestic limited liability company, LLC, with a contribution of \$175,000. B has no liability for LLC's debts and LLC has no enforceable right to contribution from B. Under § 301.7701-3(b)(1)(ii) of this chapter, LLC is a disregarded entity. $\bar{\text{LLC}}$ contributes \$50,000 to LP1 in exchange for a general partnership interest in LP1, and \$25,000 to LP2 in exchange for a general partnership interest in LP2. LLC retains the \$100,000 in cash. Both LP1 and LP2 have taxable years than end on December 31 and, under both LP1's and LP2's partnership agreements, only LLC is required to make up any deficit in its capital account. During 2007, LP1 and LP2 incur partnership liabilities that are general obligations of the partnership. LP1 borrows \$300,000 (Debt 1), and LP2 borrows \$60,000 (Debt 2) and \$40,000 (Debt 3). Debt 2 is senior in priority to Debt 3. LP1 and LP2 make payments of only interest on Debts 1. 2, and 3 during 2007. As of the end of taxable year 2007, LP1 and LP2 each have a net taxable loss and must determine its partners' shares of partnership liabilities under §§ 1.705-1(a) and 1.752-4(d) as of December 31, 2007. As of that date, LLC's interest in LP1 has a fair market value of \$45,000, and LLC's interest in LP2 has a fair market value of \$15,000.

(ii) Because LLC is a disregarded entity, B is treated as the partner in LP1 and LP2 for federal tax purposes. Only LLC has an obligation to make a payment on account of

Debts 1, 2, and 3 if LP1 and LP2 were to constructively liquidate as described in paragraph (b)(1) of this section. Therefore, under this paragraph (k), B is treated as bearing the economic risk of loss for LP1's and LP2's liabilities only to the extent of LLC's net value as of the allocation date, December 31, 2007.

(iii) LLC's net value with respect to LP1 is \$115,000 (\$100,000 cash + \$15,000 interest in LP2). Therefore, under paragraph (k)(1) of this section, B is treated as bearing the economic risk of loss for \$115,000 of Debt 1. Accordingly, \$115,000 of LP1's \$300,000 debt is characterized as recourse under \$1.752-1(a) and is allocated to B under this section. The balance of Debt 1 (\$185,000) is characterized as nonrecourse under \$1.752-1(a) and is allocated as required by \$1.752-1(a) and is allocated as required by \$1.752-1(a)

(iv) LLC's net value with respect to LP2 is \$145,000 (\$100,000 cash + \$45,000 interest in LP1). Therefore, under paragraph (k)(1) of this section, B is treated as bearing the economic risk of loss with respect to Debts 2 and 3 only to the extent of \$145,000.

Because Debt 2 is senior in priority to Debt 3, LP2 first allocates \$60,000 of LLC's net value to Debt 2. LP2 then allocates \$40,000 of LLC's net value to Debt 3. As a result, both Debts 2 and 3 are characterized as recourse under § 1.752–1(a) and allocated to B. This example illustrates one reasonable method of allocating the net value of a disregarded entity among multiple partnership liabilities.

(l) Effective dates. Paragraph (a), the last sentence of paragraph (b)(6), and paragraphs (h)(3) and (k) of this section apply to liabilities incurred or assumed by a partnership on or after October 11, 2006, other than liabilities incurred or assumed by a partnership pursuant to a written binding contract in effect prior to that date. The rules applicable to liabilities incurred or assumed (or subject to a binding contract in effect) prior to October 11, 2006 are contained in § 1.752–2 in effect prior to October 11, 2006, (see 26 CFR part 1 revised as of April 1, 2006).

PART 602—OMB CONTROL NUMBERS UNDER THE PAPERWORK REDUCTION ACT

■ Par. 5. The authority citation for part 602 continues to read as follows:

Authority: 26 U.S.C. 7805.

■ Par. 6. Section 602.101 paragraph (b) is amended by adding a new entry to the table for "1.752–2" to read as follows:

§ 602.101 OMB Control numbers.

(b) * * *

CFR part or section where identified and described

Current OMB Control No.

* * * * * * * 1.752–2 1545–1905

CFR part or section where identified and described

Current OMB Control No.

Mark E. Matthews,

Deputy Commissioner for Services and Enforcement.

Approved: June 30, 2006.

Eric Solomon,

Acting Deputy Assistant Secretary of the Treasury.

Editorial Note: This document was received at the Office of the Federal Register on October 4, 2006.

[FR Doc. E6–16719 Filed 10–10–06; 8:45 am] BILLING CODE 4830–01–P

ENVIRONMENTAL PROTECTION AGENCY

40 CFR Part 52

[EPA-R04-OAR-2005-AL-0004-200619a; FRL-8229-8]

Approval and Promulgation of Implementation Plans; Alabama: Volatile Organic Compounds

AGENCY: Environmental Protection

Agency (EPA).

ACTION: Direct final rule.

SUMMARY: EPA is approving revisions to the Alabama State Implementation Plan (SIP), submitted by the Alabama Department of Environmental Management (ADEM) on November 18, 2005. The revisions include modifications to Alabama's Volatile Organic Compounds (VOCs) rules found at Alabama Administrative Code (AAC) Chapter 335-3-1. ADEM is taking an action that was similarly approved by EPA on November 29, 2004 (69 FR 69298). The revision adds several compounds to the list of compounds excluded from the definition of VOC on the basis that they make a negligible contribution to ozone formation. This action is being taken pursuant to section 110 of the Clean Air Act (CAA).

DATES: This direct final rule is effective December 11, 2006 without further notice, unless EPA receives adverse comment by November 13, 2006. If adverse comment is received, EPA will publish a timely withdrawal of the direct final rule in the **Federal Register** and inform the public that the rule will not take effect.

ADDRESSES: Submit your comments, identified by Docket ID No. "EPA-R04-OAR-2005-AL-0004," by one of the following methods:

- 1. www.regulations.gov: Follow the on-line instructions for submitting comments.
 - 2. E-mail: difrank.stacy@epa.gov.
 - 3. Fax: 404-562-9019.

4. Mail: "EPA-R04-OAR-2005-AL-0004," Regulatory Development Section, Air Planning Branch, Air, Pesticides and Toxics Management Division, U.S. Environmental Protection Agency, Region 4, 61 Forsyth Street, SW., Atlanta, Georgia 30303-8960.

5. Hand Delivery or Courier: Stacy DiFrank, Regulatory Development Section, Air Planning Branch, Air, Pesticides and Toxics Management Division 12th floor, U.S. Environmental Protection Agency, Region 4, 61 Forsyth Street, SW., Atlanta, Georgia 30303-8960. Such deliveries are only accepted during the Regional Office's normal hours of operation. The Regional Office's official hours of business are Monday through Friday, 8:30 to 4:30,

Instructions: Direct your comments to

excluding federal holidays.

Docket ID No. "EPA-R04-OAR-2005-AL–0004." EPA's policy is that all comments received will be included in the public docket without change and may be made available online at www.regulations.gov, including any personal information provided, unless the comment includes information claimed to be Confidential Business Information (CBI) or other information whose disclosure is restricted by statute. Do not submit through www.regulations.gov or e-mail, information that you consider to be CBI or otherwise protected. The www.regulations.gov website is an "anonymous access" systems, which means EPA will not know your identity or contact information unless you provide it in the body of your comment. If you send an e-mail comment directly to EPA without going through www.regulations.gov, your e-mail address will be automatically captured and included as part of the comment that is placed in the public docket and made available on the Internet. If you submit an electronic comment, EPA recommends that you include your name and other contact information in the body of your comment and with any disk or CD-ROM you submit. If EPA cannot read your comment due to technical difficulties and cannot contact you for clarification, EPA may not be able to consider your comment. Electronic files should avoid the use of special characters, any form of encryption, and be free of any defects or viruses. For additional information about EPA's public docket visit the EPA Docket Center homepage at http:// www.epa.gov/epahome/dockets.htm.

Docket: All documents in the electronic docket are listed in the www.regulations.gov index. Although listed in the index, some information is not publicly available, i.e., CBI or other information whose disclosure is restricted by statute. Certain other material, such as copyrighted material, is not placed on the Internet and will be publicly available only in hard copy form. Publicly available docket materials are available either electronically in www.regulations.gov or in hard copy at the Regulatory Development Section, Air Planning Branch, Air, Pesticides and Toxics Management Division, U.S. Environmental Protection Agency, Region 4, 61 Forsyth Street, SW., Atlanta, Georgia 30303-8960. EPA requests that if at all possible, you contact the person listed in the FOR **FURTHER INFORMATION CONTACT** section to schedule your inspection. The Regional Office's official hours of business are Monday through Friday, 8:30 to 4:30 excluding legal holidays.

FOR FURTHER INFORMATION CONTACT:

Stacy DiFrank, Regulatory Development Section, Air Planning Branch, Air, Pesticides and Toxics Management Division, U.S. Environmental Protection Agency, Region 4, 61 Forsyth Street, SW., Atlanta, Georgia 30303-8960. The telephone number is (404) 562-9042. Ms. DiFrank can also be reached via electronic mail at difrank.stacy@epa.gov.

SUPPLEMENTARY INFORMATION:

I. Today's Action

On November 18, 2005, ADEM submitted proposed SIP revisions to EPA for review and approval into the Alabama SIP. The revisions include changes made by the State of Alabama to AAC Chapter 335-3-1, regarding VOCs. The rules became state effective on December 12, 2005. EPA is now taking direct final action to approve the proposed revisions, which include revising the definition of VOC, which is a part of the State's strategy to meet the national ambient air quality standards (NAAQS) by reducing emissions of VOCs. In summary, the revisions submitted by ADEM added four compounds to the list of those excluded from the definition of VOC, on the basis that these compounds make a negligible contribution to ozone formation. The revision modified the definition to say that: 1,1,1,2,2,3,3-heptafluoro-3methoxy-propane (n-C₃F₇OCH₃) (known as HFE-7000); 3-ethoxy-1,1,1,2,3,4,4,5,5,6,6,6-ďodecafluro-2-(trifluoromethyl) hexane (known as HFE-7500), 1,1,1,2,3,3,3-

heptafluoropropane (known as HFC-227ea); and methyl formate (HCOOOCH₃) will be considered to be negligibly reactive. The revisions summarized above are approvable pursuant to section 110 of the CAA.

II. Background

Tropospheric ozone, commonly known as smog, occurs when VOCs and nitrogen oxides (NO_x) react in the atmosphere. Because of the harmful health effects of ozone, EPA limits the amount of VOCs and NOx that can be released into the atmosphere. VOCs are those compounds of carbon (excluding carbon monoxide, carbon dioxide, carbonic acid, metallic carbides, or carbonates, and ammonium carbonate) which form ozone through atmospheric photochemical reactions. Compounds of carbon (or organic compounds) have different levels of reactivity; they do not react at the same speed, or do not form ozone to the same extent.

It has been EPA's policy that compounds of carbon with a negligible level of reactivity need not be regulated to reduce ozone (see 42 FR 35314, July 8, 1977). EPA determines whether a given carbon compound has "negligible" reactivity by comparing the compound's reactivity to the reactivity of ethane. EPA lists these compounds in its regulations at 40 CFR 51.100(s), and excludes them from the definition of VOC. The chemicals on this list are often called "negligibly reactive." EPA may periodically revise the list of negligibly reactive compounds to add compounds to or delete them from the

EPA finalized a similar rule on November 29, 2004 (69 FR 69298), approving the addition of the four compounds listed in Section I above to the list of those excluded from the definition of VOC.

III. Final Action

EPA is approving revisions to the Alabama SIP to include changes made to Alabama's VOC regulations which are part of the State's strategy to meet the NAAQS. These changes are consistent with the CAA.

EPA is publishing this rule without prior proposal because the Agency views this as a noncontroversial submittal and anticipates no adverse comments. However, in the proposed rules section of this Federal Register publication, EPA is publishing a separate document that will serve as the proposal to approve the SIP revision should adverse comments be filed. This rule will be effective December 11, 2006 without further notice unless the

Agency receives adverse comments by November 13, 2006.

If EPA receives such comments, then EPA will publish a document withdrawing the final rule and informing the public that the rule will not take effect. All public comments received will then be addressed in a subsequent final rule based on the proposed rule. EPA will not institute a second comment period. Parties interested in commenting should do so at this time. If no such comments are received, the public is advised that this rule will be effective on December 11, 2006 and no further action will be taken on the proposed rule.

IV. Statutory and Executive Order Reviews

Under Executive Order 12866 (58 FR 51735, October 4, 1993), this action is not a "significant regulatory action" and therefore is not subject to review by the Office of Management and Budget. For this reason, this action is also not subject to Executive Order 13211, "Actions Concerning Regulations That Significantly Affect Energy Supply, Distribution, or Use" (66 FR 28355, May 22, 2001). This action merely approves state law as meeting Federal requirements and imposes no additional requirements beyond those imposed by state law. Accordingly, the Administrator certifies that this rule will not have a significant economic impact on a substantial number of small entities under the Regulatory Flexibility Act (5 U.S.C. 601 et seq.). Because this rule approves pre-existing requirements under state law and does not impose any additional enforceable duty beyond that required by state law, it does not contain any unfunded mandate or significantly or uniquely affect small governments, as described in the Unfunded Mandates Reform Act of 1995 (Public Law 104-4).

This rule also does not have tribal implications because it will not have a substantial direct effect on one or more Indian tribes, on the relationship between the Federal Government and Indian tribes, or on the distribution of

power and responsibilities between the Federal Government and Indian tribes, as specified by Executive Order 13175 (65 FR 67249, November 9, 2000). This action also does not have Federalism implications because it does not have substantial direct effects on the states, on the relationship between the national government and the states, or on the distribution of power and responsibilities among the various levels of government, as specified in Executive Order 13132 (64 FR 43255, August 10, 1999). This action merely approves a state rule implementing a Federal standard, and does not alter the relationship or the distribution of power and responsibilities established in the CAA. This rule also is not subject to Executive Order 13045 "Protection of Children from Environmental Health Risks and Safety Risks" (62 FR 19885, April 23, 1997), because it is not economically significant.

In reviewing ŠIP submissions, EPA's role is to approve state choices, provided that they meet the criteria of the CAA. In this context, in the absence of a prior existing requirement for the State to use voluntary consensus standards (VCS), EPA has no authority to disapprove a SIP submission for failure to use VCS. It would thus be inconsistent with applicable law for EPA, when it reviews a SIP submission, to use VCS in place of a SIP submission that otherwise satisfies the provisions of the CAA. Thus, the requirements of section 12(d) of the National Technology Transfer and Advancement Act of 1995 (15 U.S.C. 272 note) do not apply. This rule does not impose an information collection burden under the provisions of the Paperwork Reduction Act of 1995 (44 U.S.C. 3501 et seq.).

The Congressional Review Act, 5 U.S.C. 801 et seq., as added by the Small Business Regulatory Enforcement Fairness Act of 1996, generally provides that before a rule may take effect, the agency promulgating the rule must submit a rule report, which includes a copy of the rule, to each House of the Congress and to the Comptroller General of the United States. EPA will submit a

report containing this rule and other required information to the U.S. Senate, the U.S. House of Representatives, and the Comptroller General of the United States prior to publication of the rule in the **Federal Register**. A major rule cannot take effect until 60 days after it is published in the **Federal Register**. This action is not a "major rule" as defined by 5 U.S.C. 804(2).

Under section 307(b)(1) of the CAA. petitions for judicial review of this action must be filed in the United States Court of Appeals for the appropriate circuit by December 11, 2006. Filing a petition for reconsideration by the Administrator of this final rule does not affect the finality of this rule for the purposes of judicial review nor does it extend the time within which a petition for judicial review may be filed, and shall not postpone the effectiveness of such rule or action. This action may not be challenged later in proceedings to enforce its requirements. (See section 307(b)(2)).

List of Subjects in 40 CFR Part 52

Environmental protection, Air pollution control, Carbon monoxide, Intergovernmental relations, Nitrogen dioxide, Ozone, Particulate matter, Reporting and recordkeeping requirements, Volatile organic compounds.

Dated: September 18, 2006.

A. Stanley Meiburg,

Acting Regional Administrator, Region 4.

■ 40 CFR part 52 is amended as follows:

PART 52—[AMENDED]

■ 1. The authority citation for part 52 continues to read as follows:

Authority: 42 U.S.C. 7401 et seq.

Subpart B—Alabama

■ 2. Section 52.50(c) is amended by revising entries for "Section 335–3–1.02" to read as follows:

§ 52.50 Identification of plan.

* * * * * * * * *

EPA APPROVED ALABAMA REGULATIONS

State cita- tion	Title/subject		State effective date		EPA approval date	Explanation
Chapter 335–3–1 General provisions						
*	*	*	*	*	*	*
Section 335– 3–1–.02.	Definitions	12	12/12/2005 10/11/06 [Insert citation of publication].			
*	*	*	*	*	*	*

[FR Doc. E6–16812 Filed 10–10–06; 8:45 am] BILLING CODE 6560–50–P

DEPARTMENT OF TRANSPORTATION

Federal Railroad Administration

49 CFR Part 213

[Docket No. FRA-2005-22522]

RIN 2130-AB71

Track Safety Standards; Inspections of Joints in Continuous Welded Rail (CWR)

AGENCY: Federal Railroad Administration (FRA), Department of Transportation (DOT).

ACTION: Final rule.

SUMMARY: FRA is amending the Federal Track Safety Standards to improve the inspection of rail joints in continuous welded rail (CWR). On November 2, 2005, FRA published an Interim Final Rule (IFR) addressing the inspection of rail joints in CWR. FRA requested comments on the provisions of the IFR and stated that a final rule would be issued after a review of those comments. This final rule adopts a portion of the IFR and makes changes to other portions. This final rule requires track owners to develop and implement a procedure for the detailed inspection of CWR rail joints and also requires track owners to keep records of those inspections.

DATES: This final rule is effective October 31, 2006.

FOR FURTHER INFORMATION CONTACT:

Kenneth Rusk, Staff Director, Office of Safety, FRA, 1120 Vermont Avenue NW., Washington, DC 20590, Telephone: (202) 493–6236; or Sarah Grimmer, Trial Attorney, Office of Chief Counsel, FRA, 1120 Vermont Ave NW., Washington, DC 20950, Telephone (202) 493–6390.

SUPPLEMENTARY INFORMATION:

Background

I. Continuous Welded Rail (CWR)

A. General

CWR refers to the way in which rail is joined together to form track. In CWR, rails are welded together to form one continuous rail that may be several miles long. Although CWR is normally one continuous rail, there can be joints ¹

in it for one or more reasons: the need for insulated joints that electrically separate track segments for signaling purposes, the need to terminate CWR installations at a segment of jointed rail, or the need to remove and replace a section of defective rail.

B. Statutory and Regulatory History of CWR

The Federal Railroad Administration (FRA) issued the first Federal Track Safety Standards in 1971. See 36 FR 20336 (October 20, 1971). FRA addressed CWR in a rather general manner, stating, in § 213.119, that railroads must install CWR at a rail temperature that prevents lateral displacement of track or pull-aparts of rail ends and that CWR should not be disturbed at rail temperatures higher than the installation or adjusted installation temperature.

In 1982, FRA deleted § 213.119, because FRA believed it was so general in nature that it provided little guidance to railroads and it was difficult to enforce. See 47 FR 7275 (February 18, 1982) and 47 FR 39398 (September 7, 1982). FRA stated: "While the importance of controlling thermal stresses within continuous welded rail has long been recognized, research has not advanced to the point where specific safety requirements can be established." 47 FR 7279. FRA explained that continuing research might produce reliable data in this area in the future.

The Rail Safety Enforcement and Review Act of 1992 (Public Law 102-365, September 3, 1992), required that FRA evaluate procedures for installing and maintaining CWR. In 1994, Congress required DOT to evaluate cold weather installation procedures for CWR (Federal Railroad Safety Reauthorization Act (Pub. L. 103-272, July 5, 1994)). In light of the evaluation of those procedures, as well as information resulting from FRA's own research and development, FRA addressed CWR procedures by adding § 213.119 during its 1998 revision of the Track Safety Standards. See 63 FR 33992 (June 22, 1998).

Section 213.119, as added in 1998, requires railroads to develop procedures that, at a minimum, provide for the installation, adjustment, maintenance, and inspection of CWR, as well as a training program and minimal recordkeeping requirements. Section 213.119 does not dictate which procedures a railroad must use in its CWR plan. It allows each railroad to develop and implement its individual CWR plan based on procedures which have proven effective for it over the

years. Accordingly, procedures can vary from railroad to railroad.

On August 10, 2005, President Bush signed the Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users (SAFETEA–LU), (Pub. L. 109–59, August 10, 2005) into law. Section 9005(a) of SAFETEA–LU amended 49 U.S.C. 20142 by adding a new subsection (e) as follows:

(e) Track Standards.-

(1) In General.—Within 90 days after the date of enactment of this subsection, the Federal Railroad Administration shall—

(A) require each track owner using continuous welded rail track to include procedures (in its procedures filed with the Administration pursuant to section 213.119 of title 49, Code of Federal Regulations) to improve the identification of cracks in rail joint bars;

(B) instruct Administration track inspectors to obtain copies of the most recent continuous welded rail programs of each railroad within the inspectors' areas of responsibility and require that inspectors use those programs when conducting track inspections; and

(C) establish a program to review continuous welded rail joint bar inspection data from railroads and Administration track

inspectors periodically.

(2) Inspection.—Whenever the Administration determines that it is necessary or appropriate, the Administration may require railroads to increase the frequency of inspection, or improve the methods of inspection, of joint bars in continuous welded rail.

Pursuant to this mandate, on November 2, 2005, FRA revised the Track Safety Standards of 49 CFR part 213 by publishing the IFR, 70 FR 66288, which addresses CWR. FRA requested comments on the IFR and provided the Railroad Safety Advisory Committee (RSAC) with an opportunity to review the comments on the IFR. On February 22, 2006, RSAC established the Track Safety Standards Working Group (working group). The working group was given two tasks: (1) Resolution of comments on the IFR, and (2) recommendations regarding FRA's role in oversight of CWR programs, including analysis of data to determine effective management of CWR safety by the railroads. The first task, referred to as "Phase I" of the CWR review, includes analyzing the IFR on inspection of joint bars in CWR territory, reviewing the comments to the IFR, and preparing recommendations for the final rule. The publication of this final rule concludes "Phase I" of RSAC's referral to the working group. The working group is currently reviewing "Phase II" of RSAC's referral, which involves an examination of all of § 213.119. The working group plans to

¹ Rail joints commonly consist of two joint bars that are bolted to the sides of the rail and that contact the rail at the bottom surface of the rail head and the top surface of the rail base.

report on its Phase II task to the RSAC at the next full RSAC meeting.

II. Railroad Safety Advisory Committee (RSAC) Overview

In March 1996, FRA established RSAC, which provides a forum for developing consensus recommendations to FRA's Administrator on rulemakings and other safety program issues. The RSAC includes representation from all of the agency's major customer groups, including railroads, labor organizations, suppliers and manufacturers, and other interested parties. A list of group members follows:

American Association of Private Railroad Car Owners (AARPCO);

American Association of State Highway & Transportation Officials (AASHTO);

American Chemistry Council;

American Petrochemical Institute; American Public Transportation Association (APTA);

American Short Line and Regional Railroad Association (ASLRRA);

American Train Dispatchers Association (ATDA);

Association of American Railroads (AAR); Association of Railway Museums (ARM); Association of State Rail Safety Managers (ASRSM):

Brotherhood of Locomotive Engineers and Trainmen (BLET);

Brotherhood of Maintenance of Way Employees Division (BMWED);

Brotherhood of Railroad Signalmen (BRS); Chlorine Institute;

Federal Transit Administration (FTA);* Fertilizer Institute;

High Speed Ground Transportation Association (HSGTA);

Institute of Makers of Explosives;

International Association of Machinists and Aerospace Workers;

International Brotherhood of Electrical Workers (IBEW);

Labor Council for Latin American Advancement (LCLAA)*;

League of Railway Industry Women*; National Association of Railroad Passengers (NARP);

National Association of Railway Business Women*;

National Conference of Firemen & Oilers; National Railroad Construction and Maintenance Association;

National Railroad Passenger Corporation (Amtrak);

National Transportation Safety Board (NTSB)*;

Railway Supply Institute (RSI); Safe Travel America (STA);

Secretaria de Comunicaciones y Transporte*; Sheet Metal Workers International

Association (SMWIA);

Tourist Railway Association Inc.;

Transport Canada*;

Transport Workers Union of America (TWU); Transportation Communications

International Union/BRC (TCIU/BRC); Transportation Security Administration (TSA); and

United Transportation Union (UTU).

*Indicates associate, non-voting membership.

When appropriate, FRA assigns a task to RSAC, and after consideration and debate, RSAC may accept or reject the task. If the task is accepted, RSAC establishes a working group that possesses the appropriate expertise and representation of interests to develop recommendations to FRA for action on the task. These recommendations are developed by consensus. A working group may establish one or more task forces to develop facts and options on a particular aspect of a given task. The task force then provides that information to the working group for consideration. If a working group comes to unanimous consensus on recommendations for action, the package is presented to the full RSAC for a vote. If the proposal is accepted by a simple majority of RSAC, the proposal is formally recommended to FRA. FRA then determines what action to take on the recommendation. Because FRA staff plays an active role at the working group level in discussing the issues and options and in drafting the language of the consensus proposal, FRA is often favorably inclined toward the RSAC recommendation.

However, FRA is in no way bound to follow the recommendation, and the agency exercises its independent judgment on whether the recommended rule achieves the agency's regulatory goal, is soundly supported, and is in accordance with policy and legal requirements. Often, FRA varies in some respects from the RSAC recommendation in developing the actual regulatory proposal or final rule. Any such variations would be noted and explained in the rulemaking document issued by FRA. If the working group or RSAC is unable to reach consensus on recommendations for action, FRA moves ahead to resolve the issue through traditional rulemaking proceedings.

III. RSAC Track Safety Standards Working Group

After its establishment on February 22, 2006, the working group reconvened on April 4–5, 2006, April 26–28, 2006, May 24–25, 2006, and July 19–20, 2006 to discuss revisions to the IFR for this final rule. The working group considered all the comments and reached consensus on recommendations for a final rule. These recommendations were presented to the RSAC and on August 11, 2006, the RSAC accepted these recommendations. The RSAC voted to forward these recommendations to FRA as the basis

for a final rule on the inspection of CWR joints.

FRA has worked closely with the RSAC in developing its recommendations and believes that the RSAC has effectively addressed inspection of CWR joints. FRA has greatly benefitted from the open, informed exchange of information during the meetings. There is a general consensus among the railroads, rail labor organizations, state safety managers, and FRA concerning the primary principles FRA sets forth in this final rule. The working group has also benefitted from participation of NTSB staff. FRA believes that the expertise possessed by the RSAC representatives enhances the value of the recommendations, and FRA has made every effort to incorporate them in this rule.

IV. Train Accidents Involving Joints in CWB

Since FRA's 1998 revision of the Track Safety Standards, there have been a number of train accidents in which the failure of a rail joint in CWR was a factor. The NTSB investigated three recent accidents and made recommendations to FRA concerning joints in CWR. The NTSB recommendations closely parallel the statutory mandate requiring this IFR. The three accidents and subsequent NTSB recommendations are described below.

A. Derailment of Canadian Pacific Railroad Train 292–16 Near Minot, ND

On January 18, 2002, Canadian Pacific Railway (CPR) freight train 292-15 derailed 31 of its 112 cars about 1/2 mile west of the city limits of Minot, North Dakota. Five tank cars carrying anhydrous ammonia, a liquefied compressed gas, catastrophically ruptured, and a vapor plume covered the derailment site and surrounding area. About 11,600 people occupied the area affected by the vapor plume. One resident was fatally injured, and 60 to 65 residents of the neighborhood nearest the derailment site were rescued. As a result of the accident, 11 people sustained serious injuries, and 322 people, including the two train crew members, sustained major injuries. Damages exceeded \$2 million, and more than \$8 million has been spent in environmental remediation.

In its Railroad Accident Report,² the NTSB determined that the probable

² NTSB Railroad Accident Report: Derailment of Canadian Pacific Railway Freight Train 292–16 and Subsequent Release of Anhydrous Ammonia Near Minot, North Dakota, January 18, 2002 (NTSB/ RAR–04–01) (March 9, 2004).

cause of the derailment was "an ineffective Canadian Pacific Railway inspection and maintenance program that did not identify and replace cracked joint bars before they completely fractured and led to the breaking of the rail at the joint." The NTSB found that the catastrophic failure of five tank cars and the instantaneous release of 146,700 gallons of anhydrous ammonia also contributed to the severity of the accident.

The NTSB issued several findings in its report. The NTSB found that the train derailed because joint bars at the east end of the plug rail³ fractured (either under the previous train or as the accident train passed over the joint), and then, after the joint bars fractured, the rail itself also fractured and broke away. The NTSB found that CPR's inspection procedures regarding rail joint bars in CWR were inadequate to properly inspect and maintain joints within CWR, and those inadequate procedures allowed undetected cracking in the joint bars at the accident location to grow to a critical size. In a similar vein, the NTSB found that FRA's requirements regarding rail joint bars in CWR were ineffective, because they did not require on-the-ground visual inspections or nondestructive testing adequate to identify cracks before they grow to critical size and result in joint bar failure.

The NTSB also found that FRA's oversight of CPR's CWR program was ineffective, because FRA neither reviewed the CWR program nor ensured that its track inspectors had copies of the CWR programs to determine if the railroad was in compliance with it. As a result of these findings, the NTSB made seven safety recommendations, of which the most relevant are quoted below.

Require all railroads with continuous welded rail track to include procedures (in the programs that are filed with the Federal Railroad Administration) that prescribe onthe-ground visual inspections and nondestructive testing techniques for identifying cracks in rail joint bars before they grow to critical size. (R-04-1).

Establish a program to periodically review continuous welded rail joint bar inspection data from railroads and Federal Railroad Administration track inspectors and, when determined necessary, require railroads to increase the frequency or improve the methods of inspection of joint bars in continuous welded rail. (R-04-2).

Instruct Federal Railroad Administration track inspectors to obtain copies of the most recent continuous welded rail programs of the railroads that fall within the inspectors' areas of responsibility and require that inspectors use those programs when conducting track inspections. (R-04-3).

B. Derailment of Amtrak Train No. 58 Near Flora, MS

On April 6, 2004, National Railroad Passenger Corporation (Amtrak) train No. 58 (*City of New Orleans*) derailed on Canadian National Railway Company track near Flora, Mississippi. The entire train derailed, including one locomotive, one baggage car, and eight passenger cars. The derailment resulted in one fatality, three serious injuries, and 43 minor injuries. The equipment costs associated with the accident totaled about \$7 million.

In its Railroad Accident Report,⁴ the NTSB determined that the probable cause of the accident was "the failure of the Canadian National Railway Company to properly maintain and inspect its track, resulting in rail shift and the subsequent derailment of the train, and the Federal Railroad Administration's ineffective oversight to ensure proper maintenance of the track by the railroad." The NTSB made two recommendations to FRA, one of which is relevant to the discussion here.

Emphasize to your track inspectors the importance of enforcing a railroad's continuous welded rail program as a part of the Federal Track Safety Standards, and verify that inspectors are documenting noncompliance with the railroad's program. (R-05-05).

C. Derailment of Union Pacific Train ZLAMN–16 Near Pico Rivera, CA

On October 16, 2004, Union Pacific (UP) freight train ZLAMN–16 derailed 3 locomotives and 11 cars near Pico Rivera, California. Small amounts of hazardous materials were released from the transported cargo. There were no injuries to area residents, the train crew, or the emergency response personnel. UP estimated the monetary damage at \$2.7 million.

In its Railroad Accident Brief,⁵ the NTSB determined "that the probable cause of the derailment was the failure of a pair of insulated joint bars due to fatigue cracking. Contributing to the accident was the lack of an adequate onthe-ground inspection program for identifying cracks in rail joint bars before they grow to critical size."

The NTSB reiterated two of the recommendations that it had made to

FRA after the Minot, North Dakota accident: (1) R-04-01 about on-the-ground visual inspections and nondestructive testing techniques and (2) R-04-02 about a program to review joint bar inspection data. The NTSB stated further in its brief:

The CWR track involved in the Pico Rivera accident had all the inspections required by the UP and the FRA. In some instances, the inspections were done more frequently than required. Nevertheless, the inspections failed to detect the developing problems and ultimate failure. Additionally, during the 2 days after the last inspection, more than 100 trains passed over the insulated joint bars without either discovering or reporting a defect. Trains traversed the area after the insulated joint bars were completely broken, as evidenced by the rail batter in both directions.

Several indications of an imminent or actual defect were present before this accident, which the inspection from a moving vehicle did not discover:

- The epoxy bead was missing from the center section of the insulated joint bar, indicating vertical movement.
- The joint bars cracked before they completely fractured. Part of each crack was visible on the lower outer portion of the bar for some time before its failure.
- Rail end batter developed when the joint bars completely fractured and trains continued to pass over them in both directions.

These indications developed over time, and a close visual inspection from the ground would have likely uncovered the emerging problem and allowed corrective action to be taken to avoid the accident.

V. FRA's Approach to CWR in This Final Rule

Earlier versions of § 213.119 did not require track owners to include any provisions in their CWR plans related to joints in CWR. Track owners were required simply to address joints in CWR in the same manner as they addressed joints in conventional jointed rail. See 49 CFR 213.121. The IFR required track owners to specifically address joints in CWR in their respective CWR plans. The IFR focused on the track owner maintaining and submitting to FRA a joint inventory which would enable the track owner to identify joints due for periodic inspections. FRA's gathering of this information would have satisfied its obligations under SAFETEA-LU. While this final rule also requires track owners to specifically address joints in CWR in their CWR plans, it eliminates the joint inventory requirement of the IFR. Alternatively, this final rule requires track owners to inspect CWR joints at minimum intervals specific to the class of track, annual tonnage, and whether the track is used for freight or passenger trains. See § 213.119(g)(6)(i). This final

³ A "plug rail" describes a short piece of rail inserted into a length of CWR to replace a similar piece that was removed because of defects or damage.

⁴Railroad Accident Report: Derailment of Amtrak Train No. 58, City of New Orleans, Near Flora, Mississippi, April 6, 2004 (NTSB/RAR–05/02) (July

⁵ NTSB Railroad Accident Brief: Accident No. DCA-05-FR-002 (NTSB/RAB-05/02) (March 9, 2004).

rule also requires the track owner to submit a Fracture Report when a cracked or broken CWR joint is discovered pursuant to a § 213.119, § 213.233, or § 213.235 inspection. The Fracture Reports will give FRA the information that a joint inventory would have provided. See § 213.119(g)(7)(ii).

To meet the statutory requirement that FRA issue this regulation within 90 days of the enactment of SAFETEA–LU, FRA issued the IFR on November 2, 2005. This final rule addresses 49 U.S.C. 20142(e)(1)(A) and (e)(1)(C) (hereinafter referred to as (e)(1)(A) and (e)(1)(C)). Because 49 U.S.C. 20142(e)(1)(B) does not require regulatory action on the part of FRA, FRA is not addressing it in this rulemaking.

Paragraph (e)(1)(A) mandates that FRA require each track owner to "include procedures * * * to improve the identification of cracks in rail joint bars." Congress did not specify how FRA should effect that improvement. One way of improving the identification of such cracks is through on-foot inspection of joints in CWR. Because most cracks in joint bars can be detected by eye before they grow to failure, onfoot inspections can be of great value in identifying joint failure. Accordingly, FRA is requiring railroads to conduct periodic on-foot inspections of CWR joints. See § 213.119(g)(1).

Rather than limit these on-foot inspections to the identification of joint bar cracks, FRA is requiring track owners to also inspect for joint conditions that can lead to the development of joint bar cracks. Track owners should inspect all safety-critical aspects of joints, including any indications of potential failure of the joint itself; any indications of potential failure of any components of the joint (e.g., rails, bolts, supporting crossties, and track fasteners); and the track itself in the vicinity of the joint (including the effectiveness of rail anchors or other devices for restraint of longitudinal movement of the rail). In this final rule, FRA lists examples of conditions that may indicate potential failure. This list is not all-inclusive. There are other conditions that could indicate failure, and FRA urges track owners to consider all conditions, not just the listed examples.

In doing this, railroads will address a preemptive solution—i.e., preventing cracks from developing—rather than merely reacting to cracks after they have developed. It is understood that certain conditions involving rail joints and the surrounding CWR contribute to the development and propagation of cracks in rail joints. If track inspectors inspect for these conditions, detect these

conditions, and provide information so that railroads can correct these conditions, it will reduce the probability of joint failures and subsequent train accidents.

Furthermore, this preventive approach is more appropriate given that the development of a crack in a rail joint bar can progress at an unpredictable rate. Some cracks might exist for years without causing a rupture of the joint, while other cracks can progress rapidly from an undetectable size to complete failure. For example, a joint can completely fail under a single impact load if the joint is subjected to low temperatures and very high-tension forces.

FRA believes that the time and effort it takes a track inspector to perform a complete inspection will be minimal while the benefit of a complete inspection will be high. Once a track inspector arrives at a location to inspect a joint and begins inspecting that joint, it takes little time and effort (beyond the effort to search for and identify cracks in joint bars) for him or her to note the condition of the entire joint and its surroundings. There are both safety and management benefits to a complete inspection. The safety benefit is obvious in that it prevents derailments. As for management benefits, track owners will save money and time, because it is easier and more cost effective to repair incipient joint conditions than actual joint cracks. For example, it is more economical to replace joint bolts or to reset rail anchors (i.e., potential failure conditions) than it is to replace a joint bar after it has developed a crack.

FRA realizes that inspections at a frequency that could detect incipient cracks prior to the possibility of failure in every case are not feasible given the current levels of railroad staffing and railroad traffic, and in light of the impediments to train operations that would result from restrictions required to provide for the safety and mobility of inspection personnel. Proper preparation and maintenance of joints, however, together with appropriate joint inspection instructions, can reduce the frequency of crack formation and also prevent rapid propagation in most cases—making a sound program of inspection both feasible and more cost

Paragraph (e)(1)(C) requires that FRA "establish a program to [periodically] review continuous welded rail joint bar inspection data" from railroads and FRA track inspectors. Clearly, FRA can gather and review the joint bar inspection data from its own inspectors' inspections. In order for FRA to review railroad CWR joint bar inspection data,

however, track owners must gather that data and make it available to FRA for review. Accordingly, this rule now requires track owners to compile a Fracture Report and submit it to FRA. See § 213.119(g)(7)(ii). As discussed in more detail below, a Fracture Report is a record which the track owner must prepare whenever a cracked or broken CWR joint is discovered pursuant to a § 213.119, § 213.233, or § 213.235 inspection.

There is not yet an established, efficient method for detecting cracks in joint bars by traditional means of automated non-destructive testing (NDT). FRA believes that such a system might be developed, and that a requirement for effective joint bar inspection by either visual or other effective means can provide an incentive for the railroad industry to develop such a system. FRA is aware that some railroads do employ portable, hand-held equipment to conduct NDT of joint bars. The use of NDT will be discussed further in the section-bysection analysis of § 213.119(g)(8).

NDT technology, in addition to careful visual inspection, could be used where judged effective. FRA notes, however, that there is insufficient engineering data to establish the effectiveness of NDT techniques as applied to joint bars in the service environment. Further, as illustrated by the examination of NDT technology and services by the joint FRA/industry Rail Integrity Task Force, 6 operator qualification and quality control remain areas of concern. Accordingly, FRA focuses the "benchmark" inspection requirements of this IFR on visual inspection by a qualified track inspector.

VI. Response to Public Comments

FRA received seventeen comments in response to the IFR. The comments addressed concerns over a variety of issues, including: inspection frequencies, the economic analysis of the regulation, the training of track inspectors, the availability of CWR plans, the joint inventory requirement of

⁶The Rail Integrity Task Force is a joint FRA/industry working group. It was convened in April 2002 to identify "best practices" within the railroad industry regarding the inspection, maintenance, and replacement of rail. The goal of the task force is to "reduce rail-related accidents and casualties resulting from derailments caused by broken rail."

The task force is comprised of subject-matter experts from the major heavy-haul railroads, the AAR, FRA's Office of Safety Assurance and Compliance, FRA's Office of Railroad Development, as well as technical support from the Volpe National Transportation Systems Center. The task force has also requested and received input from all of the service providers in the field of nondestructive testing of rail.

the IFR, the recordkeeping requirements, and other various issues. The working group addressed each comment in its meetings. A more detailed discussion of the public comments will be found in the sectionby-section analysis.

A. Inspection Frequency

The IFR required a track owner's CWR plan to specify the timing of joint inspections based on the configuration and condition of the particular joint. The IFR provided minimum inspection intervals of every 190 days for track classes 4 and higher and every 370 days for class 3 track and class 2 track on which passenger trains operate. Public comments on the required inspection frequency were numerous and varied. For example, BMWED desired much more frequent inspections (i.e., monthly), while other commenters suggested risk-based (variable) inspection intervals taking into account the presence of passenger trains, hazardous materials or the proximity of railroad operations to population centers. Suggestions to increase inspection frequency dominated comments addressing inspection frequency. Further, railroad commenters were almost unanimously opposed to the inventory requirements imposed by the IFR, and some implied that the inventory was far more burdensome than increased inspection frequency would be.

Several Senators urged FRA to increase the required inspection frequencies. In a filing supported by three members of the California congressional delegation and several local officials, the California Public Utilities Commission recommended that FRA require more frequent inspections and take into consideration more factors in determining inspection intervals, such as population density and risk associated with hazardous materials. FRA and the RSAC carefully considered these comments. FRA also took into account the fact that railroad CWR procedures filed in response to the IFR failed to address circumstances that might warrant more frequent inspection.

The FRA decided upon an inspection frequency in lieu of an inventory requirement after considering many different approaches. The inspection frequency was based upon model results developed by the Department of Transportation's Volpe Center (Volpe), the practical realities of railroad operations, as well as discussions, negotiations, and compromises combining practicality, enforceability, and effectiveness. The RSAC working

group discussed all of these considerations at its meetings.

Volpe developed several engineering models to estimate the loads imposed on a rail joint. As is true of all models, they were simplifications of reality designed to give insight into underlying facts. The models considered the effects of various joint characteristics such as rail section, rail end gap, batter, height mismatch and vertical support. Loads were used to infer stresses in the joint bar which permitted the conduct of a fatigue analysis to determine the tonnage, expressed as million gross tons (MGT), required to develop a fatigue crack in the bar. The models were based on an assumed rectangular cross section, which, although very different from the actual joint bar shape, seemed to give adequate direction when later compared to actual experience. Under the assumed baseline joint conditions, bar fatigue life was estimated to be greater than 5,000 MGT.

Fatigue life is only tangentially related to a reasonable inspection interval. Crack growth life after crack initiation is far more important. Volpe applied fracture mechanics principles to estimate the tonnage required to grow the crack from a barely detectable size to the size at which the bar would fracture under the next train. For the same baseline joint conditions, the analysis yielded a fatigue crack growth life estimate of 13 MGT, using a minimum detectable crack size of onesixteenth of an inch. Smaller initial crack sizes yielded dramatically longer fatigue lives, and larger initial crack sizes yielded dramatically shorter fatigue lives. Further, the fatigue and crack growth lives are extremely sensitive to the conditions of the joint. Poor joint conditions result in shorter estimated lifetimes, while better conditions increase the expected joint bar life. For each case, Volpe fatigue life estimates are conservative, as the analysis predicts first percentile life. That is, the fatigue life estimate is the tonnage at which one percent of joint population can be expected to have formed a crack—a standard engineering approach to estimating fatigue life. The Volpe crack growth models also have some conservative features. The Volpe model seemed to forecast slightly more failures than are being realized in actual railroad service, but FRA will compare the model to actual data once fracture reports become available.

These results were considered by the RSAC working group and compared to real life experiences. Many railroads already had inspection plans for their CWR joints. During the RSAC working group meetings, numerous inspection

intervals were suggested. Certain parties suggested that 40 MGT be used, while others wanted 10 MGT. A consensus was reached that 20 MGT would be a reasonable inspection interval. Although Volpe's model had suggested 13 MGT, the Volpe representatives assured FRA that 20 MGT is an appropriate inspection interval. Given the practical realities of conducting the required on-foot visual inspections required under the new rule, and FRA's heightened concerns about tracks with 40-60 MGT per year, certain trade-offs were made by RSAC in recommending the inspection frequency schedule. FRA has adopted the RSAC recommendations regarding inspection

frequency.

For freight-only operations, the inspection interval depends on the annual tonnage and the FRA track class. The inspection interval is approximately once every 20 MGT up to 60 MGT (or three times per year) for Class 4 and Class 5 track, with less frequent intervals for Class 3 track. These intervals are greater than the estimated crack growth life; however, they represent a practical baseline and account for the likely increased severity of accidents on higher track classes. They are also reflective of the vast majority of freight traffic in the U.S. as most lines accumulate an average of approximately 60 MGT per year. Higher annual tonnage lines generally represent unit train operations consisting of coal, for example. Track with higher speeds is subject to more frequent inspections, because higher speed accidents are likely on the average to be more severe. The inspection intervals provide some balance between risk and cost of

For track upon which passenger trains operate, a different schedule was developed which considers the potentially greater severity, especially in terms of loss of life, from possible future passenger train accidents. The inspection intervals are again graduated based on track class and whether the line experiences more or less than 20 MGT per year with more frequent inspections required for higher classes of track. If a track owner operates both freight and passenger trains over a given segment of track and there are two different possible inspection interval requirements, the more frequent inspection interval applies.

FRA also provided relief requested by ASLRRA on behalf of smaller railroads, which run occasional passenger service. Pursuant to the frequency chart in § 213.119(g)(6)(i), those railroads can run passenger trains at the maximum speed authorized for the next lower

class of track. FRA believes this is safe, because track with freight service is inspected at frequencies higher or equal to the inspection frequency of the next lower class track with passenger service.

FRA considered adding further complexity to the required inspection frequency, but decided that would not be either necessary or productive. It is not necessary because the inspection strategy embodied in this final rule should be sufficient to address joint integrity issues (conditions that foster development of cracks) and to detect cracks before failure in the vast majority of cases. Further complexity would not be productive because available information does not support development of a useful inspection strategy built on other factors. For instance, protecting nearby populations from hazardous material accidents is always a desirable objective; however, most hazardous materials releases (which are infrequent events) occur along the railroads in unpopulated areas or in small rural communitiesthousands of which lie along major rail lines. Hazardous materials shipments traverse most rail lines, yet there is no data suggesting that the volume of shipments predicts the likelihood of a release in a train accident. After discussion of these issues, the RSAC agreed that an inspection strategy based on class of track, tonnage, and presence or absence of passenger traffic was the best approach. The RSAC also developed the Fracture Report process, which may lead to further refinement of inspection intervals over time.

B. Economic Analysis

AAR had extensive comments on the IFR's economic analysis. First, AAR stated that the recordkeeping costs were underestimated, and stressed that the IFR's proposed inventory requirement would be more costly than estimated by FRA. FRA agrees that the cost estimates developed in connection with the IFR were based on an excessively optimistic assumption regarding the extent of railroads' use of electronic technology which would have been necessary to keep inventory costs reasonable. As FRA is no longer requiring an inventory, these costs will not be analyzed further for the final rule.

AAR also stated that FRA underestimated the burden imposed upon inspectors by underestimating the time per inspection and by underestimating the number of joints to be inspected. In response to this comment, FRA will use a longer time period for inspection as part of a sensitivity analysis; four minutes will be allocated for each joint inspection in

this analysis and the originally proposed one minute per joint inspection in a separate analysis. Although FRA worked with the AAR to obtain more accurate data to better estimate the number of joints to be inspected and the frequency to which they will be inspected, the AAR was not able to provide significantly improved data in the time available. In its comments, AAR had estimated the number of joints by extrapolating a total number from a six-and-a-half mile segment of track. FRA believes its estimates are at least as good as AAR's extrapolation from a six-and-a-half mile

C. Joint Inventory Requirement in the IFR

Commenters such as AAR, Long Island Railroad (LIRR) and Metro-North found the joint inventory requirements in the CFR to be extremely burdensome. In response to these comments and discussions of the RSAC working group, FRA has eliminated the inventory requirement of the IFR. The RSAC working group agreed that in lieu of the data supplied by a CWR Joint Inventory, the track owner would be required to submit Fracture Reports to the FRA twice annually. FRA will analyze the data provided in the reports to enhance industry knowledge with regard to the factors causing broken joint bars.

D. Training

FRA received a comment from BMWED suggesting that there should be annual re-training of track inspectors on joint bar inspections. FRA interprets this comment as pertaining to CWR training in general. As FRA did not change the CWR training provision in the IFR, FRA has resolved to address training concerns in Phase II of the working group's task of reviewing all of § 213.119.

E. Availability of CWR Plans

FRA received comments that CWR written procedures (designated "CWR plans" under this final rule) were not made readily available for inspectors. FRA has resolved this issue by making all CWR plans it receives pursuant to Part 213 available to all FRA and State inspectors. However, FRA agrees that greater clarity is desirable. FRA will ask the working group to include a more suitable process for submission and dissemination of CWR plans in Phase II of its activities.

F. Other Comments

FRA accepted AAR's suggestion to remove the reference to impact loads in the final rule. FRA also added an exception to the inspection frequency requirements to allow for irregularly scheduled passenger trains. See § 213.119(g)(6)(ii). To further address this concern, FRA added a definition of "unscheduled detour operation" to the list of definitions in § 213.119(j). In response to a comment regarding irregularly scheduled passenger trains, FRA created an exception for tourist and excursion operations in § 213.119(g)(6)(iii). Accordingly, FRA added a definition for Tourist, Scenic, Historic, or Excursion Operations in § 213.119(j).

VII. Section-by-Section Analysis

Section 213.119

FRA is revising § 213.119 by requiring track owners to incorporate into their CWR plans written procedures on the inspection of joints in CWR. This will require most track owners to amend their existing CWR plans. Track owners must also create and maintain records of these inspections. FRA provides details of these new provisions below, which affect § 213.119(g)–(j). Paragraphs (a)–(f) of this section are not changed with this final rule.

Paragraph (g)

In the IFR, this paragraph required track owners to specifically address joints in CWR in their respective CWR plans. This final rule adopts a number of changes to the IFR's provisions. Principal among those changes are the Fracture Report requirement and the increased minimum inspection frequencies. Both of these new requirements will be discussed in further detail below.

This paragraph requires each track owner to include in its CWR plan provisions for the scheduling and conducting of joint inspections. A person who is qualified under § § 213.7 to perform inspections of CWR track should perform the inspections required by this paragraph on foot at the joint.

Paragraph (g)(1)

This paragraph governs periodic inspections of CWR joints. Track owners are required to establish procedures for conducting these inspections. Upon identifying actual conditions of joint failures (*i.e.*, broken or cracked joint bars) or potential conditions of joint failure, track owners must initiate the appropriate corrective action and keep the appropriate records. See §§ 213.119(g)(5) and 213.119(g)(7). In addition, when a track owner discovers CWR joints that are not in compliance with the requirements of Part 213, the track owner must take the appropriate

remedial action required by Part 213. FRA notes that nothing in this paragraph interferes with the track owners' continuing obligation to conduct track inspections under § 213.233.

Periodic inspections, as referenced herein, are on-foot inspections of CWR joints that track owners must conduct on a regular basis. Track owners are required to conduct periodic inspections at the minimum intervals specified in paragraph (g)(6). Track owners, of course, are free to conduct such inspections more frequently than required.

The IFR had also included special inspections in this paragraph. As a result of working group discussions, FRA removed the discussion of special inspections from this paragraph. Although FRA has removed the discussion of special inspections from § 213.119(g), FRA intends to place it elsewhere in § 213.119. FRA will include the discussion of special inspections (e.g., sun kinks, pull aparts, etc.) in the broader review of § 213.119, during Phase II of this project.

Paragraph (g)(2)

This paragraph requires track owners to identify joint bars with visible or otherwise detectable cracks and conduct remedial action pursuant to § 213.121. The IFR had included cracked joint bars under the list of actions items, which this final rule addresses in paragraph (g)(3). Although the working group placed the identification of cracked joint bars under the list of action items as well. FRA decided to address them separately in this final rule. As SAFETEA-LU mandates FRA to promulgate regulations to improve the identification of cracks in joint bars, FRA is distinguishing between joint bars that are already cracked and joint bars that have the potential of cracking in the future. When a track owner discovers a cracked joint bar, he must take the remedial action specified in § 213.121; however, if he discovers a joint bar with actual or potential joint failure, he must take the corrective action specified by his CWR plan. Corrective action will be further addressed in paragraph (g)(5).

Paragraph (g)(3)

This paragraph identifies those items relating to joint inspections that track owners must address in their CWR plans. FRA notes that these items are the minimum that track owners should address. Of course, track owners are free to include additional items in their respective CWR plans. Track inspectors should identify and record these listed items during their inspection of joints

because these items are related to the integrity of the joint, and thus, to the safety of trains that operate over these joints.

The IFR mentioned these items, but it did not specifically state that they were conditions of potential joint failure. FRA notes this list is not all-inclusive. There are other conditions that could indicate failure, and FRA urges track owners to consider all conditions, not just these listed examples.

Loose, bent, or missing joint bolts. The bolts through the joint bars and rail ends are a vital component of the joint. Bolts are meant to keep joint bars firmly supported against the joint. If bolts are missing, loose, or bent, the bolts will fail to keep the joint bars firmly in contact with the rails. The rails are then liable to separate when there is cold weather which causes high-tension forces through the joint. Bolts in joints with bars that are separated from the web of the rail at the bolt holes tend to fail when the bolts bend. When the bolts bend beyond their elastic limit, they lose their design tension, and they are no longer capable of holding the joint bars firmly against the rail. The joint then permits the rails to move in relation to each other under passing wheels, causing increased impact loads on the joint and battering of the adjoining rail ends. This can potentially lead to cracks and eventually fracture of the joint bars or rail ends.

Rail end batter or mismatch that contributes to instability of the joint. Rail end batter refers to the deformation of the running surface at the end of the rail. Rail end batter occurs when wheels pass over a joint and (1) the rails are pulled apart to the extent that the wheels can drop slightly into the gap, or (2) the rail ends are mismatched, or both. Rail ends can be mismatched because joint bolts are loose or because the rails do not match when installed. Excessive rail end batter causes high impact forces on all components of the joint; this can cause the joint bar or the rail to rupture. Also, vibrations at a battered joint can cause loss of consolidation of ballast at the joint, leaving the joint vulnerable to thermal buckling when high compressive forces are generated in the rails.

The IFR included the term "impact loads" as another defect to which rail end batter or mismatch could contribute. The RSAC working group determined that it was redundant to keep the term "impact loads" in the rule text, as it is understood that these conditions can cause extreme impact loads. Since other conditions, such as rail end gap, can have the same effect,

FRA decided to remove the phrase "impact loads" from the final rule.

Evidence of excessive longitudinal rail movement in or near the joint, including, but not limited to, wide rail gap, defective joint bolts, disturbed ballast, surface deviations, gap between tie plates and rail, or displaced rail anchors. Longitudinal rail movement is evidence that the rails might not be securely anchored, that excessive tension forces are developing in the rail when it is cold, or that the joint bolts have lost their clamping properties after being stretched in bending. As wheels pass over and drop into the gap, there are high impact forces on the joint. This can have the same consequences as described above for rail end batter. When a joint is not properly supported, it will deflect vertically (or swing), creating substantially increased stress in the joint bars and rail. Irregular surface deviations develop from a vertically displaced joint, which leads to increased lateral loading and stress at the joint. These tension forces, combined with additional impact loads, have a tendency to cause cracks and to cause rupture of joint bars and rail.

Paragraph (g)(4)

This paragraph requires track owners to include procedures in their CWR plans for the inspection of CWR joints that are imbedded in highway-rail grade crossings or in other structures that prevent a complete inspection of the joint (e.g., pans in fueling facilities, scales, passenger walkways at stations that cover the track, etc.). The plans must also include procedures for the removal of loose material or other temporary material from the joint. FRA is adding this paragraph in response to comments by AAR and to subsequent discussions at RSAC working group meetings, as the IFR did not mention

"imbedded" joints.
Some working group members were concerned that they would be unable to inspect these "imbedded" joints, which are sometimes not fully visible on the sides and bottoms of the joint bars.
Railroads did not want to be penalized for their inability to see, and therefore inspect, these joints. FRA understands that a small percentage of the joints in CWR are "imbedded" joints. FRA acknowledges that railroad engineering personnel have made efforts to remove these imbedded joints where possible, and that, nonetheless, some of these joints remain.

With respect to the procedures for "imbedded" joints, FRA does not expect that railroads will need to disassemble or remove the track structure (e.g., remove pavement or crossing pads) to

conduct an inspection of CWR joints. However, FRA does expect that railroads will make every effort, to the extent practicable, to inspect the joints in these structures.

FRA is aware that CWR joints may sometimes be temporarily buried during maintenance (e.g where ballast is distributed in the middle of the track and along the track) and therefore unavailable for inspection. FRA expects that railroads will take necessary measures to conduct inspections of these CWR joints. FRA expects that railroads will schedule their maintenance so as to allow for a complete inspection of these joints. Where CWR joints are buried (e.g., by ballast), FRA expects that railroad maintenance personnel will wait for the completion of the track surfacing and dressing of the ballast before conducting their joint bar inspections.

Alternatively, railroads may use hand tools or mechanical means to remove ballast from the sides of track joints, so that they can conduct an inspection of

those track joints.

Finally, FRA notes that components of the track (such as crossties, fasteners, tie plates, etc.) are also not fully visible in highway-rail crossings and similar structures. FRA has never specifically exempted these items from the inspections required under Part 213. Instead, FRA expects that the railroads will inspect these areas to the maximum extent possible.

Paragraph (g)(5)

This paragraph requires track owners to specify in their CWR plans the appropriate corrective actions that must be taken when track inspectors find conditions of actual or potential joint failure. The IFR required track owners to specify in their plans the appropriate remedial actions. FRA notes the difference between the terms "remedial actions" and "corrective actions." Remedial actions are those actions which track owners are required to take as a result of requirements of Part 213 to address a non-compliant condition. For example, if a track owner discovers a cracked joint bar, he must replace it. See 49 CFR 213.121. Corrective actions, on the other hand, are those actions which track owners specify in their CWR plans to address conditions of potential joint failure, including, as applicable, repair, restrictions on operations, and additional on-foot repair. To ensure clarity, FRA has defined these terms in § 213.119(j).

Follow-up inspections, as referenced herein, are joint-specific and conducted in response to conditions that a track owner discovers during periodic inspections. Track owners will identify in their CWR plans the conditions that trigger follow-up inspections. For example, where a track owner identifies "replace bolt or inspect weekly" as a corrective action for a bent bolt, if a track inspector discovers a bent bolt during a periodic inspection and does not immediately replace it, then the track inspector will have to conduct follow-up inspections at that joint.

Paragraph (g)(6)

This paragraph requires railroad owners to specify the timing of periodic inspections. As previously mentioned, commenters criticized the IFR's minimum joint inspection frequency. The IFR provided minimum inspection intervals of every 190 days for track classes 4 and higher and every 370 days for class 3 track and class 2 track on which passenger trains operate. To address both public comments and discussions during RSAC working group meetings, FRA increased the minimum number of required joint inspections. The minimum number of required joint inspections are addressed in the table in paragraph (g)(6)(i). As previously discussed, the timing periods in this paragraph represent the minimum of what is expected. Railroad owners are encouraged to implement additional inspection periods as they determine necessary.

The IFR did not allow for any exceptions to the minimum joint inspection frequency. Pursuant to RSAC working group recommendations, in paragraphs (g)(6)(ii)–(iv), FRA is allowing exceptions to the minimum inspection frequencies for unscheduled detours, certain passenger trains, and items that are already inspected on a monthly basis pursuant to 49 CFR 213.235. Each of these exceptions will be discussed in more detail below.

Paragraph (g)(6)(i)

The table contained in this paragraph provides guidance for the minimum required inspection frequency of CWR joints. The working group developed this table to specify inspection frequencies for each class of track. The table contains two footnotes clarifying the inspection frequencies in the table.

The first footnote provides that where a track owner operates both freight and passenger trains over a given segment of track, and there are two different possible inspection interval requirements, the more frequent inspection interval applies. This footnote was developed by the working group to address concerns over track shared by freight and passenger trains. It was anticipated that there could be a

potential conflict with the inspection frequency required for the track if the track owner were to follow the chart for both types of trains. By requiring the more frequent inspections in situations of conflict, this footnote ensures greater safety and protection to track used for mixed purposes.

The second footnote is added in response to concerns over sensitivity of extreme regional weather conditions. This concern was raised in the working group by industry representatives with regard to the difficulty of inspecting CWR joints in northern regions when there is a large amount of snow. The working group acknowledged that there could be times when it would be extremely difficult for a track owner to clear snow and ice from the joint in order for it to be seen for inspection. This footnote allows some flexibility for track owners in such a situation.

Paragraph (g)(6)(ii)

This paragraph allows track owners to operate passenger trains without lowering the track speed for a limited period of time without adhering to the required inspection frequencies for passenger trains pursuant to the table in § 213.119(g)(6)(i). This provision accommodates for unplanned outages, derailments, accidents, and other emergency situations. Track owners are still required to adhere to the applicable freight inspection frequencies. This provision is intended to provide relief to railroads that operate passenger trains and that have a last minute emergency situation. However, if a track owner operates passenger trains at the normal track speed for more than fourteen days, the track must be inspected at the appropriate passenger train levels as detailed in the table at § 213.119(g)(6)(i).

Paragraph (g)(6)(iii)

As defined in § 213.119(j), tourist, scenic, historic, or excursion operations mean railroad operations that carry passengers with the conveyance of the passengers to a particular destination not being the principal purpose. These types of operations typically run less frequently than intercity or commuter passenger trains and occur most often on short-line railroads. If a track owner has an operation of this type on the track and does not want to take that operation into account in determining inspection frequency, the owner must drop the track speed one class with regard to that operation. This way, the track owner will still be in compliance with the inspection frequency mandated by the table in paragraph (g)(6)(i) regardless of the class of freight the owner runs on the track. As the first

footnote to the table in paragraph (g)(6)(i) states, where there are two different possible inspection interval requirements, the more frequent inspection interval applies.

Paragraph (g)(6)(iv)

In this paragraph, FRA exempts the following items from the periodic inspection frequency intervals: switches, turnouts, track crossings, lift rail assemblies or other transition devices on moveable bridges. Track owners already inspect these items on a monthly basis pursuant to 49 CFR 213.235. Rather than apply the additional periodic inspection requirements (i.e, apply the intervals in the table in § 213.119(g)(6)(i) to switches and turnouts, etc), FRA believes it is more appropriate to have track owners conduct their inspections of joints at these locations during their monthly 49 CFR 213.235 inspections.

With respect to turnouts, FRA has historically understood and operated under the assumption that a turnout extends from the point of the switch to the heel of the frog. FRA will continue to operate under that assumption, and accordingly, all joints in turnouts, switches, etc. must be inspected monthly pursuant to 49 CFR 213.235 and records of these inspections must be kept in accordance with 49 CFR 213.241. The final rule does not require that the data elements listed in § 213.119(g)(7)(i) appear on the 49 CFR 213.235 inspection record. The reason for this is that, with more frequent inspections, the track inspector should be better able to manage joint conditions without maintaining detailed records.

All joints that extend beyond the point of a switch or beyond the point of the heel of the frog need not be inspected monthly and instead can be inspected at the frequency intervals identified in § 213.119(g)(6)(i). However, track owners are free to include, in their monthly 49 CFR 213.235 inspection, these joints that are located in track structure that is adjacent to turnouts and switches. If track owners choose to do this, they must clearly define the parameters of that arrangement in their CWR plan. In other words, the track owner should clearly identify the physical limits of the adjacent track structure (e.g., insulated joints up until the signal), and they must clearly identify the inspection interval for joints in that adjacent track (e.g., "inspect all insulated joints to the signal during the monthly 49 CFR 213.235 inspection.")

In addition, as long as track owners clearly define the parameters in the CWR plans, the track owner need not keep two sets of records (i.e., a record from the 49 CFR 213.235 inspection and a record from the § 213.119(g)(6)(i) inspection) for inspections of these "adjacent" joints. For example, if the track owner's CWR plan indicates that joints in crossovers between turnouts must be inspected during the monthly 49 CFR 213.235 inspection, and a railroad track inspector inspects the joints in the crossover during the monthly 49 CFR 213.235 inspection, then it is sufficient for the track owner to create and maintain only the 49 CFR 213.235 record.

FRA believes this option is useful, because it avoids the confusion and duplication that might otherwise result. Without this option, railroad track inspectors would be unsure what to note in their records and which track inspections require which records. In addition, FRA notes that it would be burdensome for track inspectors to inspect those "adjacent" joints monthly and make a note of the inspection in the monthly 49 CFR 213.235 record and also be required to make an additional § 213.119(g)(6)(i) record every couple of months.

Paragraph (g)(7)

This paragraph requires track owners to keep records specific to CWR joint bars. As previously mentioned, the IFR required track owners to maintain and submit to FRA a joint inventory. In response to comments that this requirement was too burdensome, FRA has eliminated the joint inventory requirement and replaced it with the new recordkeeping requirements in this paragraph. FRA has distinguished between two major categories of records: (i) records pertaining to periodic follow-up inspections, and (ii) fracture reports.

Paragraph (g)(7)(i)

This paragraph addresses the inspection reports that have to be created after periodic inspections required by paragraph (g)(6)(i) and follow-up inspections as required by the track owner's CWR plan. The inspection reports of the periodic inspections shall be prepared on the day the inspection is made and are to contain the required information. The periodic inspection record can be combined with other records required pursuant to 49 CFR 213.241.

Paragraph (g)(7)(ii)

This paragraph requires railroads to submit Fracture Reports to the FRA. Railroads should complete Fracture Reports when they find cracks during routine inspections pursuant to §§ 213.119(g), 213.233, or 213.235 on track that is required under

§ 213.119(g)(6)(i) to be inspected. FRA encourages track owners to complete Fracture Reports whenever cracks are discovered, in addition to the required inspections. Track owners, however, do not need to complete a Fracture Report for cracks found in excepted track, Class 1 track, and Class 2 track without passenger service.

The Fracture Reports will enable the FRA to conduct an analysis to further the understanding of the factors causing CWR joint failures. The Fracture Reports are for data collection to expand the agency's expertise concerning joint failures; the FRA does not intend to use the Fracture Reports for enforcement purposes. Likewise, inadvertent errors on the Fracture Report will not be subject to civil penalties. Of course, should FRA encounter repeated failure to prepare and complete such reports, or come upon a persistent and recurring pattern of non-reporting, FRA will take appropriate enforcement action. Track owners are not required to keep the Fracture Reports pursuant to the requirements of 49 CFR 213.241. However, FRA intends for the Fracture Reports to be kept until the track owner has received confirmation that FRA has received the data.

FRA proposes to give the track owner a variety of means of submitting the Fracture Reports. The first option proposed is through an electronic data submission using eXtensible Markup Language (XML) format. FRA plans to have a transaction summary generated that will report the number of records submitted, the number of records accepted to the database, and the number of records rejected due to validation errors, which will be streamed back to the railroad. The second option involves FRA developing a special web page from which railroads can register and receive credentials to access a web data entry form (with validation capabilities) to input individual Fracture Reports. FRA is also considering making available a formatted Excel spreadsheet, into which railroads can input their Fracture Reports. This spreadsheet could be submitted via e-mail, electronic media, or uploaded to the FRA Office of Safety Analysis' Web site. As a final option, FRA plans to make available a printable version of the OMB approved Fracture Report form for download. More specific instructions regarding submission of the Fracture Reports will be made available prior to January 2, 2007, on the Office of Safety Analysis' Web site, http://safetydata.fra.dot.gov.

Paragraph (g)(7)(ii)(A)

This paragraph requires that the Fracture Report be prepared on the day the cracked or broken CWR joint bar is found. The CWR Joint Bar Fracture Report was developed by a Task Force comprised of members of the RSAC working group. The Fracture Report is to be completed whenever a cracked or broken joint bar is discovered during the period inspections required by § 213.119(g)(6)(i), as well as those currently required by 49 CFR 213.233 and 213.235. The fracture reporting requirement was implemented in order to comply, in part, with 49 U.S.C. 20142 as amended by SAFETEA-LU (Pub. L. 109-59, August 10, 2005). The Fracture Reports will address 29 U.S.C. 20142(e)(1)(A)'s instruction to improve the identification of cracks in rail joint bars, § 20142(e)(1)(C)'s mandate to "establish a program to review continuous welded rail joint bar inspection data from railroads and Administration track inspectors periodically," and § 20142(e)(2)'s direction to adjust the frequency of inspection or improve the method of inspection of CWR joint bars as necessary.

The Fracture Reports specifically address the statutory language in three specific ways. First, the report provides information on joint conditions as it addresses most joint attributes known to contribute to premature joint failure such as rail end batter and wide rail end gap. It is believed that the joint inspections and the reports generated when cracked or broken bars are discovered will provide useful data to the railroads regarding joint conditions which lead to bar failure and perhaps lead to early preventive measures when these conditions are discovered before a crack develops. Second, in addition to the joint bar inspection records retained by the railroads, the Fracture Reports provide FRA with additional insight into the effectiveness of the new inspection requirements. Finally, as the inspection frequency was developed based in part on modeling results, the Fracture Report data can be used to evaluate the reasonableness of the model predictions. Certain data elements in the report can be used to estimate joint bar crack growth rates, which is crucial to enabling establishment of proper inspection intervals. Based on the number of Fracture Reports submitted to the FRA and the data they provide, an assessment of the appropriateness of the inspection intervals can be made.

The annual gross million ton information requested in the Fracture

Report should be entered on the report by an appropriate employee of the railroad, since the railroad track inspector may not have ready access to this information (even though the inspector should impliedly be aware of the range within which the value falls as a result of instructions provided concerning the frequency of inspection required).

Paragraph (g)(7)(ii)(B)

This paragraph requires the track owner to submit the information contained in the Fracture Reports twice annually to the FRA. FRA is collecting the Fracture Report data and will analyze it because SAFETEA-LU mandates that FRA create and gather such data. This information will be periodically submitted so that FRA can analyze the conditions that exist where cracked or broken bars were discovered. FRA requested that railroads submit data more frequently than annually because the agency decided that this practice would foster better analysis. The RSAC working group proposed a semi-annual submission of data. The group determined that more frequent submissions would be burdensome on the railroads. After having collected and analyzed a few years of data, FRA will determine whether it is necessary to continue collecting the data and whether to propose that inspection methods and minimum inspection frequencies should be varied.

Paragraph (g)(7)(ii)(C)

This paragraph allows any track owner to petition FRA after February 1, 2010, to conduct a technical conference to assess whether there is a continued need for the collection of Fracture Report data. During the technical conference, the FRA would review the data collected, the analysis done to date, and determine if sufficient data has been collected to enable FRA to make a technically competent determination of CWR joint bar failure causes and contributing conditions.

Paragraph (g)(8)

This paragraph, which maintains a provision from the IFR, permits a track owner to devise an alternate program for the inspection of joints in CWR. A track owner seeking to deviate from the minimum inspection frequencies specified in § 213.119(g)(6) should submit the alternate procedures and a supporting statement of justification to FRA's Associate Administrator for Safety (Associate Administrator). In the supporting statement, the track owner must include data and analysis that establishes to the satisfaction of the

Associate Administrator that the alternate procedures provide at least an equivalent level of safety across the railroad.

If the Associate Administrator approves the alternate procedures, the Associate Administrator will notify the track owner of such approval in writing. In that written notification, the Associate Administrator will specify the date on which the alternate procedures will become effective. After that date, the track owner shall comply with the approved procedures. If the Associate Administrator determines that the alternate procedures do not provide an equivalent level of safety, the Associate Administrator will disapprove the alternate procedures in writing. While a determination is pending with the Associate Administrator, the track owner shall continue to comply with the requirements contained in § 213.119(g)(6).

FRA expects that the track owner will include a risk analysis in its supporting statement of justification for alternate procedures. The risk analysis, whether qualitative or quantitative, should demonstrate that the track owner's program is at least as good (as applied across the entire railroad) as the benchmark level of inspection that FRA mandates in this final rule. The risk analysis would likely address such issues as tonnage, grades, curvature, prior joint failure rates (with respect to frequency), type of traffic, average train speed, and proximity to populations. The track owner might use risk analysis techniques to focus more frequent inspections in areas of greater risk (e.g., approaches to bridges, close proximity to populated areas, heavy tonnage, significant hazardous materials traffic), while utilizing a lesser frequency at other locations and optimizing safety and efficiency.

As mentioned earlier, FRA encourages the use of new technologies for inspecting joint bars and new means of determining information relevant to future joint integrity. FRA's Office of Research and Development has funded research to develop an automated, vehicle-mounted, visual imaging system that can survey joint bars across a territory by recording digital photographic images and generating the data to exception reports. Use of such a system in combination with less frequent walking inspections that employ appropriate attention to joint condition action items might reduce the cost of joint bar inspections while enhancing prevention of joint failure.

The Rail Integrity Task Force 7 has also considered the conditions under which railroads can more effectively detect joint bar cracks. One of the primary objectives of this Task Force is to review industry best practices for the inspection, maintenance, and replacement of rail. The Task Force discussed options for vehicle-mounted non-destructive testing that might, at a future date, provide the ability to detect both internal defects as well as cracks in joint bars. Both FRA and the AAR, through the Transportation Technology Center, Inc., are working on nondestructive testing techniques that may be useful in the future for this purpose. Such systems may have the potential to identify cracks before they become visible to the eye or through visual imaging.

Technology (including frequent automated track geometry surveys) and sound CWR management, including prompt removal of so-called "temporary" joints, may provide the additional information required to verify the ongoing integrity of joints in CWR. The alternative procedures provision of this final rule will allow track owners to take advantage of these new approaches as they become available.

Paragraphs (h)-(j)

With the addition of a new paragraph 213.119(g), FRA has renumbered the old paragraphs (g), (h), and (i). The training requirements previously located in paragraph (g) are now located in paragraph (h). The recordkeeping requirements previously located in paragraph (h) are now located in paragraph (i). The definitions section formerly located in paragraph (i) is now located in paragraph (j).

Paragraph (i)

Paragraph (i) contains the recordkeeping requirements for railroads that have track constructed of CWR. At a minimum, a track owner must keep records of the items listed in paragraph (i)(1) through (i)(3). Paragraph (i)(1) requires a track owner to keep a record of the rail temperature, location and date of CWR installations. Paragraph (i)(2) requires a track owner to keep a record of any CWR installation or maintenance work that does not conform with the written procedures. Paragraph (i)(3) requires a track owner to keep records of information on inspection of rail joints as specified in paragraph (g)(7).

The IFR required the track owner to maintain a joint inventory in this

paragraph. Pursuant to comments received and working group negotiations, FRA has eliminated the joint inventory requirement; alternatively, FRA now requires the track owner to keep records of each periodic and follow-up inspection, as specified in paragraph (g)(7).

Paragraph (j)

This paragraph defines that terms used throughout § 213.119. In this final rule, FRA is adding definitions for "Action Item," "Corrective Actions," "CWR Joint," and "Remedial Actions" to clarify their usage.

Action Items mean the rail joint conditions that track owners identify in their CWR plans pursuant to paragraph (g)(3) which require a corrective action. Section 213.119(g)(3) identifies the broad categories that track owners need to address (e.g., rail end batter or mismatch). Track owners will need to identify specific criteria/thresholds in their respective CWR plans (e.g., how many inches of rail end batter is permissible, at what amount of mismatch must railroads take corrective actions, and what corrective actions must they take). FRA would like to note that these broad categories are only the required minimums. Track owners are free to identify additional categories and set thresholds for these categories.

Corrective Actions mean those actions which track owners specify in their CWR plans to address conditions of actual or potential joint failure, including, as applicable, repair, restrictions on operations, and additional on-foot inspections. This term is used in § 213.119(g)(5).

CWR Joint means (a) any joint directly connected to CWR, and (b) any joint(s) in a segment of rail between CWR strings that are less than 195 feet apart, except joints located on jointed sections on bridges. CWR joint had not been defined in the past, and the RSAC working group defined "CWR joint" to clarify to which joints the new provisions would apply. The working group agreed that the force exerted by CWR extends beyond the joint at the end of the string. This definition is intended to include joints affected by CWR, and joints that are intended to be in CWR but by the addition of temporary joints may not be directly attached to a CWR string, such as an insulated joint plug rail. As many bridges have jointed rail by design, this definition would not include jointed rail joints on bridges.

Remedial Actions are those items which track owners are required to take as a result of requirements in Part 213 to address a non-compliant condition.

VIII. Regulatory Impact

A. Executive Order 12866 and DOT Regulatory Policies and Procedures

This final rule has been evaluated in accordance with existing policies and procedures and determined to be nonsignificant under both Executive Order 128566 and DOT policies and procedures. See 44 FR 11034; February 26, 1979. As part of the regulatory impact analysis, FRA has assessed a quantitative measurement of costs and benefits expected from the implementation of this final rule. The major costs anticipated from implementing this final rule include: the modification of existing CWR plans, conduct of some additional required onfoot inspections, and preparation and submission of Fracture Reports. The major benefit anticipated from implementing this final rule will be a decrease in rule-affected accidents.

This final rule is not anticipated to have very much economic impact, as track owners are already inspecting many of the joints covered by the final rule. This final rule will create annual benefits of \$790,000 for an initial cost of \$58,000 and recurring annual costs of \$85,000 to \$120,000. This final rule is therefore expected to create net societal benefits in every year of its application, including the initial year.

B. Regulatory Flexibility Act

The Regulatory Flexibility Act of 1980 (the Act) (5 U.S.C. 601 et seq.) requires a review of proposed and final rules to assess their impact on small entities. The U.S. Small Business Administration (SBA) stipulates in its "Size Standards" that the largest a railroad business firm that is "for-profit" may be, and still be classified as a "small entity" is 1,500 employees for "Line-Haul Operating Railroads," and 500 employees for "Switching and Terminal Establishments." "Small entity" is defined in the Act as a small business that is not independently owned and operated, and is not dominant in its field of operation. SBA's "size standards" may be altered by federal agencies after consultation with SBA and in conjunction with public comment. Pursuant to that authority, FRA has published a final policy that formally establishes "small entities" as railroads which meet the line haulage revenue requirements of a Class III railroad. The revenue requirements are currently \$20 million or less in annual operating revenue. The \$20 million limit (which is adjusted by applying the railroad revenue deflator adjustment) is based on the Surface Transportation Board's (STB) threshold for a Class III

⁷ See footnote 6 supra.

railroad carrier. FRA uses the same revenue dollar limit to determine whether a railroad or shipper or contractor is a small entity.

Approximately 200 small railroads have CWR and are affected by this final rule. Relatively few Class 3 railroads have CWR. For the minority of Class 3 railroads that have CWR, the portion of their railroad which is CWR is more likely to be small. To the extent they have CWR, Class 3 railroads will be subject to most of the provisions of this rule. Small railroads were consulted

frequently during the RSAC Working Group deliberations. Small railroads were most greatly concerned that the inventory requirements of the IFR was unduly burdensome. FRA has eliminated the requirement for an inventory in this final rule. Small railroads were also concerned about infrequent passenger service and its effect on inspection frequency. By allowing for such a scenario pursuant to § 213.119(g)(6)(ii), FRA has resolved this issue in a manner which will minimize any impact on small railroads.

C. Paperwork Reduction Act

The information collection requirements in this final rule have been submitted for approval to the Office of Management and Budget (OMB) under the Paperwork Reduction Act of 1995, 44 U.S.C. 3501 et seq. The section that contains the new information collection requirements is noted, and the estimated time and cost to fulfill each of the other requirements are as follows:

CFR section	Respondent universe	Total annual responses	Average time per response	Total annual burden hours	Total annual burden cost (\$)
213.4 Excepted Track:					
Designation of track as excepted Notification to FRA about removal of	200 railroads	20 orders	15 minutes 10 minutes	5 3	200 120
excepted track. 213.5 Responsibility of track owners 213.7 Designation of qualified persons	685 railroads	10 notifications	8 hours	80	3,200
to supervise certain renewals and inspect track:	607 railreada	1 500 names	10 minutos	050	10.000
Designations Designations (partially qualified) under paragraph (c) of this section.	687 railroads 687 railroads	1,500 names 250 names	10 minutes 10 minutes	250 42	10,000 1,680
213.17 Waivers213.4 Excepted Track:	687 railroads	6 petitions	24 hours	144	5,760
Designation of track as excepted Notification to FRA about removal of excepted track.	200 railroads	20 orders 15 notifications	15 minutes 10 minutes	5 3	200 120
213.5 Responsibility of track owners213.7 Designation of qualified persons to supervise certain renewals and in-	685 railroads	10 notifications	8 hours	80	3,200
spect track: Designations Designations (partially qualified) under paragraph (c) of this section.	687 railroads	1,500 names 250 names	10 minutes 10 minutes	250 42	10,000 1,680
213.57 Curves, elevation and speed limitations: Request to FRA for approval Notification to FRA with written consent of other affected track owners.	687 railroads 687 railroads	2 requests 2 notifications	40 hours 45 minutes	80 2	3,200 80
Test Plans for Higher Curving Speeds. 213.110 Gage Restraint Measurement Systems (GRMS):	1 railroad	2 test plans	16 hours	32	1,280
Implementing—Notices & Reports	687 railroads	10 notifications + 2 tech rpts.	45 min./4 hours	16	640
GRMS Vehicle Output Reports	687 railroads	50 reports	5 minutes	4	160
GRMS Vehicle Exception Reports GRMS/PTLF—Procedures for Data	687 railroads	50 reports4 proc. Docs	5 minutes 2 hours	4 8	160 320
Integrity. GRMS Training Program/Sessions GRMS Inspection Records	687 railroads	2 prog. + 5 sess 50 records	16 hours 2 hours	112 100	4,480 4,000
(g) Written procedures for CWR (New).	239 railroads/ ASLRRA.	240 modif. proc	3 hrs./1 hr	320	(1)
Fracture Report for Each Broken CWR Joint Bar (New).	239 railroads/ ASLRRA.	12,000 reports	10 minutes	2,000	74,000
Alternate Procedures For Rail Joints (New).	239 railroads	7 letters + 7 proc	30 min. + 953 hrs	6,675	701,035
Training Programs for CWR procedures (New).	239 railroads/ ASLRRA.	240 training Prog	2 hea/12 hrs	490	19,600
Recordkeeping (Previous) Recordkeeping for CWR Rail Joints (New).	239 railroads	2,000 records	10 minutes 2 minutes	333 12,000	13,320 480,000

CFR section	Respondent universe	Total annual responses	Average time per response	Total annual burden hours	Total annual burden cost (\$)
Periodic Records for CWR Rail	239 railroads	480,000 rcds	1 minute	8,000	320,000
Joints (New). 213.233 Track inspection	687 railroads	2,500 inspections 1,542,089 rcds 1 petition 150 designations	1 minute Varies 8 hours 10 minutes	42 1,672,941 8 25	1,554 61,898,817 320 1,000
viduals; general qualifications. Designations (Partially qualified) 213.317 Waivers 213.329 Curves, elevation and speed limitations:	2 railroads 2 railroads	20 designations 1 petition	10 minutes 24 hours	3 24	120 960
FRA approval of qualified equipment and higher curving speeds.	2 railroads	3 notifications	40 hours	120	4,800
Written notifications to FRA with written consent of other affected track owners.	2 railroads	3 notifications	45 minutes	2	80
213.4 Excepted Track: Designation of track as excepted Notification to FRA about removal of	200 railroads	20 orders 15 notifications	15 minutes 10 minutes	5 3	200 120
excepted track. 213.5 Responsibility of track owners 213.7 Designation of qualified persons to supervise certain renewals and inspect track:	685 railroads	10 notifications	8 hours	80	3,200
Designations Designation (partially qualified) under pargraph (c) of this section. 213.333 Automated Vehicle Inspection	687 railroads	1,500 names 250 names	10 minutes 10 minutes	250 42	10,000 1,680
System: Track Geometry Measurement System. Track/Vehicle Performance Meas-	3 railroads	18 reports	20 hours	360	14,400
urement System: Copies of most recent exception printouts.	2 railroads	13 printouts	20 hours	260	10,400
213.341 Initial inspection of new rail and welds:					
Mill inspection	2 railroads 2 railroads 2 railroads	2 reports	8 hours 20 minutes	16 16 42	640 640 1,680
Recordkeeping	2 railroads 1 railroad	150 records 2 reports	10 minutes	25 32	1,000 1,280
Protection Plans213.369 Inspection Records:	1 railroad	2 plans	8 hours	16	640
Record of inspection	2 railroads 2 railroads	500 records	1 minutes 5 minutes	8 4	296 148

^{1\$0 (}Included in RIA).

All estimates include the time for reviewing instructions; searching existing data sources; gathering or maintaining the needed data; and reviewing the information.

Organizations and individuals desiring to submit comments on the collection of information requirements should direct them to the Office of Management and Budget, *Attention:* Desk Officer for the Federal Railroad Administration, Office of Information and Regulatory Affairs, Washington, DC 20503.

OMB is required to make a decision concerning the collection of information requirements contained in this final rule between 30 and 60 days after publication of this document in the **Federal Register**. Therefore, a comment to OMB is best assured of having its full effect if OMB receives it within 30 days of publication.

FRA cannot impose a penalty on persons for violating information collection requirements which do not display a current OMB control number, if required. FRA intends to obtain current OMB control numbers for any new information collection requirements resulting from this rulemaking action prior to the effective date of the final rule. The OMB control number, when assigned, will be announced by separate notice in the **Federal Register**.

D. Environmental Impact

FRA has evaluated these revised track safety regulations in accordance with its procedures for ensuring full consideration of the potential environmental impacts of FRA actions, as required by the National Environmental Policy Act (42 U.S.C. 4321 *et seq.*), other environmental statutes, Executive Orders, and DOT Order 5610.1c. This final rule meets the criteria that establish this as a non-major action for environmental purposes.

E. Federalism Implications

Executive Order 13132, "Federalism" (64 FR 43255, Aug. 10, 1999), requires FRA to develop an accountable process to ensure "meaningful and timely input by State and local officials in the development of regulatory policies that have federalism implications." "Policies that have federalism implications" are defined in the Executive Order to include regulations that have 'substantial direct effects on the States, on the relationship between the national government and the States, or on the distribution of power and responsibilities among the various levels of government." Under Executive Order 13132, the agency may not issue a regulation with Federalism implications that imposes substantial direct compliance costs and that is not required by statute, unless the Federal government provides the funds necessary to pay the direct compliance costs incurred by State and local governments, the agency consults with State and local governments, or the agency consults with State and local government officials early in the process of developing the regulation. Where a regulation has Federalism implications and preempts State law, the agency seeks to consult with State and local officials in the process of developing the regulation.

This final rule has preemptive effect. Subject to a limited exception for essentially local safety hazards, its requirements will establish a uniform Federal safety standard that must be met, and state requirements covering the same subject are displaced, whether those standards are in the form of state statutes, regulations, local ordinances, or other forms of state law, including common law. Section 20106 of Title 49 of the United States Code provides that all regulations prescribed by the Secretary related to railroad safety preempt any State law, regulation, or order covering the same subject matter, except a provision necessary to eliminate or reduce an essentially local safety hazard that is not incompatible with a Federal law, regulations, or order and that does not unreasonably burden interstate commerce. This is consistent with past practice at FRA, and within the Department of Transportation.

FRA has analyzed this final rule in accordance with the principles and criteria contained in Executive Order 13132. This final rule will not have a substantial effect on the States, on the relationship between the national government and the States, or on the distribution of power and responsibilities among various levels of government. This final rule will not have federalism implications that impose any direct compliance costs on State and local governments.

FRA notes that RSAC, which endorsed and recommended the majority of this rule, has as permanent members two organizations representing State and local interests: AASHTO and ASRSM. Both of these State organizations concurred with the RSAC recommendation endorsing this rule. The RSAC regularly provides recommendations to the FRA Administrator for solutions to regulatory issues that reflect significant input from its State members. To date, FRA has received no indication of concerns about the Federalism implications of this rulemaking from these representatives or of any other representatives of State government. Consequently, FRA concludes that this final rule has no federalism implications, other than the preemption of state laws covering the subject matter of this final rule, which occurs by operation of law under 49 U.S.C. 20106 whenever FRA issues a rule or order.

F. Unfunded Mandate Reform Act of 1995

Pursuant to Section 201 of the Unfunded Mandates Reform Act of 1995 (Pub. L. 104-4, 2 U.S.C. 1531), each Federal agency "shall, unless otherwise prohibited by law, assess the effects of Federal regulatory actions on State, local, and tribal governments, and the private sector (other than to the extent that such regulations incorporate requirements specifically set forth in law)." Section 202 of the Act (2 U.S.C. 1532) further requires that "before promulgating any general notice of proposed rulemaking that is likely to result in the promulgation of any rule that includes any Federal mandate that may result in the expenditure by State, local, and tribal governments, in the aggregate, or by the private sector, of \$100,000,000 or more (adjusted annually for inflation) in any 1 year, and before promulgating any final rule for which a general notice of proposed rulemaking was published, the agency shall prepare a written statement" detailing the effect on State, local, and tribal governments and the private sector. This final rule will not result in

the expenditure, in the aggregate, of \$128,100,000 or more in any one year, and thus preparation of such a statement is not required.

G. Energy Impact

Executive Order 13211 requires Federal agencies to prepare a Statement of Energy Effects for any "significant energy action." See 66 FR 28355 (May 22, 2001). Under the Executive Order a "significant energy action" is defined as any action by an agency that promulgates or is expected to lead to the promulgation of a final rule or regulation, including notices of inquiry, advance notices of proposed rulemaking, and notices of proposed rulemaking: (1)(i) that is a significant regulatory action under Executive Order 12866 or any successor order, and (ii) is likely to have a significant adverse effect on the supply, distribution, or use of energy; or (2) that is designated by the Administrator of the Office of Information and Regulatory Affairs as a significant energy action. FRA has evaluated this final rule in accordance with Executive Order 13211. FRA has determined that this final rule is not likely to have a significant adverse effect on the supply, distribution, or use of energy. Consequently, FRA has determined that this final rule is not a "significant energy action" within the meaning of the Executive Order.

H. Privacy Act Statement

Anyone is able to search the electronic form of all comments received into any of DOT's dockets by the name of the individual submitting the comment (or signing the comment, if submitted on behalf of an association, business, labor union, etc). You may review DOT's complete Privacy Act Statement published in the **Federal Register** on April 11, 2000 (Volume 65, Number 70, Pages 19477–78) or see http://dms.dot.gov.

IX. Effective Date

This final rule is effective on October 31, 2006 in order to supersede the IFR's impracticable October 31, 2006 joint inventory compliance date. Accordingly, the good cause exception of the Administrative Procedure Act applies. See 5 U.S.C. 553(d)(3).

List of Subjects in 49 CFR Part 213

Penalties, Railroad safety, Reporting and recordkeeping requirements.

The Rule

■ For the reasons discussed in the preamble, the Federal Railroad Administration amends part 213 of

chapter II, subtitle B of Title 49, Code of Federal Regulations, as follows:

PART 213—[AMENDED]

■ 1. The authority citation for part 213 continues to read as follows:

Authority: 49 U.S.C. 20102–20114 and 20142; 28 U.S.C. 2461, note; and 49 CFR 1.49(m).

■ 2. Section 213.119 is amended by revising the introductory language and paragraphs (g) through (j) to read as follows:

§ 213.119 Continuous welded rail (CWR); general

Each track owner with track constructed of CWR shall have in effect and comply with a plan that contains written procedures which address: the installation, adjustment, maintenance, and inspection of CWR; inspection of CWR joints; and a training program for the application of those procedures. The plan shall be submitted to the Federal Railroad Administration. FRA reviews

each plan for compliance with the following—

* * * * *

- (g) Procedures which prescribe the scheduling and conduct of inspections to detect cracks and other indications of potential failures in CWR joints. On and after January 1, 2007, in formulating the procedures under this paragraph, the track owner shall—
- (1) Address the inspection of joints and the track structure at joints, including, at a minimum, periodic onfoot inspections;
- (2) Identify joint bars with visible or otherwise detectable cracks and conduct remedial action pursuant to § 213.121;
- (3) Specify the conditions of actual or potential joint failure for which personnel must inspect, including, at a minimum, the following items:
 - (i) Loose, bent, or missing joint bolts;
- (ii) Rail end batter or mismatch that contributes to instability of the joint; and
- (iii) Evidence of excessive longitudinal rail movement in or near the joint, including, but not limited to;

wide rail gap, defective joint bolts, disturbed ballast, surface deviations, gap between tie plates and rail, or displaced rail anchors;

- (4) Specify the procedures for the inspection of CWR joints that are imbedded in highway-rail crossings or in other structures that prevent a complete inspection of the joint, including procedures for the removal from the joint of loose material or other temporary material;
- (5) Specify the appropriate corrective actions to be taken when personnel find conditions of actual or potential joint failure, including on-foot follow-up inspections to monitor conditions of potential joint failure in any period prior to completion of repairs.
- (6) Specify the timing of periodic inspections, which shall be based on the configuration and condition of the joint:
- (i) Except as provided in paragraphs (g)(6)(ii) through (iv), track owners must specify that all CWR joints are inspected, at a minimum, in accordance with the intervals identified in the following table—

MINIMUM NUMBER OF INSPECTIONS PER CALENDAR YEAR 1

	Freight trains op tonnage of:	perating over track	Passenger trains operating over track with an annual tonnage of:		
	Less than 40 mgt	40 to 60 mgt	Greater than 60 mgt	Less than 20 mgt	Greater than or equal to 20 mgt
Class 5 & above	2	23	24	23	23
Class 4	2	23	24	2	23
Class 3	1	2	2	2	2
Class 2	0	0	0	1	1
Class 1	0	0	0	0	0
Excepted Track	0	0	0	n/a	n/a

- 4 = Four times per calendar year, with one inspection in each of the following periods: January to March, April to June, July to September, and October to December; and with consecutive inspections separated by at least 60 calendar days.
- 3 = Three times per calendar year, with one inspection in each of the following periods: January to April, May to August, and September to December; and with consecutive inspections separated by at least 90 calendar days
- 2 = Twice per calendar year, with one inspection in each of the following periods: January to June and July to December; and with consecutive inspections separated by at least 120 calendar days.
- 1 = Once per calendar year, with consecutive inspections separated by at least 180 calendar days.

¹Where a track owner operates both freight and passenger trains over a given segment of track, and there are two different possible inspection interval requirements, the more frequent inspection interval applies.

² When extreme weather conditions prevent a track owner from conducting an inspection of a particular territory within the required interval, the track owner may extend the interval by up to 30 calendar days from the last day that the extreme weather condition prevented the required inspection.

- (ii) Consistent with any limitations applied by the track owner, a passenger train conducting an unscheduled detour operation may proceed over track not normally used for passenger operations at a speed not to exceed the maximum authorized speed otherwise allowed, even though CWR joints have not been inspected in accordance with the frequency identified in paragraph (g)(6)(i), provided that:
- (A) All CWR joints have been inspected consistent with requirements for freight service; and
- (B) The unscheduled detour operation lasts no more than 14 consecutive calendar days. In order to continue operations beyond the 14-day period, the track owner must inspect the CWR joints in accordance with the requirements of paragraph (g)(6)(i).

(iii) Tourist, scenic, historic, or excursion operations, if limited to the

maximum authorized speed for passenger trains over the next lower class of track, need not be considered in determining the frequency of inspections under paragraph (g)(6)(i).

(iv) All CWR joints that are located in switches, turnouts, track crossings, lift rail assemblies or other transition devices on moveable bridges must be inspected on foot at least monthly, consistent with the requirements in § 213.235; and all records of those

inspections must be kept in accordance with the requirements in § 213.241. A track owner may include in its § 213.235 inspections, in lieu of the joint inspections required by paragraph (g)(6)(i), CWR joints that are located in track structure that is adjacent to switches and turnouts, provided that the track owner precisely defines the parameters of that arrangement in the CWR plans.

(7) Specify the recordkeeping requirements related to joint bars in CWR, including the following:

(i) The track owner shall keep a record of each periodic and follow-up inspection required to be performed by the track owner's CWR plan, except for those inspections conducted pursuant to § 213.235 for which track owners must maintain records pursuant to § 213.241. The record shall be prepared on the day the inspection is made and signed by the person making the inspection. The record shall include, at a minimum, the following items: the boundaries of the territory inspected; the nature and location of any deviations at the joint from the requirements of this Part or of the track owner's CWR plan, with the location identified with sufficient precision that personnel could return to the joint and identify it without ambiguity; the date of the inspection; the remedial action, corrective action, or both, that has been taken or will be taken; and the name or identification number of the person who made the inspection.

(ii) The track owner shall generate a Fracture Report for every cracked or broken CWR joint bar that the track owner discovers during the course of an inspection conducted pursuant to §§ 213.119(g), 213.233, or 213.235 on track that is required under § 213.119(g)(6)(i) to be inspected.

(A) The Fracture Report shall be prepared on the day the cracked or broken joint bar is discovered. The record shall include, at a minimum: the railroad name; the location of the joint bar as identified by milepost and subdivision; the class of track; annual million gross tons for the previous calendar year; the date of discovery of the crack or break; the rail section; the type of bar (standard, insulated, or compromise); the number of holes in the joint bar; a general description of the location of the crack or break in bar; the visible length of the crack in inches; the gap measurement between rail ends; the amount and length of rail end batter or ramp on each rail end; the amount of tread mismatch; the vertical movement of joint; and in curves or spirals, the amount of gage mismatch and the lateral movement of the joint.

(B) The track owner shall submit the information contained in the Fracture Reports to the FRA Associate Administrator for Safety (Associate Administrator) twice annually, by July 31 for the preceding six-month period from January 1 through June 30 and by January 31 for the preceding six-month period from July 1 through December 31.

(C) After February 1, 2010, any track owner may petition FRA to conduct a technical conference to review the Fracture Report data submitted through December of 2009 and assess whether there is a continued need for the collection of Fracture Report data. The track owner shall submit a written request to the Associate Administrator, requesting the technical conference and explaining the reasons for proposing to discontinue the collection of the data.

(8) In lieu of the requirements for the inspection of rail joints contained in paragraphs (g)(1) through (7) of this section, a track owner may seek approval from FRA to use alternate procedures.

(i) The track owner shall submit the proposed alternate procedures and a supporting statement of justification to the Associate Administrator for Safety (Associate Administrator).

(ii) If the Associate Administrator finds that the proposed alternate procedures provide an equivalent or higher level of safety than the requirements in paragraphs (g)(1) through (g)(7) of this section, the Associate Administrator will approve the alternate procedures by notifying the track owner in writing. The Associate Administrator will specify in the written notification the date on which the procedures will become effective, and after that date, the track owner shall comply with the procedures. If the Associate Administrator determines that the alternate procedures do not provide an equivalent level of safety, the Associate Administrator will disapprove the alternate procedures in writing, and the track owner shall continue to comply with the requirements in paragraphs (g)(1) through (7) of this section.

(iii) While a determination is pending with the Associate Administrator on a request submitted pursuant to paragraph (g)(8) of this section, the track owner shall continue to comply with the requirements contained in paragraphs (g)(1) through (7) of this section.

(h) The track owner shall have in effect a comprehensive training program for the application of these written CWR procedures, with provisions for periodic re-training, for those individuals designated under § 213.7 as qualified to

supervise the installation, adjustment, and maintenance of CWR track and to perform inspections of CWR track.

(i) The track owner shall prescribe and comply with recordkeeping requirements necessary to provide an adequate history of track constructed with CWR. At a minimum, these records must include:

(1) Rail temperature, location and date of CWR installations. This record shall be retained for at least one year:

(2) A record of any CWR installation or maintenance work that does not conform with the written procedures. Such record shall include the location of the rail and be maintained until the CWR is brought into conformance with such procedures;

(3) Information on inspection of rail joints as specified in paragraph (g)(7) of

this part.

(j) As used in this section—
Action Items mean the rail joint
conditions that track owners identify in
their CWR plans pursuant to paragraph
(g)(3) which require the application of a
corrective action.

Adjusting/De-stressing means the procedure by which a rail's temperature is re-adjusted to the desired value. It typically consists of cutting the rail and removing rail anchoring devices, which provides for the necessary expansion and contraction, and then re-assembling the track.

Buckling Incident means the formation of a lateral misalignment sufficient in magnitude to constitute a deviation from the Class 1 requirements specified in § 213.55. These normally occur when rail temperatures are relatively high and are caused by high longitudinal compressive forces.

Continuous Welded Rail (CWR) means rail that has been welded together into

lengths exceeding 400 feet.

Corrective Actions mean those actions which track owners specify in their CWR plans to address conditions of actual or potential joint failure, including, as applicable, repair, restrictions on operations, and additional on-foot inspections.

CWR Joint means (a) any joint directly connected to CWR, and (b) any joint(s) in a segment of rail between CWR strings that are less than 195 feet apart, except joints located on jointed sections on bridges.

Desired Rail Installation Temperature Range means the rail temperature range, within a specific geographical area, at which forces in CWR should not cause a buckling incident in extreme heat, or a pull-apart during extreme cold weather.

Disturbed Track means the disturbance of the roadbed or ballast

section, as a result of track maintenance or any other event, which reduces the lateral or longitudinal resistance of the track, or both.

Mechanical Stabilization means a type of procedure used to restore track resistance to disturbed track following certain maintenance operations. This procedure may incorporate dynamic track stabilizers or ballast consolidators, which are units of work equipment that are used as a substitute for the stabilization action provided by the passage of tonnage trains.

Rail Anchors means those devices which are attached to the rail and bear against the side of the crosstie to control longitudinal rail movement. Certain types of rail fasteners also act as rail anchors and control longitudinal rail movement by exerting a downward clamping force on the upper surface of the rail base.

Rail Temperature means the temperature of the rail, measured with a rail thermometer.

Remedial Actions mean those actions which track owners are required to take as a result of requirements of this part to address a non-compliant condition.

Tight/Kinky Rail means CWR which exhibits minute alignment irregularities which indicate that the rail is in a considerable amount of compression.

Tourist, Scenic, Historic, or Excursion Operations mean railroad operations that carry passengers with the conveyance of the passengers to a particular destination not being the principal purpose.

Train-induced Forces means the vertical, longitudinal, and lateral dynamic forces which are generated during train movement and which can contribute to the buckling potential of the rail.

Track Lateral Resistance means the resistance provided by the rail/crosstie structure against lateral displacement.

Track Longitudinal Resistance means the resistance provided by the rail anchors/rail fasteners and the ballast section to the rail/crosstie structure against longitudinal displacement.

Unscheduled Detour Operation means a short-term, unscheduled operation where a track owner has no more than 14 calendar days' notice that the operation is going to occur.

Issued in Washington, DC, on September 29, 2006.

Joseph H. Boardman,

Federal Railroad Administrator. [FR Doc. 06–8599 Filed 10–10–06; 8:45 am] BILLING CODE 4910–06–P

Proposed Rules

Federal Register

Vol. 71, No. 196

Wednesday, October 11, 2006

This section of the FEDERAL REGISTER contains notices to the public of the proposed issuance of rules and regulations. The purpose of these notices is to give interested persons an opportunity to participate in the rule making prior to the adoption of the final rules.

DEPARTMENT OF AGRICULTURE

Animal and Plant Health Inspection Service

7 CFR Parts 305 and 318 [Docket No. APHIS-2006-0027] RIN 0579-AC15

Interstate Movement of Fruits and Vegetables From Hawaii

AGENCY: Animal and Plant Health Inspection Service, USDA. **ACTION:** Proposed rule.

SUMMARY: We are proposing to remove vapor heat treatment as an approved treatment for bell pepper, eggplant, Italian squash, and tomato moved interstate from Hawaii. This action is necessary because these four commodities can serve as hosts for the solanum fruit fly, which has been detected in Hawaii. Vapor heat treatment is not an approved treatment for that pest. We are also proposing to provide for the use of irradiation as an approved treatment for all Capsicum spp. (peppers) and Curcurbita spp. (squash) moved interstate from Hawaii. This action would relieve unnecessary restrictions on the interstate movement of peppers and squash and allow a greater variety of Capsicum spp. and Curcurbita spp. to be moved interstate from Hawaii.

DATES: We will consider all comments that we receive on or before December 11, 2006.

ADDRESSES: You may submit comments by either of the following methods:

• Federal eRulemaking Portal: Go to http://www.regulations.gov, select "Animal and Plant Health Inspection Service" from the agency drop-down menu, then click "Submit." In the Docket ID column, select APHIS-2006-0027 to submit or view public comments and to view supporting and related materials available electronically. Information on using Regulations.gov, including instructions for accessing documents, submitting

comments, and viewing the docket after the close of the comment period, is available through the site's "User Tips" link.

• Postal Mail/Commercial Delivery: Please send four copies of your comment (an original and three copies) to Docket No. APHIS–2006–0027, Regulatory Analysis and Development, PPD, APHIS, Station 3A–03.8, 4700 River Road Unit 118, Riverdale, MD 20737–1238. Please state that your comment refers to Docket No. APHIS–2006–0027.

Reading Room: You may read any comments that we receive on this docket in our reading room. The reading room is located in room 1141 of the USDA South Building, 14th Street and Independence Avenue, SW., Washington, DC. Normal reading room hours are 8 a.m. to 4:30 p.m., Monday through Friday, except holidays. To be sure someone is there to help you, please call (202) 690–2817 before coming.

Other Information: Additional information about APHIS and its programs is available on the Internet at http://www.aphis.usda.gov.

FOR FURTHER INFORMATION CONTACT: Mr. David B. Lamb, Import Specialist, Commodity Import Analysis and Operations, PPQ, APHIS, 4700 River Road Unit 133, Riverdale, MD 20737–1236; (301) 734–8758.

SUPPLEMENTARY INFORMATION:

Background

The Hawaiian fruits and vegetables regulations, contained in 7 CFR 318.13 through 318.13–17 (referred to below as the regulations), govern, among other things, the interstate movement of fruits and vegetables from Hawaii. Regulation is necessary to prevent the spread of dangerous plant diseases and pests that occur in Hawaii. Some fruits and vegetables regulated under the Hawaiian fruits and vegetables regulations are allowed to move interstate if they are treated with an approved treatment for certain plant pests. Lists of approved treatments for these fruits and vegetables and requirements for conducting these treatments are contained in 7 CFR part 305.

Four of the fruits and vegetables that are allowed to move interstate from Hawaii if treated with an approved treatment are bell pepper, eggplant, Italian squash, and tomato. The

treatments approved for these commodities, as listed in the table in § 305.2(h)(2)(ii), include the vapor heat treatments numbered VH T106-b-1 (for bell peppers), VH T106-b-2 (for eggplant), VH T106–b–5 and VH T106– b-7 (for tomato), and VH T106-b-6 (for Italian squash). Despite their differing numbers, these treatment numbers all refer to the same treatment schedule, which is described in § 305.24(c). These commodities may also be treated with irradiation in accordance with § 305.34, which sets out requirements for the use of irradiation as a treatment for fruits and vegetables moved interstate from Hawaii. Both the vapor heat treatment and the irradiation treatment are approved to neutralize the Mediterranean fruit fly (Ceratitis capitata), the Oriental fruit fly (Bactrocera dorsalis), and the melon fruit fly (Bactrocera curcurbitae). These fruit flies are present in Hawaii, and these four commodities can serve as hosts for them.

An additional species of fruit fly has been detected in Hawaii, the solanum fruit fly (Bactrocera latifrons). 1 Bell peppers, eggplant, Italian squash, and tomatoes can all serve as hosts for this fruit fly. Because limited research has been done regarding the effectiveness of the vapor heat treatment schedule described in § 305.24(c) at neutralizing solanum fruit fly, this treatment is not approved to treat for solanum fruit fly. Therefore, we are proposing to remove vapor heat treatment as an approved treatment for bell pepper, eggplant, tomato, and Italian squash. We would accomplish this by removing the respective vapor heat treatment numbers for these commodities from their entries in § 305.2(h)(2)(ii).

We have also determined that the four fruit flies named above—the Mediterranean fruit fly, the Oriental fruit fly, the melon fruit fly, and the solanum fruit fly—are the only pests for which treatment should be required for the interstate movement of all species of the genus *Capsicum* (peppers), not just the bell pepper, and all species of the genus *Curcurbita* (squash), not just the Italian squash. Like the Mediterranean

¹ See Liquido NJ, Harris EJ, and Dekker LA. "Ecology of *Bactrocera latifrons* (Diptera: Tephritidae) Populations: Host Plants, Natural Enemies, Distribution, and Abundance," *Annals of* the Entomological Society of America, 87(1):71–85,

fruit fly, the Oriental fruit fly, and the melon fruit fly, the solanum fruit fly is a member of the family Tephritidae. We have previously determined that an irradiation dose of 150 gray is sufficient to neutralize all fruit flies of the family Tephritidae. (For more information on this determination, see the final rule published in the **Federal Register** on January 27, 2006 [Docket No. 03–077–2, 71 FR 4451–4464].)

Therefore, we are proposing to add irradiation as an approved treatment for *Capsicum* spp. and Curcurbita spp. moved interstate from Hawaii. To accomplish this change, we would make the following amendments in 7 CFR

parts 305 and 318:

• In paragraph (b) of § 318.13–4b, we would add "Capsicum spp. (peppers)" and "Curcurbita spp. (squash)" to the list of commodities that are eligible for interstate movement from Hawaii if, prior to interstate movement, they are inspected for plant pests by an inspector and are then treated for plant pests under the supervision of an inspector in accordance with a treatment prescribed in 7 CFR part 305.

• In § 318.13–4f, which lists fruits and vegetables from Hawaii for which irradiation in accordance with § 305.34 is an approved treatment, we would add "Capsicum spp. (peppers)" and "Curcurbita spp. (squash)" to that list.

• In § 305.34(a)(1), in the table that lists fruits and vegetables from Hawaii for which irradiation is an approved treatment and the irradiation dose that is approved for each commodity, we would add entries for "Capsicum spp. (peppers)" and "Curcurbita spp. (squash)" and indicate that a dose of 150 gray is approved for their treatment.

• In § 305.2(h)(2)(ii), we would add entries in the table for "Capsicum spp. (peppers)" and "Curcurbita spp. (squash)." These entries would list irradiation as an approved treatment for commodities of these genera. They would also indicate that irradiation would be approved to treat all fruit flies of the family Tephritidae that are associated with these commodities. Indicating that the treatment is approved for all fruit flies of the family Tephritidae would mean that we would not have to update the regulations in the event that we discover that another fruit fly of that family is associated with one of these genera.

In each of these locations, we would remove the separate entries for "bell pepper" and "Italian squash."

Irradiation is already an approved treatment for eggplant and tomato in § 305.2(h)(2)(ii). We would update the entries for these commodities in § 305.2(h)(2)(ii) by indicating that

irradiation would be approved to treat all fruit flies of the family Tephritidae associated with these commodities.

Executive Order 12866 and Regulatory Flexibility Act

This proposed rule has been reviewed under Executive Order 12866. The rule has been determined to be not significant for the purposes of Executive Order 12866 and, therefore, has not been reviewed by the Office of Management and Budget.

This proposed rule is in response to a species of fruit fly that has been detected in Hawaii, the solanum fruit fly (Bactrocera latifrons). Bell peppers, eggplant, Italian squash, and tomatoes are the four commodities for which vapor heat treatment is an approved treatment that are affected by the solanum fruit fly. Because limited research has been done regarding the effectiveness of vapor heat treatment at neutralizing solanum fruit fly, APHIS is proposing to remove vapor heat treatment from the list of approved treatments for bell peppers, eggplant, Italian squash, and tomatoes moved interstate from Hawaii.

While vapor heat treatment would no longer be an approved treatment, irradiation is an approved treatment for the interstate movement of bell peppers and Italian squash from Hawaii. We are proposing to amend the regulations to approve irradiation as a treatment for all species of the genus Capsicum (peppers), not just bell peppers, and all species of the genus Curcurbita (squash), not just the Italian squash. APHIS has previously determined that an irradiation dose of 150 gray is sufficient to neutralize all fruit flies that affect Capsicum spp. and Curcurbita spp. in Hawaii, including the solanum fruit fly.

Approximately \$15.4 million worth of eggplant, green peppers, Italian squash, Oriental squash, and tomatoes were produced in the State of Hawaii in 2004, amounting to 52 million pounds (table 1). However, none of the eggplant, green peppers, Italian squash, or tomatoes produced in Hawaii in 2004 was moved interstate to the U.S. mainland. According to the Hawaii Department of Agriculture, none of these commodities has been moved interstate from Hawaii to the U.S. mainland within the last 2 years.

TABLE 1.—PRODUCTION AND VALUE OF HAWAIIAN EGGPLANT, PEPPERS, SQUASH, AND TOMATOES, 2004

Commodity	Quantity (lb)	Value	
Eggplant Peppers (Green) Squash (Italian,	1,050,000 3,200,000	\$809,000 2,208,000	
Oriental) Tomatoes	2,350,000 16,800,000	1,263,000 11,088,000	
Total	52,200,000	15,368,000	

Source: USDA, Hawaii Agricultural Statistics, 2006.

The proposed rule would continue to give Hawaiian entities the opportunity to move Capsicum spp. and Curcurbita spp. interstate. While vapor heat treatment would no longer be an approved treatment for bell peppers and Italian squash, irradiation would become an approved treatment for all Capsicum spp. and Curcurbita spp. Irradiation would continue to be an approved treatment for eggplant and tomatoes as well.

Accordingly, we do not expect that this rule would have a significant economic impact on a substantial number of small entities. This proposed rule is necessary to safeguard the U.S. mainland from the introduction of solanum fruit fly (*Bactrocera latifrons*). Because in recent years eggplant, peppers, squash, and tomatoes have not been moved interstate from Hawaii, the rule is not expected to have a significant impact on small or large entities.

Under these circumstances, the Administrator of the Animal and Plant Health Inspection Service has determined that this action would not have a significant economic impact on a substantial number of small entities.

Executive Order 12372

This program/activity is listed in the Catalog of Federal Domestic Assistance under No. 10.025 and is subject to Executive Order 12372, which requires intergovernmental consultation with State and local officials. (See 7 CFR part 3015, subpart V.)

Executive Order 12988

This proposed rule has been reviewed under Executive Order 12988, Civil Justice Reform. If this proposed rule is adopted: (1) All State and local laws and regulations that are inconsistent with this rule will be preempted; (2) no retroactive effect will be given to this rule; and (3) administrative proceedings will not be required before parties may file suit in court challenging this rule.

Paperwork Reduction Act

This proposed rule contains no new information collection or recordkeeping requirements under the Paperwork Reduction Act of 1995 (44 U.S.C. 3501 *et seq.*).

Lists of Subjects

7 CFR Part 305

Irradiation, Phytosanitary treatment, Plant diseases and pests, Quarantine, Reporting and recordkeeping requirements.

7 CFR Part 318

Cotton, Cottonseeds, Fruits, Guam, Hawaii, Plant diseases and pests, Puerto Rico, Quarantine, Transportation, Vegetables, Virgin Islands.

Accordingly, we propose to amend 7 CFR parts 305 and 318 to read as follows:

PART 305—PHYTOSANITARY TREATMENTS

1. The authority citation for part 305 would continue to read as follows:

Authority: 7 U.S.C. 7701–7772 and 7781–7786; 21 U.S.C. 136 and 136a; 7 CFR 2.22, 2.80, and 371.3.

2. In § 305.2, in the table in paragraph (h)(2)(ii), the entry for Hawaii would be amended as follows:

- a. By removing the entries for "Bell pepper" and "Squash, Italian".
- b. By adding, in alphabetical order, entries for "Capsicum spp. (peppers)" and "Curcurbita spp. (squash)" to read as set forth below.
- c. By revising the entries for "Eggplant" and "Tomato" to read as set forth below.

§ 305.2 Approved treatments.

- (h) * * *
- (2) * * *
- (ii) * * *

Location	С	ommodity		Pest		Treatmen schedule
* ıwaii.	*	*	*	*	*	*
*	* Capsicum s	* spp. (peppers)	* Fruit flies of the fam	* nily Tephritidae	*	* IR.
*	*	*	*	*	*	*
*	Curcurbita :	spp. (squash)	Fruit flies of the fam	ily Tephritidae .	*	IR.
*	Eggplant	*	Fruit flies of the fam	nily Tephritidae	*	IR.
	Tomato					IR. MB T101-c-
*	*	*	*	*	*	*

- * * * * *
- 3. In § 305.34, in paragraph (a)(1), the table would be amended as follows:
- a. By removing the entries for "Bell pepper" and "Italian squash".
- b. By adding, in alphabetical order, entries for "Capsicum spp. (peppers)" and "Curcurbita spp. (squash)" to read as set forth below.

§ 305.34 Irradiation treatment of certain fruits and vegetables from Hawaii, Puerto Rico, and the U.S. Virgin Islands.

- (a) * * *
- (1) * * *

IRRADIATION FOR PLANT PESTS IN HAWAIIAN FRUITS AND VEGETABLES

	Commodity					
* Can		*	* Jennere)	*	* 150	
о <i>ар</i> *		*	*	*	*	
Cure *	curbita	spp. (s *	squash) *	*	50 *	
*	*	*	*	*		

PART 318—HAWAIIAN AND TERRITORIAL QUARANTINE NOTICES

4. The authority citation for part 318 would continue to read as follows:

Authority: 7 U.S.C. 7701–7772 and 7781–7786; 7 CFR 2.22, 2.80, and 371.3.

§318.13-4b [Amended]

- 5. In § 318.13–4b, paragraph (b) would be amended as follows:
- a. By removing the words "bell peppers" and adding the words "Capsicum spp. (peppers)" in their place.
- b. By adding the words "Curcurbita spp. (squash)," after the word "carambolas,".
- c. By removing the words "Italian squash,".

§318.13-4f [Amended]

- 6. Section 318.13–4f would be amended as follows:
- a. By removing the words "bell pepper" and adding the words "Capsicum spp. (peppers)" in their place.
- b. By adding the words "Curcurbita spp. (squash)," after the word "carambola,".

c. By removing the words "Italian squash,".

Done in Washington, DC, this 4th day of October 2006.

Kevin Shea,

Acting Administrator, Animal and Plant Health Inspection Service.

[FR Doc. E6–16754 Filed 10–10–06; 8:45 am]
BILLING CODE 3410–34-P

DEPARTMENT OF THE TREASURY

Internal Revenue Service

26 CFR Part 300

[REG-148576-05]

RIN 1545-BF69

User Fees for Processing Installment Agreements; Hearing Cancellation

AGENCY: Internal Revenue Service, Treasury.

ACTION: Cancellation of notice of public hearing on proposed rulemaking.

SUMMARY: This document cancels a public hearing on proposed regulations under section 300 of the Internal

Revenue Code relating to user fees for installment agreements.

DATES: The public hearing, originally scheduled for October 17, 2006, at 10 a.m. is cancelled.

FOR FURTHER INFORMATION CONTACT:

Kelly Banks of the Publications and Regulations Branch, Legal Processing Division, Associate Chief Counsel (Procedure and Administration), at (202) 622–0392 (not a toll-free number).

SUPPLEMENTARY INFORMATION: A notice of proposed rulemaking and notice of public hearing that appeared in the Federal Register on Wednesday, August 30, 2006 (71 FR 51538), announced that a public hearing was scheduled for October 17, 2006, at 10 a.m. in the Auditorium, Internal Revenue Service, New Carrollton Building, 5000 Ellin Road, Lanham, MD 20706. The subject of the public hearing is under section 300 of the Internal Revenue Code.

The public comment period for these regulations expired on September 29, 2006. The notice of proposed rulemaking and notice of public hearing instructed those interested in testifying at the public hearing to submit a request to speak and an outline of the topics to be addressed. As of Monday, October 2, 2006, no one has requested to speak. Therefore, the public hearing scheduled for October 17, 2006, is cancelled.

Guy R. Traynor,

Chief, Publications and Regulations Branch, Legal Processing Division, Associate Chief Counsel (Procedure and Administration). [FR Doc. E6–16718 Filed 10–10–06; 8:45 am] BILLING CODE 4830–01–P

DEPARTMENT OF THE INTERIOR

National Park Service

36 CFR Chapter I

Negotiated Rulemaking Advisory Committee for Dog Management at Golden Gate National Recreation Area

ACTION: Notice of meeting.

SUMMARY: Notice is hereby given, in accordance with the Federal Advisory Committee Act (Pub. L. 92–463, 86 Stat. 770, 5 U.S.C. App 1, section 10), of the sixth meeting of the Negotiated Rulemaking Advisory Committee for Dog Management at Golden Gate National Recreation Area (GGNRA).

DATES: The Committee will meet on Wednesday, November 8, 2006 in the Conference Center at Fort Mason Center in San Francisco. The meeting will begin at 3 p.m., and is open to the public.

Although the Committee may modify its agenda during the course of its work, the proposed agenda for this meeting is as follows: Agenda review, review and adopt September 21, 2006 meeting summary, update on activities since last meeting, NEPA update, report on and discussion of technical subcommittee meeting #3, next steps, public comment.

The Committee provides for a public comment period during the meeting; written comments may also be sent to: Superintendent, GGNRA, Ft. Mason, Bldg. 201, San Francisco, CA 94123, Attn: Negotiated Rulemaking.

To request a sign language interpreter, please call the Park TDD line (415) 556–2766, at least a week in advance of the meeting. Please note that Federal regulations prohibit pets in public buildings, with the exception of service animals.

FOR FURTHER INFORMATION CONTACT: Go to the *http://*

www.parkplanning.nps.gov/goga and select Negotiated Rulemaking for Dog Management at GGNRA or call the project information line at 415–561– 4728.

SUPPLEMENTARY INFORMATION: The Committee was established pursuant to the Negotiated Rulemaking Act of 1990 (5 U.S.C. 561–570) to consider developing a special regulation for dogwalking at GGNRA.

Dated: October 3, 2006.

Bernard C. Fagan,

Acting Chief, Office of Policy.
[FR Doc. E6–16745 Filed 10–10–06; 8:45 am]
BILLING CODE 4312-FN-P

ENVIRONMENTAL PROTECTION AGENCY

40 CFR Part 52

[EPA-R04-OAR-2005-AL-0004-200619b; FRL-8229-7]

Approval and Promulgation of Implementation Plans; Alabama: Volatile Organic Compounds

AGENCY: Environmental Protection Agency (EPA).

ACTION: Proposed rule.

SUMMARY: EPA is proposing approval of revisions to the Alabama State Implementation Plan (SIP), submitted by the Alabama Department of Environmental Management (ADEM) on November 18, 2005. The revisions include modifications to Alabama's Volatile Organic Compounds (VOCs) rules found at Alabama Administrative

Code (AAC) Chapter 335-3-1. ADEM is

taking an action that was similarly

approved by EPA on November 29, 2004 (69 FR 69298). The revision adds several compounds to the list of compounds excluded from the definition of VOC on the basis that they make a negligible contribution to ozone formation. This proposed action is being taken pursuant to section 110 of the Clean Air Act (CAA).

DATES: Written comments must be received on or before November 13, 2006

ADDRESSES: Comments may be submitted by mail to: Stacy DiFrank, Regulatory Development Section, Air Planning Branch, Air, Pesticides and Toxics Management Division, U.S. Environmental Protection Agency, Region 4, 61 Forsyth Street, SW., Atlanta, GA 30303–8960. Comments may also be submitted electronically, or through hand delivery/courier. Please follow the detailed instructions described in the direct final rule, ADDRESSES section which is published in the Rules Section of this Federal Register.

FOR FURTHER INFORMATION CONTACT:

Stacy DiFrank, Regulatory Development Section, Air Planning Branch, Air, Pesticides and Toxics Management Division, U.S. Environmental Protection Agency, Region 4, 61 Forsyth Street, SW., Atlanta, GA 30303–8960. The telephone number is (404) 562–9042. Ms. DiFrank can also be reached via electronic mail at difrank.stacy@epa.gov.

SUPPLEMENTARY INFORMATION: For additional information, see the direct final rule which is published in the Rules Section of this **Federal Register**.

Dated: September 18, 2006.

A. Stanley Meiburg,

Acting Regional Administrator, Region 4. [FR Doc. E6–16810 Filed 10–10–06; 8:45 am] BILLING CODE 6560–50–P

ENVIRONMENTAL PROTECTION AGENCY

40 CFR Part 174

[EPA-HQ-OPP-2006-0642; FRL-8095-2]

Plant-Incorporated Protectants Derived from a Plant Viral Coat Protein Gene (PVCP-PIPs); Notification to the Secretary of Agriculture

AGENCY: Environmental Protection Agency (EPA).

ACTION: Notification to the Secretary of Agriculture.

SUMMARY: This document notifies the public that the Administrator of EPA

has forwarded to the Secretary of Agriculture a draft proposed rule as required by section 25(a) of the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA). As described in the Agency's semi-annual Regulatory Agenda, the draft proposed rule would add certain plant-incorporated protectants based on viral coat protein genes (PVCP-PIPs) to its plantincorporated protectants exemptions at 40 CFR part 174. Substances that plants produce for protection against pests and the genetic material necessary to produce them are pesticides under FIFRA if humans intend these substances to "prevent, repel or mitigate any pest."

ADDRESSES: EPA has established a docket for this action under docket identification (ID) number EPA–HQ– OPP-2006-0642. All documents in the docket are listed on the regulations.gov web site. Although listed in the index, some information is not publicly available, e.g., Confidential Business Information (CBI) or other information whose disclosure is restricted by statute. Certain other material, such as copyrighted material, is not placed on the Internet and will be publicly available only in hard copy form. Publicly available docket materials are available either in the electronic docket at http://www.regulations.gov, or, if only available in hard copy, at the Office of Pesticide Programs (OPP) Regulatory Public Docket in Rm. S-4400, One Potomac Yard (South Building), 2777 S. Crystal Drive, Arlington, VA. The hours of operation of this Docket Facility are from 8:30 a.m. to 4 p.m., Monday through Friday, excluding legal holidays. The Docket telephone number is (703) 305-5805.

FOR FURTHER INFORMATION CONTACT: Tom McClintock, Hazard Assessment Coordination and Policy Division (7202M), Office of Science Coordination and Policy, Environmental Protection Agency, 1200 Pennsylvania Ave., NW., Washington DC 20460-0001; telephone number: 202-564-8488; e-mail address: mcclintock.tom@epa.gov.

SUPPLEMENTARY INFORMATION:

I. General Information

A. Does this Action Apply to Me?

This action is directed to the public in general. It simply announces the submission of a draft proposed rule to the U.S. Department of Agriculture (USDA) and does not otherwise affect any specific entities. This action may, however, be of particular interest to people or companies involved with agricultural biotechnology that may develop and market plant-incorporated protectants. Since other entities may also be interested, the Agency has not attempted to describe all the specific entities that may be interested in this action. If you have any questions regarding this action, consult the person listed under FOR FURTHER INFORMATION CONTACT.

B. How Can I Access Electronic Copies of this Document and Other Related Information?

In addition to using regulations.gov, you may access this **Federal Register** document electronically through the EPA Internet under the "**Federal Register**" listings at http://www.epa.gov/fedrgstr.

II. What Action is EPA Taking?

Section 25(a)(2) of FIFRA requires the Administrator to provide the Secretary of Agriculture with a copy of any proposed regulation at least 60 days before signing it for publication in the Federal Register. The draft proposed rule is not available to the public until after it has been signed by EPA. If the Secretary comments in writing regarding the draft proposed rule within 30 days after receiving it, the Administrator shall include the comments of the Secretary and the Administrator's response to those comments in the proposed rule when published in the Federal Register. If the Secretary does not comment in writing within 30 days after receiving the draft proposed rule, the Administrator may sign the proposed regulation for publication in the Federal Register anytime after the 30-day period not withstanding the foregoing 60-day time requirement.

III. Do Any Statutory and Executive Order Reviews Apply to this Notification?

No. This document is not a proposed rule, it is merely a notification of submission to the Secretary of Agriculture. As such, none of the regulatory assessment requirements apply to this document.

List of Subjects in Part 174

Environmental protection, Administrative practice and procedures, Pesticides and pests.

Dated: October 2, 2006.

Clifford J. Gabriel

Director, Office of Science Coordination and Policy.

[FR Doc. E6–16751 Filed 10–10–06; 8:45 am] BILLING CODE 6560–50–S

DEPARTMENT OF TRANSPORTATION

Federal Railroad Administration

49 CFR Part 211

[Docket No. 2006–24141, Notice No. 1] RIN 2130–AB77

Rules of Practice: Proposed Direct Final Rulemaking Procedures

AGENCY: Federal Railroad Administration (FRA), DOT.

ACTION: Notice of proposed rulemaking.

SUMMARY: FRA is proposing direct final rulemaking procedures to expedite the processing of noncontroversial regulatory changes to which no adverse comment is anticipated. Under the proposed procedures, FRA could choose to make routine or otherwise noncontroversial changes in a direct final rule which would become effective a specified number of days after its publication in the Federal Register, provided that no written adverse comment, or no request for a public hearing, was received before the rule's scheduled effective date. FRA would not use direct final rulemaking for complex or controversial matters. **DATES:** Written comments must be

received by December 11, 2006.
Comments received after that date will be considered to the extent possible without incurring additional expense or delay.

FŘA anticipates being able to resolve this rulemaking without a public, oral hearing. However, if FRA receives a specific request for a public, oral hearing prior to November 13, 2006, one will be scheduled and FRA will publish a supplemental notice in the **Federal Register** to inform interested parties of the date, time, and location of any such hearing.

ADDRESSES: *Comments:* Comments related to Docket No. 2006–24141, may be submitted by any of the following methods:

- Web site: http://dms.dot.gov. Follow the instructions for submitting comments on the DOT electronic docket site.
 - Fax: 202-493-2251.
- *Mail:* Docket Management Facility, U.S. Department of Transportation, 400 Seventh Street, SW., Nassif Building, Room PL–401, Washington, DC 20590–001.
- Hand Delivery: Room PL-401 on the plaza level of the Nassif Building, 400 Seventh Street, SW., Washington, DC between 9 a.m. and 5 p.m. Monday through Friday, except Federal holidays.
- Federal eRulemaking Portal: Go to http://www.regulations.gov. Follow the

online instructions for submitting comments.

Instructions: All submissions must include the agency name and docket number or Regulatory Identification Number (RIN) for this rulemaking. Note that all comments received will be posted without change to http://dms.dot.gov including any personal information. Please see the Privacy Act heading in the "SUPPLEMENTARY INFORMATION" section of this document for Privacy Act information related to any submitted comments or materials.

Docket: For access to the docket to read background documents or comments received, go to http://dms.dot.gov at any time or to PL—401 on the plaza level of the Nassif Building, 400 Seventh Street, SW., Washington, DC between 9 a.m. and 5 p.m. Monday through Friday, except Federal Holidays.

FOR FURTHER INFORMATION CONTACT:

Patricia V. Sun, Trial Attorney, Mail Stop 10, Federal Railroad Administration, 1120 Vermont Avenue, NW., Washington, DC 20005 [telephone: (202) 493–6038].

SUPPLEMENTARY INFORMATION:

Background

On January 30, 2004, the Office of the Secretary of Transportation (OST) published a final rule adopting direct final rulemaking procedures intended to expedite the rulemaking process for noncontroversial rules. The rule published by OST applies only to regulations issued by the Office of the Secretary of Transportation and does not apply to the various operating administrations within DOT. By using direct final rulemaking, OST can reduce the time necessary to develop, review, clear and publish a rule to which no adverse public comment is anticipated by eliminating the need to publish separate proposed and final rules (69 FR 4455). In this notice, FRA proposes to amend its Rules of Practice (49 CFR Part 211) to adopt similar direct final rulemaking procedures to promulgate specified categories of rules it does not expect to be controversial and that are unlikely to result in adverse comments.

Many agencies have adopted direct final rulemaking procedures, including the Nuclear Regulatory Commission, the Food and Drug Administration, the Environmental Protection Agency, and the Department of Agriculture. For example, in 2003, the Department of Energy issued a direct final rule amending its test procedures for measuring the energy consumption of clothes washers (October 31, 2003, 68 FR 62197), and last year, the

Occupational Safety and Health Administration issued a direct final rule to reinstate its original roll-over protective structures standards for the construction and agriculture industries (December 29, 2005, 70 FR 76795).

The Direct Final Rulemaking Process

As stated above, the use of direct final rulemaking would allow FRA to eliminate an unnecessary second round of internal review and clearance, as well as public review, for noncontroversial proposed rules. FRA would employ the direct final rulemaking process for a particular rule if, for example, similar rules had been previously proposed and published without receiving adverse comment. FRA believes that direct final rulemaking would be appropriate for noncontroversial rules, including such rules that:

- (1) Affect internal procedures of the Federal Railroad Administration, such as filing requirements and rules governing inspection and copying of documents,
- (2) are nonsubstantive clarifications or corrections to existing rules;
 - (3) update existing forms; and
- (4) make minor changes in the substantive rules regarding statistics and reporting requirements, such as a lessening of the reporting frequency (for example, from monthly to quarterly) or elimination of a type of data that no longer needs to be collected by FRA.

After determining that a rule would be appropriate for direct final rulemaking, FRA would publish the rule in the final rule section of the Federal Register. In each direct final rule document, the "action" would be captioned "direct final rule" and would include language in the summary and preamble informing interested parties of their right to comment and their right to request an oral hearing, if such opportunity is required. The direct final rule notice would advise the public that FRA anticipates no adverse comment to the rule and that the rule would become effective a specified number of days after the date of publication unless FRA received written adverse comment or a request for an oral hearing (if such opportunity is required by statute) within the specified comment period. An "adverse" comment would be one that is critical of the rule, one that suggests that the rule should not be adopted, or one that suggests that a change should be made in the rule. FRA would not consider a comment submitted in support of the rule, or a request for clarification of the rule, to be adverse.

FRA would provide sufficient comment time to allow interested

parties to determine whether they wish or need to submit adverse comments, and would answer any requests for clarification while the comment period was running. If FRA received no written adverse comment or request for oral hearing within the comment period, FRA would publish another notice in the Federal Register indicating that no adverse comment had been received and confirming that the rule would become effective on the specified date.

If, however, FRA received the timely submission of an adverse comment or notice of intent to submit adverse comment, FRA would stop the direct final rulemaking process and withdraw the direct final rule by publishing a notice in the final rule section of the **Federal Register**. If FRA decided that the rulemaking remained necessary, FRA would recommence the rulemaking under its standard rulemaking procedures by publishing a notice proposing the rule in the proposed rules section of the Federal Register. The proposed rule would provide for a new public comment period.

FRA believes that the additional time and effort required to withdraw the direct final rule and issue a Notice of Proposed Rulemaking would be an incentive for FRA to act conservatively in evaluating whether to use the direct final rulemaking process for a particular rule. As stated above, FRA would not use direct final rulemaking for complex or potentially controversial matters.

Regulatory Analyses and Notices

FRA has determined that this action is not a significant regulatory action under Executive Order 12866 or under the Department's Regulatory Policies and Procedures. There are no costs associated with the proposed rule. There would be some cost savings in Federal Register publication costs and efficiencies for the public and FRA personnel in eliminating duplicative reviews. FRA certifies that this rule, if adopted, would not have a significant impact on a substantial number of small entities. FRA does not believe that there would be sufficient federalism implications to warrant the preparation of a federalism assessment.

Paperwork Reduction Act

The proposed rule contains no information collection requirements under the Paperwork Reduction Act of 1995 (44 U.S.C. 3501–3520).

Unfunded Mandates Reform Act of 1995

FRA has determined that the requirements of Title II of the Unfunded

Mandates Reform Act of 1995 do not apply to this rulemaking.

List of Subjects in 49 CFR Part 211

Administrative practice and procedure, Rules of practice.

In consideration of the foregoing, FRA proposes to amend 49 CFR part 211 as follows:

PART 211—[AMENDED]

1. The authority citation for part 211 would continue to read as follows:

Authority: 49 U.S.C. 20103, 20107, 20114, 20306, 20502-20504, and 49 CFR 1.49.

In part 211, Subpart B— Rulemaking Procedures, would be amended by adding a new § 211.33, Procedures for direct final rulemaking, as follows:

§211.33 Procedures for direct final rulemaking.

- (a) Rules that the Administrator judges to be noncontroversial and unlikely to result in adverse public comment may be published in the final rule section of the Federal Register as direct final rules. These include noncontroversial rules that:
- (1) Affect internal procedures of the Federal Railroad Administration, such as filing requirements and rules governing inspection and copying of documents.
- (2) Are nonsubstantive clarifications or corrections to existing rules,
 - (3) Update existing forms, and

(4) Make minor changes in the substantive rules regarding statistics and

reporting requirements.

- (b) The **Federal Register** document will state that any adverse comment or notice of intent to submit adverse comment must be received in writing by the Federal Railroad Administration within the specified time after the date of publication and that, if no written adverse comment or request for oral hearing (if such opportunity is required by statute) is received, the rule will become effective a specified number of days after the date of publication.
- (c) If no adverse comment or request for oral hearing is received by the Federal Railroad Administration within the specified time of publication in the Federal Register, the Federal Railroad Administration will publish a notice in the **Federal Register** indicating that no adverse comment was received and confirming that the rule will become effective on the date that was indicated in the direct final rule.
- (d) If the Federal Railroad Administration receives any written adverse comment or request for oral hearing within the specified time of

publication in the Federal Register, a notice withdrawing the direct final rule will be published in the final rule section of the Federal Register and, if the Federal Railroad Administration decides a rulemaking is warranted, a notice of proposed rulemaking will be published in the proposed rule section of the Federal Register.

(e) An "adverse" comment for the purpose of this subpart means any comment that the Federal Railroad Administration determines is critical of the rule, suggests that the rule should not be adopted, or suggests a change that should be made in the rule.

Issued in Washington, DC, on September 29, 2006.

Joseph H. Boardman,

Administrator.

[FR Doc. E6-16825 Filed 10-10-06; 8:45 am] BILLING CODE 4910-06-P

DEPARTMENT OF THE INTERIOR

Fish and Wildlife Service

50 CFR Part 17

RIN 1018-AV01

Endangered and Threatened Wildlife and Plants; Withdrawal of the **Proposed Rule To List the Cow Head** Tui Chub (Gila bicolor vaccaceps) as **Endangered**

AGENCY: Fish and Wildlife Service, Interior.

ACTION: Proposed rule; withdrawal.

SUMMARY: We, the Fish and Wildlife Service (Service), have determined that the proposed listing of the Cow Head tui chub (Gila bicolor vaccaceps) as an endangered species under the Endangered Species Act of 1973, as amended (Act), is not warranted, and we therefore withdraw our March 30, 1998, proposed rule (63 FR 15152-15158). We have made this determination because the threats to the species identified in the March 30, 1998, proposed rule are not significant, and currently available data do not indicate that the threats to the species, as analyzed under the five listing factors described in section 4(a)(1) of the Act, are likely to endanger the species in the foreseeable future throughout all or a significant portion of its range.

ADDRESSES: Supporting documentation for this action is available for public inspection, by appointment, during normal business hours at the U.S. Fish and Wildlife Service, Klamath Falls Fish and Wildlife Office, 6610 Washburn Way, Klamath Falls, OR 97603.

FOR FURTHER INFORMATION CONTACT: Curt Mullis, Field Supervisor, at the above address (telephone, 541-885-8481, or facsimile, 541-885-7837)

SUPPLEMENTARY INFORMATION:

Background

The Cow Head tui chub, Gila (Siphateles) bicolor vaccaceps, is a small fish in the minnow family Cyprinidae. It was first recognized as a distinct subspecies in 1939, and was later named and formally described in 1980 (Bills and Bond 1980, pp. 320-322). Although it was referred to as the Cowhead Lake tui chub in the March 30, 1998, proposed listing (63 FR 15152), we now conform to the accepted geographical spelling of Cow Head as two words and use the shorter name, Cow Head tui chub, for reasons discussed in Reid (2006b, pp. 1-6). It is distinguished from other tui chubs primarily by the number and form of its gill rakers (bony projections in the gills), as well as other characteristics, such as fin and scale counts, and the shape of its fins and head (Bills and Bond 1980, pp. 320-322). Like other tui chubs, its coloration is generally silver, except for a dark lateral stripe and dark speckles scattered on the cheek, operculum (area behind the eye), and lower body.

The known range of the Cow Head tui chub is limited to the Cow Head Basin in extreme northeastern California and northwestern Nevada (Reid 2006a, pp. 15-19). The Cow Head Basin is relatively small (10,400 hectares (ha); 25,700 acres) and drains north into the Warner Basin of Oregon through Cow Head Slough. Historically, the basin contained a shallow, marshy lake when sufficient water was available. Cow Head Lake was altered in the 1930s, following the extended drought of the 1920–30s, to allow drainage of the lake in the spring and to facilitate agricultural uses of the lakebed.

Populations of Cow Head tui chub occupy all principal low gradient streams in the basin (Cow Head Slough and Barrel, West Barrel and Keno creeks) and a relatively large population still exists on the lakebed, where it is restricted to permanent water in drainage channels when the lake is dry (Scoppettone and Rissler 2006, pp. 108-109). Stream populations of Cow Head tui chub annually expand throughout most of the low gradient stream habitat in the basin during wet periods and contract as the summer progresses and streams dry up. Connectivity between stream populations of Cow Head tui chub is generally unobstructed during springtime flows, but during summer and fall, all populations are restricted to isolated perennial pools (Reid 2006a, p.19).

Landownership in the Cow Head Basin is both private and Federal (U.S. Bureau of Land Management (BLM)). However, most perennial habitat of the chub is on private land (Reid 2006a, p. 10–11).

Cow Head tui chubs generally occupy pool areas in streams and open water channels having dense aquatic vegetation (Homuth 2000, p. 6; Moyle 2002, p. 124; Reid 2006a, p. 20). They grow about 50 millimeters (mm) (2 inches (in)) fork length (tip of nose to the fork in tail) during the first year and reach an average of 100 mm (4 in) at about 5 years of age, with larger individuals uncommon (Scoppettone and Rissler 2003, p. 5; Scoppettone and Rissler 2006, p. 110). The maximum recorded size for Cow Head tui chubs is 235 mm (9 in) (Scoppettone and Rissler 2006, p. 111).

Although there is no specific information on the reproductive behavior of the Cow Head tui chub, spawning by most tui chubs usually takes place from late April to late June, beginning in their second to fourth year (Moyle 2002, pp. 124–125). Fecundity is relatively high, and a female of 100 mm (4 in) produces about 4,000 eggs over a series of spawning events. Tui chubs typically spawn in groups, with several males attending each female. Eggs adhere to plants, or the bottom, and hatch in about 3–6 days (Moyle 2002, pp. 124–125).

Tui chubs in general evolved in the arid Great Basin where water bodies experience wide fluctuations in water conditions, and therefore they are highly tolerant of high alkalinity, high turbidity, and high temperatures (Moyle 2002, pp. 124-125). They also appear to tolerate relatively low levels of dissolved oxygen (Castleberry and Cech 1986, pp. 149–150; Moyle 2002, p. 124). While there have been no long-term diurnal studies of water quality in the Cow Head Basin, short-term surveys and measurements associated with distributional surveys in Cow Head streams and channels indicate that most water quality parameters are generally well within the documented tolerances of tui chubs, with the exception of localized low dissolved oxygen conditions near the bottom of desiccating pools and canals (Richey 1999, pp. 20-25; Homuth 2000, p. 6; Scoppettone and Rissler 2003, p. 6). There are no records of large fish dieoffs caused by water quality in permanent pools or canals associated with the Basin, again indicating that water quality parameters are well within limits tolerated by tui chubs. Fish

trapped in seasonal pools die as the season progresses and the pools dry up (Homuth 2000, p. 8), but this is not due to water quality.

Previous Federal Actions

On December 30, 1982, the Service published a revised notice of review for vertebrate wildlife in the Federal Register (47 FR 58454) designating the Cow Head tui chub as a category 2 candidate. At that time, the Service defined category 2 candidates as taxa for which information in the Service's possession indicated that a proposed listing rule was possibly appropriate, but for which sufficient data on biological vulnerability and threats were not available to support a proposed rule (45 FR 82481, December 15, 1980). The Service reclassified the Cow Head tui chub as a category 1 candidate in the November 21, 1991, notice of review (56 FR 58804). Category 1 candidate species were defined as "taxa for which the Service presently has sufficient information on hand to support the biological appropriateness of their being listed as endangered or threatened" (45 FR 82480, December 15, 1980). In the Candidate Notice of Review published on February 28, 1996 (61 FR 7595), the Service announced a revised list of candidate plant and animal taxa based on a single category for candidates that closely matched the previous definition of category 1 candidates. Specifically, the 1996 notice adopted a single category of candidates, defined as: "those species for which the Service has on file sufficient information on biological vulnerability and threat(s) to support issuance of a proposed rule to list but issuance of the proposed rule is precluded" (61 FR 7597). Âs a former category 1 candidate taxon, the Cow Head tui chub was included as a candidate in the February 28, 1996 (61 FR 7596), and September 19, 1997 (62 FR 49398), notices of review.

On March 30, 1998, the Service published in the **Federal Register** a proposed rule to list the Cow Head tui chub as endangered (63 FR 15152). The Cow Head tui chub was proposed for listing based primarily on concerns about the apparent present and threatened destruction, modification, and curtailment of its habitat and range (particularly as related to dewatering of Cow Head Lake and livestock grazing), as well as other natural or manmade factors affecting its continued existence (particularly the introduction of pesticides into the drainage as a result of pest control activity, and vulnerability to random naturally occurring events that can pose risks associated to small, restricted

populations) (63 FR 15152-15155). The proposed rule also stated that introduction of nonnative fish, game fish, or other nonnative tui chubs could harm the Cow Head Lake tui chub through increased competition, predation, and hybridization (63 FR 15154). The proposed rule had a 60-day public comment period, until May 29, 1998. On June 17, 1998, we reopened the comment period for an additional 65 days at the request of private citizens and organizations (63 FR 33033). The second comment period closed on August 3, 1998. On February 2, 2000, we opened a third comment period at the request of signatories of the conservation agreement (described below), to allow the Service to consider conservation measures in the conservation agreement; this comment period closed on February 16, 2000 (65 FR 4940).

Conservation Agreement

On October 22, 1999, stakeholders signed a conservation agreement (CA), including a conservation strategy, with the stated purpose of ensuring the longterm survival of the Cow Head tui chub (Service 1999, p. 2). Signatories included private landowners of Cow Head Lake, Cow Head Slough, and the California reach of Barrel Creek (four owners, all CA signatories); principal permittees on BLM lands within the drainage; California and Modoc County Cattlemen's Associations; the California Farm Bureau Federation; the BLM (Surprise Field Office); and California Department of Fish and Game (CDFG). The two owners on West Barrel Creek and the single owner for perennial reaches of Barrel and Keno creeks (Nevada) were not original signatories to the CA, as chub populations in those areas were unknown at the time; however, these landowners have been supportive by providing access to meet the goals and objectives of the conservation strategy.

The stated purpose of the conservation strategy is to identify specific procedures and strategies required for the long-term survival of the Cow Head tui chub. The strategy has two main objectives: Phase onedevelop baseline data; and Phase twouse the baseline data to determine the most feasible conservation actions to implement the goals of the conservation strategy. Phase one included studies intended to increase our understanding of the species and its habitat. Most of the proposed actions in Phase one have been addressed or are part of ongoing projects.

Phase two builds upon the information developed in Phase one, or

by any future studies, to adaptively implement conservation and management actions to meet the goals of the conservation strategy. The general goals of actions implemented in Phase two (and their completion status) are: (1) To establish, or confirm the current existence of, additional populations (completed); (2) to create more stable habitat for those populations (in progress); (3) to provide greater assurance of stability for the Cow Head tui chub population upstream of the pump in the lakebed channels (ongoing); (4) to create, to the extent feasible, additional stable habitat in the area of historic Cow Head Lake upstream of the pump (under review); and (5) to monitor, as appropriate, the status of Cow Head tui chub populations and effectiveness of conservation actions (ongoing).

By signing the October 22, 1999, CA, the Service and other stakeholders in the Cow Head Lake watershed committed to actions and goals intended to ensure the long-term survival of the Cow Head tui chub by balancing current practices in the watershed with the long-term needs of the subspecies. As previously stated, we opened a third comment period on the proposed rule on February 2, 2000, by request of signatories to the CA, so that the Service could also consider the conservation measures of the CA when making a final determination (65 FR 4940). The third comment period closed on February 16, 2000.

Summary of Public Comments

During the comment period for the March 30, 1998, proposed rule, we received 13 responses from local government, local organizations, and private individuals. Of those responses, none provided new information pertinent to the proposed listing. Six responses expressed views against the listing, one implied general support of the listing, and six were requests for a 60-day extension. There were no requests for a public hearing.

On June 17, 1998, the Service reopened the comment period on the proposed rule in response to requests from private organizations and private citizens (63 FR 33033). During the second comment period, only one comment letter was received. It provided additional information on historical conditions, past and current management, and trends in riparian conditions. The commenter did not state a position relative to the

appropriateness of the proposed listing. On February 2, 2000, we reopened the comment period on the proposed rule to allow consideration of the conservation agreement signed on October 22, 1999, and to solicit additional information on the biology, distribution, and status of the Cow Head tui chub (65 FR 4940). The reopening of comment period was in response to requests from signatories of the conservation agreement. During the third comment period, the Service received five responses from State and local governments and private individuals. Four responses were against the proposed listing, and one was in support. No new information pertinent to the proposed listing was obtained.

(1) *Comment:* One commenter felt that the Service could not demonstrate that this action has the purpose of interstate commerce, and thus the Service did not have the authority to apply the protection of the Act.

Our Response: We disagree with this comment. The Service has the authority to protect all endangered species, including intrastate species or those with no direct commercial value in interstate commerce.

(2) Comment: One commenter stated that there is a deficiency in the data, asserting the Service lacks information about the historical range of the fish and evidence of endangerment across the species range, and thus cannot move forward with listing the species under the Act.

Our Response: In the March 30, 1998, proposed rule (63 FR 15152), the present or threatened destruction, modification, or curtailment of its habitat and range was a factor considered to threaten the Cow Head tui chub. At that time, we stated that the diversion of water from Cow Head Lake had eliminated approximately 98 percent of the chub's historical range and that the dewatering was a threat to the species. Based on the information available, the chub was thought to be restricted to a very small portion of its historic range, occurring only in various pools along the southern portion of Cow Head Slough, and in the drainage channels on the bed of Cow Head Lake, for a total range of approximately 5.4 km (3.4 mi), with no additional populations known (for additional information see Factor A below). Since the proposed rule was published, the Service has gathered much more information about the species' range and habitat conditions (including information from Reid 2006a, 2006b). Current information, based on more complete basin-wide surveys, demonstrates that the Cow Head tui chub is more widely distributed than previously thought and maintains populations throughout all of its historical range, including in all streams and lakebed channels that

would have offered suitable habitat in the past. We therefore recognize that the perceived reduction of historical range, and the related concern of dewatering that was believed to be the cause of the reduction in the range, was a function of incomplete information and that current information demonstrates that reduction of the historical range has not occurred and is not a threat to the Cow Head tui chub. Recognizing that this and other threats we identified in the March 30, 1998, proposed rule (63 FR 15152) either (1) do not exist or (2) have been eliminated or otherwise ameliorated, we have determined that the Cow Head tui chub does not meet the Act's definition of either a threatened or an endangered species. Consequently, we are withdrawing the proposal to list the species. For further information, please see the Summary of Factors Affecting the Species section below.

(3) *Comment:* One commenter stated that Cow Head tui chub could live in highly eutrophic water and that this was not a threat as the Service had indicated in the March 30, 1998, proposed rule.

Our Response: Eutrophic water conditions were not one of the substantial threats we identified in our proposed rule; however, we noted this condition as a subject of potential concern. As described in the background section of this notice, tui chubs in general evolved in the arid Great Basin and are highly tolerant of high alkalinity, high turbidity, and high temperatures (Moyle 2002, pp. 124-125). They also appear to tolerate relatively low dissolved oxygen levels in water (Castleberry and Cech 1986, pp. 149-150; Moyle 2002, p. 124). While there have been no long-term diurnal studies of water quality in the Cow Head Basin, short-term surveys and measurements associated with distributional surveys in the various Cow Head streams and channels indicate that most water quality parameters are generally well within the tolerances of tui chubs. Additionally, there are no records of large fish die-offs caused by water quality in the permanent pools or the canals associated with the Basin, again indicating that water quality parameters are well within limits tolerated by the chubs. Fish trapped in seasonal pools certainly die as the season progresses and the pools dry up (Homuth 2000, p. 8). We recognize that most water quality parameters collected within the range of the Cow Head tui chub since the 1998 proposed rule, with the exception of localized low dissolved oxygen conditions near the bottom of desiccating pools and canals, are

generally well within the tolerances of tui chubs (Richey 1999, pp. 20–25; Homuth 2000, p. 6; Scoppettone and Rissler 2003, p. 6), and poor water quality is not a threat to the Cow Head tui chub. Considering that this and the other threats we identified in the March 30, 1998, proposed rule do not exist, or have been eliminated or otherwise ameliorated, we are withdrawing the proposal to list the species. For further information, please see the Summary of Factors Affecting the Species section

(4) Comment: One commenter stated the Service had poorly articulated the threat from native wildlife, and the threat from future introductions of nonnative fish and disease was unlikely.

Our Response: In the March 30, 1998, proposed rule (63 FR 15152), the introductions of a catastrophic disease or nonnative predatory fish were both recognized as potentially harmful to Cow Head tui chub, particularly due to the small estimated population size and confined known range of the chub at that time. However, this factor was not considered a principal threat to the chub. Since 1998, the Service has gathered additional information about the extent of predation and the likelihood of nonnative introduction and disease (Reid 2006a, p. 28; also see Factor C discussion, below). The Service notes that no disease or predator currently threatens the Cow Head tui chub and that the introduction and establishment of a disease or nonnative fish predator into the Cow Head Basin is unlikely. Were introduction and establishment of a disease or nonnative fish predator into the Cow Head Basin to occur, is not likely to threaten the chub with extinction, as explained below in our discussion of Factor C. We recognize that the potential threats to the tui chub from disease and introductions of nonnative predatory fish are both unlikely and minor. Considering that these and other threats we identified in the March 30, 1998, proposed rule (63 FR 15152) either (1) do not exist or (2) have been eliminated or otherwise ameliorated, we are withdrawing the proposal to list the species. For further information, please see the Summary of Factors Affecting the Species section below.

(5) Comment: One commenter stated there were no current threats to the species; therefore the Service was incorrect in its determination that inadequacy of existing regulations to reduce risk was a threat to the species.

Our Response: In the March 30, 1998, proposed rule, the Service found that there were no existing regulations to deal with the threats to the species

described in the proposed rule (63 FR 15152). Since 1998, information developed about potential threats leads the Service to conclude that there are currently no recognized threats to the continued existence of the Cow Head tui chub; therefore additional regulatory mechanisms are unnecessary. Also, we now know that the Cow Head tui chub maintains populations throughout all of its historical range, and this has occurred in the context of the existing regulatory mechanisms. Therefore, we recognize that inadequacy of existing regulatory mechanisms is not a threat to the Cow Head tui chub. Considering that this and other threats we identified in the March 30, 1998, proposed rule (63 FR 15152) either (1) do not exist or (2) have been eliminated or otherwise ameliorated, we are withdrawing the proposal to list the species. More information on the topic of adequacy of existing regulatory mechanisms can be found in Factor D discussion, below.

(6) Comment: One commenter stated that the Service offered no proof that pesticide programs were a threat to the

species

Our Response: The concern over impacts of pesticides was based on the assumption that nearby agricultural activities used pesticides and that the Cow Head tui chub population had been reduced to a single, small population, with an extremely restricted range and no additional populations available for recolonization in the event of a localized extinction (63 FR 15152). Using new information gathered since 1998, the Service has found that the population is not as small as previously thought. (See Factor D discussion below.) Agricultural activities and land management in the Cow Head Basin are limited to hay production and grazing (Reid 2006a, p. 10). The only substantial use of pesticides is in the U.S. Department of Agriculture's grasshopper control program, which occurs only during occasional years when grasshopper outbreaks occur, and then it focuses on localized upland areas surrounding the lakebed that are used by grasshoppers for egg laying. Pesticides are not applied to aquatic habitat, and in the event of an accidental spill or application, the adverse effect would be localized, particularly because application typically occurs in late summer when flow is low and pool habitats are not connected (Reid 2006a p. 19; see also Factor E discussion below). We recognize that pesticide use is not a significant threat to the Cow Head tui chub. Considering that this and other threats we identified in the March 30, 1998, proposed rule (63 FR 15152)

either (1) do not exist or (2) have been eliminated or otherwise ameliorated, we are withdrawing the proposal to list the species. For further information, please see the Summary of Factors Affecting the Species section below.

(7) *Comment:* One commenter stated that the Service had no proof that the risks associated with small and restricted fish populations was a threat.

Our Response: The vulnerabilities identified in the March 30, 1998, proposed rule (63 FR 15152) (possible excessively high death or low birth rates, deleterious effects of genetic drift and inbreeding, and sensitivity to localized stochastic events) were based on the assumption that the Cow Head tui chub had been reduced to a single, small population, with an extremely restricted range and no additional populations were available for recolonization in the event of a localized extinction. Using information gathered since 1998, we have found that the chub is not as reduced as previously thought. (See Factor D discussion, below.) Also, a recent genetic study of tui chubs found that the genetic diversity in the Cow Head tui chub is similar to other stream-resident chub populations, and there is no indication of genetic threats (Chen 2006, p. 46-48). The fact that the Cow Head tui chub is restricted in population size and distribution does not by itself pose a significant risk to the species. Considering that this and other threats we identified in the March 30, 1998, proposed rule (63 FR 15152 either (1) do not exist or (2) have been eliminated or otherwise ameliorated, we are withdrawing the proposal to list the species. For further information, please see the Summary of Factors Affecting the Species section below.

(8) Comment: Six commenters requested a 60-day extension of the comment period.

Our Response: In response to these requests, the Service reopened the comment period for 65 days.

(9) Comment: Two commenters stated that humans have influenced water movement in the Cow Head tui chub's range and this has benefited the chub by enhancing or protecting aquatic habitat.

Our Response: We agree with the commenters that humans can provide benefits to aquatic species in a highly manipulated environment because of our desire to create permanent water sources. In the Cow Head basin, some areas of perennial habitat are maintained by water management structures and these structures can decrease the likelihood of nonnative fish getting into the area. (See discussions of Factors C and E, below.) Since 1998, we have investigated the effects of historical changes in waterflow patterns on the Cow Head tui chub's status. As a result of interest in the conservation agreement, we were able to work with local residents to develop a better understanding of water flow and management in the area, and have considered that information in our assessment of potential impacts to the chub. (See discussion of habitat under Factor A, below.) We no longer believe that water management is a current or potential threat. Considering that this and other threats we identified in the March 30, 1998, proposed rule (63 FR 15152) either (1) do not exist or (2) have been eliminated or otherwise ameliorated, we are withdrawing the proposal to list the species. For further information, please see the Summary of Factors Affecting the Species section below.

(10) Comment: One commenter felt that the proposed listing was an attempt to take away private landowner's rights.

Our Response: The commenter's concerns regarding the effects of listing on private property rights is no longer germane because we are withdrawing our 1998 proposal to list the Cow Head tui chub (63 FR 15152). However, the listing of a species under the Act, in and of itself, does not affect private lands and does not effect a taking of private property by the Federal government. Only if the landowner engages in an activity that is likely to take a listed fish or wildlife species, or an activity that requires Federal authorization or funding and may affect a listed species, do the Act's regulatory restrictions come into play. In those situations, the Act provides regulatory mechanisms under Sections 7 and 10 to enable such activities to proceed consistent with protection of the listed species.

(11) Comment: One commenter stated that the Cow Head tui chub should not be listed because the conservation agreement was in place.

Our Response: We believe conservation agreements are important conservation tools, and this particular agreement was especially crucial for identifying information gaps and forming a basis for collaboration. By signing the conservation agreement, the Service and other stakeholders in the Cow Head Lake watershed committed to actions and goals intended to ensure the long-term survival of the chub by balancing current practices in the watershed with the long-term needs of the subspecies. Although we believe the Cow Head tui chub conservation agreement is important, listing decisions are made based on a thorough analysis of all substantial and foreseeable threats.

Based on an analysis of all the factors, and the new information collected with the help of the conservation agreement, we no longer believe the Cow Head tui chub is in danger of extinction throughout all or a significant portion of its range or likely to become so in the foreseeable future; therefore we are withdrawing the March 30, 1998 proposal to list the chub (63 FR 15152).

(12) Comment: California Department of Fish and Game questioned whether the modification to landowner agreements would impact the implementation of the conservation agreement.

Our Response: In a recent peer review of Reid (2006a), Randal C. Benthin, Senior Fishery Biologist at the California Department of Fish and Game (CDFG), wrote a letter to us confirming that the landowners have been working with management agencies to implement the conservation agreement, and he praised their commitment. We discussed this comment with Mr. Benthin, in a September 22, 2006 phone call, and he said the issue was satisfactorily addressed in the final conservation agreement. He further stated that CDFG had no further concerns.

(13) Comment: One commenter stated that the listing should be delayed so that additional populations could be established. The commenter felt that if the species were listed, the resulting section 7 consultation process would delay the establishment of additional populations.

Our Response: We agree with the commenter that multiple populations are important for species conservation. In the case of the Cow Head tui chub at the time of the original listing proposal, we believed that the number of populations was quite small (63 FR 15152). Since the March 30, 1998, proposed rule was published, we determined that the number of populations is larger than originally thought. New surveys show the Cow Head tui chub maintains populations throughout all of its historical range in all streams and lakebed channels that would have offered suitable habitat in the past (Reid 2006a, p. 18). Therefore the chub is more widely distributed than previously thought. (See Factor A discussion, below.) We now recognize that the number of populations and relatively narrow range of the species are not threats to the Cow Head tui chub. Considering that this and other threats we identified in the March 30, 1998, proposed rule (63 FR 15152) either (1) do not exist or (2) have been eliminated or otherwise ameliorated, we are withdrawing the proposal to list the

species. For further information, please see the Summary of Factors Affecting the Species section below.

Regarding the comment that listing the species and any resulting section 7 consultations would delay the establishment of additional populations, because we are withdrawing the proposal to list the Cow Head tui chub, this comment is no longer germane. Nevertheless, even if the species were listed, section 7 consultation would not have hampered efforts to establish additional populations. Section 7 consultation is a valuable tool to minimize adverse effects of Federal actions to listed species and, as such, provides benefits to species.

(14) Comment: One commenter offered several specific goals for conservation actions for the species, including establishment of additional populations, water management certainty, and protection of habitat from

over-grazing.

Our Response: We agree with the commenter that multiple populations and protection of habitat from threats are key to species conservation. In the case of the Cow Head tui chub, at the time of the original proposal, we believed that the number of populations was quite small and that there were threats to the quantity and quality of habitat (63 FR 15152). Since that time, we have focused on addressing these and other potential threats and obtaining additional information from various sources to clarify the status of the species (e.g., Reid 2006a). As a result, we have determined that the number of populations is larger than originally thought.

We also looked carefully into the role that current and future water availability could have on the conservation of the species. As described in more detail under the discussions of Factors A and E below, the Cow Head tui chub evolved in a low-precipitation region and has survived numerous droughts including a severe 16-year drought early in the 20th century. We have also found that current water management is compatible with the conservation needs of the species and that there is a lack of evidence to suggest water management will substantially change in the

foreseeable future.

Furthermore, we have reached a similar conclusion regarding grazing management. As described under the discussion of Factor A below, the chub has coexisted with the current grazing management for decades, and we have no information that leads us to believe grazing management will substantially change in a manner that would

adversely affect the species in the foreseeable future. We now recognize that water availability, water management, and grazing do not pose threats to the Cow Head tui chub. Considering that these and other threats we identified in the March 30, 1998, proposed rule (63 FR 15152) either (1) do not exist or (2) have been eliminated or otherwise ameliorated, we are withdrawing the proposal to list the species. For further information, please see the Summary of Factors Affecting the Species section below.

(15) *Comment:* One commenter felt that conservation agreements fail to protect species adequately.

Our Response: The Service believes conservation agreements (CAs) can serve a valuable role in helping to conserve species, and we also recognize that they may have limitations, as suggested by this comment. In the specific case of the Cow Head tui chub, the CA enabled the Service get additional valuable information on the species' status on private lands, and it provided a means for stakeholders to take an active role in the conservation of the species. This withdrawal of the proposed rule to list the Cow Head tui chub is not based on anticipation of future improvements in the status of the species that we believe will occur as a result of the CA. Instead, this withdrawal is based on new information that demonstrates a lack of identified treats, as is described below in the discussions of Factors A-E; this new information was obtained in large measure through implementation of the CA. More discussion of this topic is found under the sections titled "Conservation Agreement" above and "Summary of Factors Affecting the Species" below.

Conservation Review

At the time the March 30, 1998, proposed rule was published (63 FR 15152), little information was available regarding the Cow Head tui chub. The CA has allowed us to obtain more extensive and accurate information on the Cow Head tui chub, including its distribution, population status, habitat use, and land management in the Cow Head basin. The CA has also resulted in the initiation of management activities by private and public stakeholders, which further secure the Cow Head tui chub and its habitat.

In 2005, in order to make a final determination on the listing status of the Cow Head tui chub given this crucial new information, we arranged for an independent scientific review of the Cow Head tui chub to obtain a comprehensive synthesis of all available

data pertinent to the conservation of the species, including clarification of the complicated history and management of the basin, evaluation of biological information regarding the species, and compilation of previous population and habitat surveys in the basin. The purpose of the review was to assemble all scientific and commercial information on the Cow Head tui chub, as well as to assimilate the collective knowledge of local landowners and managers. The review did not evaluate the status of the Cow Head tui chub under the Act, as that is the Service's ultimate responsibility. The principal author of the review is Dr. Stewart Reid, an independent biologist, who is a recognized expert in the native fishes of this region and who is familiar with the Cow Head Basin. The review was peer reviewed in Mav-June 2006 and made available to stakeholders to ensure its accuracy and completeness (see Peer Review section, below). The revised synthesis (Reid 2006a) and its supporting documentation reflect the most recent information regarding the Cow head tui chub; this information significantly informs our determination to withdraw our previous proposal to list this subspecies (63 FR 15152, March 30, 1998).

Peer Review

In accordance with our July 1, 1994, Interagency Cooperative Policy for Peer Review in Endangered Species Act Activities (59 FR 34270), we solicited the opinions of seven independent specialists. We provided the reviewers with the synthesis document (Reid 2006a) which contains new information, and a review of all available scientific, historical, and management information pertaining to the species. We specifically asked the reviewers to review the document for accuracy of the information, any missing information, and threats to the species not mentioned in the report. Reviewers were not asked to interpret the Act as it applies to this species or to make a recommendation as to the appropriate regulatory status for the Cow Head tui chub.

The Service's Policy for Peer Review requires that we: (1) Solicit the expert opinions of a minimum of three appropriate and independent specialists regarding pertinent scientific and commercial data and assumptions relating to the taxonomy, population models, and supportive biological and ecological information for species under consideration for listing; and (2) summarize in the final decision document the opinions of all independent peer reviewers received on the species under consideration. The

purpose of a peer review is to ensure that listing decisions are based on scientifically sound data, assumptions, and analyses, including input of appropriate experts and specialists.

Peer reviewers included two senior research scientists familiar with the Cow Head tui chub and the Cow Head Basin (one from the University of California, Davis and one from U.S. Geological Survey—Biological Resources Division, Reno), four scientists from agencies with management responsibilities in the Cow Head Basin (two from CDFG, one from BLM, and one from the U.S. Forest Service), and one representative of the Cow Head Irrigation District who could provide detailed information on local conditions, especially water management in the basin.

All reviewers confirmed the accuracy and completeness of the scientific information in the synthesis. Two reviewers (BLM and Cow Head Irrigation District) helped clarify details of management and hydrology in the Cow Head Basin, which have been incorporated into the final document used for this analysis, along with minor editorial suggestions from the various reviewers. The reviewers did not identify any additional factors that might threaten the Cow Head tui chub.

Summary of Factors Affecting the Species

Section 4 of the Act and its implementing regulations (50 CFR 424) establishes procedures for adding species to the Federal Lists of Endangered and Threatened Wildlife and Plants. A species may be determined to be an endangered or threatened species due to one or more of the five factors described in section 4(a)(1) of the Act: (A) The present or threatened destruction, modification, or curtailment of habitat or range; (B) overutilization for commercial, recreational, scientific, or educational purposes; (C) disease or predation; (D) the inadequacy of existing regulatory mechanisms; or (E) other natural or manmade factors affecting its continued existence. In making this finding, we evaluated whether any of these five factors are a threat to the continued existence of the Cow Head tui chub throughout all or a significant portion of its range. Our evaluation of these threats is presented below.

A. The Present or Threatened Destruction, Modification, or Curtailment of its Habitat or Range

In the 1998 proposed rule, reduction of historical range and modification of habitat were considered threats to the Cow Head tui chub (63 FR 15153—54, March 28, 1998). We stated that the range had been reduced by 98 percent due to loss of Cow Head Lake. A better understanding of the basin's hydrology has shown that the lake still provides seasonal habitat in wet years and maintains permanent habitat in the lakebed canals (Reid 2006a, pp. 15–19).

In 1998, we also stated that stream habitat was restricted to 5.4 km (3.4 miles). New information developed by Reid (2006a, pp. 15–19) has shown that total linear stream and channel habitat was approximately 10.5 km (6.5 mi) in 2001, a very dry year (Scoppettone and Rissler 2006, p. 108). In the spring, and at times when there is sufficient water, the chub occupies the full lengths of the tributary streams (21.2 km; 13.2 mi).

Current information, based on more complete basin-wide surveys, demonstrates that the Cow Head tui chub is more widely distributed than previously thought and maintains populations throughout all of its historical range in all streams and lakebed channels that would have offered suitable habitat in the past.

Range

Based on our knowledge of historical conditions, the species' habitat needs, and its current distribution, we assume the natural historical range (geographical distribution) of the Cow Head tui chub would have encompassed all low gradient streams with perennial reaches in the Cow Head Basin of California and Nevada, including: Cow Head Lake, Cow Head Slough, Barrel Creek, West Barrel Creek, and Keno Creek (Reid 2006a, pp. 5–6 and 15–19). Based on knowledge of the chub's biology, it is logical to assume there was some natural dispersal downstream into the Twelvemile Creek drainage during higher springtime flows, as there apparently is today, but the fate of these individuals is not known (Reid 2006a, pp. 18–19). Within the Cow Head Basin, the primary distribution of tui chubs, based on habitat needs, would have included any low-energy aquatic habitats, including stream pools, emergent marshes with open water, and Cow Head Lake itself, when present (Moyle 2002, p. 124-125; Reid 2006a, p. 20). Because tui chubs show a preference for low-energy habitats such as pools, it is unlikely they would have typically occupied higher-energy stream reaches with steep gradients, strong flow, or shallow riffles (e.g., the lower canyon section of Cow Head Slough), although they might move through such habitats. They also would not have occupied higher gradient reaches of the western tributaries coming off the

Warner Mountains (e.g., Eightmile and Ninemile creeks), which have cooler temperatures and are occupied by trout, Oncorhynchus mykiss, and speckled dace, Rhinichthys osculus (Hubbs 1934, p. 2; Sato 1992, p. 5).

Recent surveys on public and private land, facilitated by the 1999 CA, have documented the presence of Cow Head tui chub in all historically perennial water bodies (Minto 1879; see map and discussion in Reid 2006a, pp. 5-8) containing suitable habitat in the Cow Head Basin (Scoppettone and Rissler 2006, p. 5). In 2001, populations were found in all eastern tributaries (Keno, West Barrel, and Barrel Creeks, as well as Cow Head Slough), including private land that had not been previously surveyed, and a large population (estimated to be in the 10,000s) exists on the historic lakebed in perennial canals (Scoppettone and Rissler 2002, p. 5; Reid 2006a, p. 22). Cow Head tui chub presumably disperse throughout Cow Head Slough and the various lowgradient tributaries in the spring and onto the lakebed when it is flooded, with their distribution contracting to the lakebed channels and perennial springfed stream reaches each year as the arid summer progresses. In 2001, a very dry year, perennial habitat occupied by the chub remained in all eastern tributaries (Keno Creek—0.5 km (0.3 mi) perennial, West Barrel Creek—1.0 km (0.6 mi) perennial, and Barrel Creek-4.0 km (2.5 mi) perennial), Cow Head Slough (approximately 3 km (1.9 mi) perennial) and the two principal lakebed channels (Pump and Eightmile canals—2 km (1.2 mi) perennial) (Scoppettone and Rissler 2006, pp.108-109; Reid 2006a, pp. 16-18).

Habitat—Streams

Stream populations of Cow Head tui chub primarily occupy pool habitats, and available habitat area varies depending on the time of year and degree of drought severity (Homuth 2000, p. 10; Scoppettone and Rissler 2006, p.109). Historically, there were four low gradient stream drainages in the Cow Head Basin that had perennial flow and would have contained suitable Cow Head tui chub habitat; all still maintain Cow Head tui chub populations (Reid 2006a, pp. 15–19; Scoppettone and Rissler 2002, p. 5; Scoppettone and Rissler 2006, p. 109). These drainages are currently referred to as Cow Head Slough, which forms the outlet for the Cow Head Basin; Barrel Springs and West Barrel, both of which entered Cow Head Lake itself from the east in 1879; and Keno Spring, which enters Cow Head Slough from the east before it drops into the higher-gradient

canyon section. All contain locally perennial pool habitat, which is naturally maintained by small springs.

Cow Head Slough flows out of Cow Head Lake. After flowing about 5 km (3.1 mi) to the north, the slough enters a short, half-mile-long canyon and then joins Twelvemile Creek in the Warner Basin. Historically, the slough apparently contained water along most of its length into the summer (Minto 1879; see map and discussion in Reid 2006a, pp. 5–8), but Minto's survey notes do not mention actual flow conditions, and local ranchers interviewed in the 1930s reported that the slough overflowed only during high spring runoff periods (Hubbs 1934, p. 1).

Under present management, Cow Head Slough only flows into Twelvemile Creek during the springtime runoff period and while the lakebed is being pumped down, with most continuous stream flow typically ending by late May or early June. Pools with marshy margins and herbaceous riparian vegetation are present all along the length of the slough, with perennial spring-fed reaches concentrated in the southern (upstream) 3 km (1.9 mi). The Barrel Springs drainage also carries considerable runoff in the spring, but summer flows are low, and in the 1879 Minto surveys, the stream channel did not have perennial flow between the Nevada border and Cow Head Lake (see Minto map in Reid 2006a, p. 6). Likewise, the Keno Springs drainage near its confluence with Cow Head Slough was surveyed by Minto in 1879, and was noted simply as a meadow with no creek.

The Cow Head Basin is in an arid landscape. (See Factor E—Natural Drought, below). Although surface water is present throughout most of the basin in the early spring, hot and dry summer conditions naturally reduce the quantity of aquatic habitat progressively through the summer and early fall. In drier years, much of Cow Head Slough and the reaches of tributary streams without perennial springs are reduced to isolated pools which often dry up. Permanent pool habitat suitable for Cow Head tui chubs is restricted to reaches maintained by perennial springs. Under historical conditions channel desiccation may have been retarded in Cow Head Slough by the storage capacity of the lake and associated wetlands, and in other streams by narrow wet meadows along the riparian corridors. However, in most dry years when the lake was not overflowing during the summer (which is similar to the current situation under present management), desiccation and loss of aquatic habitat would have progressed

in a manner similar to that experienced today; by late summer, available stream habitat would have been limited to perennial spring-fed reaches of Cow Head Slough and the three eastern tributaries (Barrel, West Barrel and Keno creeks). All spring-fed reaches of the slough and the three eastern tributaries currently maintain perennial tui chub populations (Scoppettone and Rissler 2006, p. 109).

The only direct modification of streams containing Cow Head tui chub occurred in the 1930s with the dredging of Cow Head Slough for a distance of about 1.3 km (0.8 mi) downstream of Cow Head Lake, and with construction of an earthen levy on the east side to divert flow from the eastern watershed (West Barrel and Barrel Spring drainages) directly into Cow Head Slough near the historical outlet of Cow Head Lake (Reid 2006a, p.8). These modified reaches have since developed into stream reaches with vegetated riparian corridors. There are no water diversions in Cow Head Slough or the eastern tributary streams. Modification of grazing management in the last decade has produced notable improvements and continuing upward trends in channel stability, riparian vegetation, and aquatic habitat quality (USBLM 1996, p. 2; USBLM 2003, p. 9; Reid 2006a, pp. 10, 15-16).

Habitat—Cow Head Lake

In 1879 a shallow lake covered much of the Cow Head valley floor (Minto 1879, pp. 47, 56, 59; see map, Reid 2006a, p. 8). The maximum depth of the lake was not recorded, but general depths of 40-60 cm (15-24 in) were noted. Its northwestern and southeastern shores were bounded by belts of wet meadow and tule marshes, which are dominated by hardstem bulrush (Scirpus acutus), as was the outlet channel for a distance of about 4 km (2.5 mi) north along Cow Head Slough, which carried overflow north to a short canyon where it entered Twelvemile Creek and the southern Warner Basin. The lake was fed primarily by snow runoff in the spring from the Warner Mountains to the west and the Barrel Creek and West Barrel Creek drainages in the lower hills to the east. Summer and fall inputs to the lake would have been limited to groundwater-fed base flows of Eightmile Creek, which is supplemented by perennial springs in its lower reaches, and other small perennial springs in the immediate vicinity of the lake (Reid 2006, pp. 5-8). The original survey map shows only Eightmile Creek and the short spring-fed West Barrel Creek as providing flow into the lake in July

1879. Ninemile Creek, which currently does not reach Cow Head Lake during the summer, was shown as a "brook" with no surface flow closer than about 0.8 km (0.5 mi) to the west of the lake on the 1879 survey map drawn by Minto (Reid 2006a, pp. 6–7). Barrel Creek, which contains perennial springs in its middle and upper reaches, apparently did not reach the lake in July 1879. Although Cow Head Lake and its associated emergent marsh historically provided extensive aquatic habitat during some years, it was not a permanent feature. Regional, climatic, and historical evidence suggests that Cow Head Lake itself would have periodically dried up (Reid 2006a, pp. 8, 26-27). (For additional information, see Factor E—Natural Drought, below.)

Modification of the western tributaries to Cow Head Lake began in the late 1800s with the diversion of the upper reaches of Eightmile Creek itself to the south into Lake Annie (Reid 2006a, pp. 7–10). The upper Eightmile drainage would have historically provided considerable spring snow runoff into Cow Head Lake; however, late summer base flows from that elevation are minimal following loss of the snow pack. The lower Eightmile drainage is now primarily fed by the Schadler Ditch (built around 1904), which captures runoff from Mount Bidwell (not originally part of the Cow Head Basin) and carries it into Schadler Creek (labeled as Eightmile Creek on the U.S. Geological Survey, Lake Annie Quadrangle). Schadler Reservoir, which is approximately 250 acre-feet in size and was built in the 1960s, collects the flow of Schadler Creek and numerous small springs about 1.6 km (1 mi) upstream of the lake. Water from the reservoir (about 50 acre-feet/month) is used throughout the summer to irrigate downstream pastures, which drain into the Cow Head lakebed channels, or is sent downstream to maintain water in the lakebed channels themselves.

In the 1930s, following a period of extended drought, alterations were made to the lakebed to allow drainage of the lake in the spring for agricultural use. Three channels were dug to carry water out of the lakebed. The first comes from the center of the lake to the northwest (here referred to as Lakebed Canal), where it meets a second channel carrying flow from the Eightmile drainage (Eightmile Canal), and then enters a third channel (Pump Canal, also known as Cow Head Ditch) that runs 1 km (0.6 mi) northeast to a pumping station. At that point, water is pumped past a weir into a continuation of the channel (Discharge Channel) that continues on to Cow Head Slough. The

outlet of Cow Head Lake into Cow Head Slough was also dredged in the 1930s for a distance of about 1.3 km (0.8 mi), and an earthen levy was constructed on the east side to divert flow from the eastern watershed (West Barrel and Barrel Spring drainages) directly into Cow Head Slough, reducing runoff into the lakebed.

Cow Head Lake is now flooded only in the springtime, when it receives local snowmelt and rain, as well as runoff primarily from the western slopes of the basin. Most runoff from the eastern tributaries either flows naturally (Keno Creek) or is now diverted by the earthen levy (Barrel and West Barrel Creeks) into Cow Head Slough. There was enough water to fill the lake in the mid-1980s, 1997, and 2006. When extensive standing water is present, it is pumped off the lakebed by May or June to allow for growth of hay or pasture grass. Pumping has not been necessary for more than a few days since about 1999; however, the high runoff year of 2006 required about 30 days of pumping to bring water levels off the lakebed and into the channels. During the summer, irrigation water is supplemented by local groundwater inputs and water brought down the Eightmile system with releases of water from Schadler Reservoir and perennial spring flow.

Perennial aquatic habitat on the lakebed is contained within the canals above the pump. The canal channels are about 10 meters (m) (33 ft) wide, with a depth up to about 4 m (13 ft). The Pump Canal is approximately 1 km (0.6 mi) long and contains water throughout the summer. Suitable chub habitat in Eightmile Canal is slightly less than 1 km (0.6 mi) long; while this reach has not been specifically surveyed for Cow Head tui chubs, it receives high quality water from the Eightmile drainage and carries it into the Pump Canal. The Lakebed Canal is approximately 1.3 km (0.8 mi) long; however this channel dries up through the summer, after water is pumped down off the lakebed, and rarely contains water much upstream of the confluence with the Pump Channel. Although the lakebed is no longer characterized by extensive emergent marsh habitat, the canals contain submerged aquatic vegetation that provides food, cover, and spawning habitat for the chub.

Modifications to the natural hydrology of Cow Head Lake, which occurred in the late 1800s and early 1900s, altered the characteristics and availability of suitable habitat for the Cow Head tui chub on the lakebed (reviewed in Reid 2006a, pp. 5–9). The annual diversion and pumping of water from Cow Head Lake, initiated in the

late 1930s, eliminated the opportunity for continuous utilization of lake and peripheral marsh habitat in wet years when the lake would have otherwise filled. However, the Cow Head Basin historically went through periods of extended drought, during which the lake would have contracted or dried completely. During these periods, available Cow Head tui chub habitat would have been restricted to stream reaches fed by perennial springs, as it currently is during dry years.

Some of the modifications to the lakebed now actually serve to maintain perennial habitat on the lakebed, which would not have been available to the fish prior to the modifications. The present-day lakebed channels, which provide approximately 2 km (1.2 mi) of perennial habitat, are deeper than the historical lakebed, and water management practices that maintain suitable habitat in the canals during dry periods have actually expanded the habitat available to the Cow Head tui chub during droughts (Reid 2006a, p. 9). The Cow Head tui chub population in the lakebed channels presumably still disperses onto the lakebed when it is flooded in the spring, as there are no barriers that would prevent such movement.

Land Management

The Cow Head lakebed was generally farmed for grain from 1924 until about 1980, when farming was discontinued (Reid 2006a, p. 10). Since then, the lakebed has been managed solely for grazing and hay production, with no tillage and no application of fertilizers or pesticides. Changes in land management within the basin have resulted in a generally upward trend for Cow Head tui chub habitat. These changes include: (1) Runoff storage in west-side reservoirs to supplement lateseason water supplies for the western channels: (2) the termination of farming and switch to grazing management on the lakebed itself in the early 1980s, which has resulted in reduced sedimentation in the lakebed channels and Cow Head Slough; (3) modifications in grazing management on public and private lands, which have resulted in improved conditions within stream corridors and upward trending riparian vegetation conditions; (4) acquisition of an additional 80-acre parcel by BLM in 2003, which places it under management guidelines established to improve aquatic and riparian habitat, including about 0.5 km (0.3 mi) of occupied habitat in Cow Head Slough containing perennial springs and permanent pools (USBLM 2003, p. 4; Reid 2006a, p. 10); and (5) ongoing

cooperation between public and private stakeholders under a CA signed in 1999 with the stated purpose of conserving the Cow Head tui chub. Landownership in the basin is limited to seven families and the BLM, with most land dedicated to hay and grazing. Based on our knowledge of the area and on the general stability of the local ranching community, we know of no reason why current land use is likely to substantially change in the foreseeable future.

Factor A Conclusion

The range of the Cow Head tui chub has not changed substantially since 1879. Modification of low-gradient stream habitat in the Cow Head Basin occurred primarily in the early 20th century, with channelization of the southern end of Cow Head Slough in the 1930s and continued livestock grazing. Current management of riparian corridors has resulted in upward habitat trends (USBLM 1996, p. 2; USBLM 2003, p. 9; Reid 2006a, pp. 10, 15-16), and there has been no substantial loss of perennial stream habitat for the Cow Head tui chub. In contrast, the character of Cow Head Lake has changed considerably since the 1800s, with the dewatering of the lake and its associated emergent marshes as a generally perennial, though intermittent, landscape feature. However, even prior to such changes, Cow Head Lake would have been dry and would have provided no habitat during past periods of natural drought when the Cow Head tui chub population would have been most stressed by environmental conditions.

During natural droughts, perennial stream reaches associated with permanent springs provided habitat for the Cow Head tui chub, as they do today (Scoppettone and Rissler 2006, p. 109). Furthermore, management of the Cow Head Basin has been essentially stable since the late 1930s, following a 16-year period (1923-1938) of drought when the entire lake was naturally dry; during that time a large population of Cow Head tui chub nevertheless sustained itself throughout the basin and specifically in the drainage canals on the lakebed (Reid 2006a, pp. 5-10; Scoppettone and Rissler 2006, pp. 108-109).

There is no reason to expect substantial negative changes to the current management regime. Habitat conditions are generally upward trending and private and public land managers have incorporated and are continuing to implement strategies that have enhanced the availability of permanent water and suitable habitat for Cow Head tui chub (USBLM 1996, p. 2;

USFWS 1999, pp. 2, 12; USBLM 2003, p. 9; Reid 2006a, pp. 10, 15–16). Therefore, destruction, modification, or curtailment of its habitat or range is not likely to threaten the Cow Head tui chub with extinction throughout all or a significant portion of its range within the foreseeable future.

B. Overutilization for Commercial, Recreational, Scientific, or Educational Purposes

Overutilization was not considered a threat to the species in the 1998 proposed rule (63 FR 15154). The Cow Head tui chub is not a commercial or recreational fish species, and there have been only a few documented scientific collections since 1939 (Reid 2006a, pp. 37–38). Future collections for scientific purposes presumably would be limited to small collections for genetic, morphological, or life history studies, and these would not substantially affect the population as a whole. Therefore, over-utilization is not likely to threaten the Cow Head tui chub with extinction throughout all or a significant portion of its range within the foreseeable future.

C. Disease or Predation

In the 1998 proposed rule, we indicated that the potential introduction of a catastrophic disease or a nonnative predatory fish could be harmful to Cow Head tui chub, particularly due to the small estimated population size and confined known range of the Cow Head tui chub at that time (63 FR 15154). We also noted that there were no documented instances of disease actually affecting the tui chub or detections of nonnative predatory fish in tui chub habitat. This factor was not considered a principal threat to the species.

The potential introductions of a disease or nonnative predators to the Cow Head Basin would be subject to a number of constraints that greatly reduce the likelihood of such occurrence and also reduce the likelihood that a nonnative predator would become established if introduced. These constraints include: (1) The isolated location of the Cow Head Basin; (2) the absence of existing nonnative fish populations in the basin; (3) the habitat characteristics of upper Twelvemile Creek (high gradient, cool water) and the lower canyon reach of Cow Head Slough (high gradient, generally dry or low flow, with no upstream passage except possibly during high spring flows), both of which would impede the upstream invasion of warm-water game fish from the Warner Valley floor; (4) the absence of source water bodies suitable for warm-water

sport fishing (e.g., reservoirs) in the basin (all permanent reservoirs in the Basin are at higher elevations and contain cold water suitable only for trout); (5) the warm water habitat characteristic of the lower elevation streams containing Cow Head tui chub are not suitable for establishment of nonnative trout; (6) the location of perennial stream reaches and reservoirs on private lands (so public access and the potential introduction of nonnative fish is less likely); (7) the expectation that a point source introduction transported illegally to the basin would be limited to relatively few individuals of the nonnative species; and (8) the continued participation and awareness of private landowners in the CA, which addresses the potential risks of disease or nonnative introductions.

The low likelihood of introductions also is supported by the lack of historical introductions of disease or nonnative fishes to the basin over the last century. In the event of an introduction of a nonnative fish, risks to the Cow Head tui chub are further ameliorated by its separation into at least six seasonally isolated populations, and the complete upstream isolation of the largest population (Cow Head lakebed channels) from other areas by the pump structure. We also note that stakeholders will continue to monitor the composition of the fish community in the Cow Head Basin through implementation of the CA and can notify CDFG and the Service if a nonnative fish is identified. The agencies could then remove the introduced fish.

While the outbreak of a catastrophic fish disease in the Cow Head Basin could theoretically threaten the Cow Head tui chub due to its relatively limited range, there is no evidence of fish disease in the Cow Head Basin, and we are aware of no documented loss of any native tui chub populations (Siphateles spp.) or other native western cyprinid (fish in the minnow family) due to disease. Because it is unlikely that fish or other exotic hosts will be introduced into Cow Head Basin, there is a very low likelihood that disease will be introduced and spread in the basin.

The Cow Head tui chub is most vulnerable to predation during droughts, when much of the drainage dries up and fish are concentrated in smaller pools. Natural predators of the Cow Head tui chub include garter snakes, aquatic insects, and fish-eating birds, with which the population has naturally coexisted under current conditions since the 1920s (Homuth 2000, pp. 6, 8). The original name of Cow Head Lake was Pelican Lake (see

Minto 1879 map in Reid 2006a, p. 6), and therefore it is logical to assume that pelicans were among the historic natural predators of the chub. There is no indication that these natural predators represent an extinction threat to the Cow Head tui chub. Introduction of predatory nonnative fishes (e.g., bass, crappie, sunfish, and brown trout) would increase predation pressure on the Cow Head tui chub population. However, for a nonnative predator to represent a threat to the Cow Head tui chub, the nonnative species would have to successfully establish a resident population that spreads throughout a significant portion of basin. This is unlikely for the reasons given above, and during a severe drought, when the Cow Head tui chub would be most vulnerable, the various populations and even individual pools are generally isolated by dry reaches.

Factor C Conclusion

No known disease or predator currently threatens the Cow Head tui chub. For the reasons described above, the introduction and establishment of a disease or nonnative fish predator into the Cow Head Basin is not likely to occur and, in the unlikely event it were to occur, is not likely to threaten the Cow Head tui chub with extinction. Therefore, disease and predation are not likely to threaten the Cow Head tui chub with extinction throughout all or a significant portion of its range within the foreseeable future.

D. The Inadequacy of Existing Regulatory Mechanisms

The 1998 proposed rule stated that there were no regulatory mechanisms that specifically protected the Cow Head tui chub or its habitat, and generally concluded that available regulatory mechanisms were inadequate to protect or appropriately manage the species (63 FR 15154, March 30, 1998). The proposed rule summarized the following regulatory mechanisms: (1) CDFG's designation of the Cow Head tui chub as a species of special concern, Class 1: Endangered; (2) The National Environmental Policy Act; (3) section 404 of the Clean Water Act; (4) the California Environmental Quality Act; and (5) section 1603 of the California Fish and Game Code (63 FR 15154). However, as discussed above, based on current information, we have determined that there are no significant threats to the Cow Head tui chub or its habitat that would trigger the need for additional regulation.

The Cow Head tui chub occurs on a mix of public (BLM) and private land, with the majority of the populations being on private land where there is more perennial water. On public lands (i.e., Cow Head Slough) and most adjoining riparian corridors on private lands used for grazing, Cow Head tui chub habitat is managed according to riparian health standards under BLM policy and receives protection from measures undertaken by BLM as a result of a Section 7 consultation with the Service on the Warner sucker, Catostomus warnerensis, a federally-listed species with similar habitat requirements (BLM 2003, p. 4).

Factor D Conclusion

We are not aware of threats to the continued existence of the Cow Head tui chub that would require or be ameliorated by further regulation. Therefore "inadequacy of existing regulatory mechanisms" is not a factor likely to threaten the Cow Head tui chub with extinction throughout all or a significant portion of its range within the foreseeable future.

E. Other Natural or Manmade Factors Affecting Its Continued Eistence

The 1998 proposed rule briefly discussed several additional factors that were considered potential threats to the Cow Head tui chub, including the generalized vulnerabilities of species that have very small populations, pesticides, introduction of nonnative competitors, and natural drought (63 FR 15154-55, March 30, 1998). The vulnerabilities identified in the 1998 proposed rule (possible excessively high death or low birth rates, deleterious effects of genetic drift and inbreeding, and sensitivity to localized stochastic events) were based on the assumption that the Cow Head tui chub had been reduced to a single, small population, with an extremely restricted range and no additional populations available for recolonization in the event of a localized extinction (63 FR 15155. March 30, 1998). Current information demonstrates that the Cow Head tui chub population is considerably larger and more widely distributed than previously thought and is separated into six seasonally isolated populations in five subdrainages of the Cow Head Basin. (See Factor A discussion, above.) A recent genetic study of regional tui chubs also found that genetic diversity in the Cow Head tui chub is similar to other stream-resident chub populations, and shows no indication of genetic threats to the species (Chen 2006, pp. 46-48).

In the proposed rule we said: "Pest control programs * * * that introduce pesticides into the drainage are a threat to the Cowhead Lake tui chub." We no

longer believe such programs pose a threat to the Cow Head tui chub. The only substantial use of pesticides in the Cow Head Basin is in the U.S. Department of Agriculture's Animal Plant Health Inspection Service (APHIS) rangeland grasshopper/cricket control program, which is implemented only during occasional years when there are grasshopper or cricket outbreaks. The Service is familiar with this program because of section 7 consultations with APHIS. Pesticides are applied so as to minimize risk to non-target species; this is done through ultra-low volume sprays, selection of chemical sprays and baits, use of adequate buffers, and other means. Moreover, this program focuses on localized upland areas (surrounding the lakebed) where grasshoppers lay their eggs. Pesticides are not applied to aquatic habitat, and in the event of an accidental spill or application or drift by wind or water movement, the adverse effect would be localized, particularly since application typically occurs during low or no flow seasons, when pool habitats are not interconnected. Other agricultural activities and land management in the Cow Head Basin are limited to hay production and grazing and pesticides are not applied to these crops (Reid 2006a, p. 10). Therefore, pesticide contamination is not likely to threaten the Cow Head tui chub with extinction throughout all or a significant portion of its range within the foreseeable future.

The introduction of nonnative competitors, such as bait minnows (e.g., shiners, fathead minnows) tui chubs introduced from other basins, and mosquito fish (*Gambusia*), could adversely affect the Cow Head tui chub. However, there are no populations of nonnative fishes present in the basin at this time, and the likelihood of their introduction and subsequent establishment is low, for the reasons discussed earlier (see Factor C discussion of predation, above).

Natural Drought

The northwestern corner of the Great Basin, where Cow Head Lake is located is subject to extended droughts, during which even the larger lakes are sometimes dry (Phillips and Van Denburgh 1971, p. B6; Negrini 2002, p. 40). Goose Lake, with an area over 100,000 acres, is located in the next basin to the west. It was recorded as essentially dry in the summers of 1846 and 1849 by early travelers, and more recently was dry in the late summers of 1926, 1929-34 and 1992 (Pease 1965, p. 30, 58; Phillips and Van Denburgh 1971, pp. 31-32; Johnson et al. 1985, p. 82). Crump Lake, which is the southernmost

lake in the Warner Basin into which Cow Head and Twelvemile Creek waters ultimately flow, also has a history of natural desiccation and sometimes goes dry for several years at a time. Also, the large, shallow Alkali lakes in Surprise Valley to the south of the Cow Head Basin are dry or nearly dry in most summers (Phillips and Van Denburgh 1971, pp. 37-38; Johnson et al. 1985, p. 180). There is no record of how frequently Cow Head Lake went dry under natural conditions. However, residents of the Cow Head Basin reported that Cow Head Lake was dry in 1908, 1912, 1923 or 1924, 1928, and from 1930-34, all prior to alteration of the lakebed (Hubbs 1934, p.1; Reid 2006a, p. 8).

In the past, the Cow Head tui chub must have survived severe droughts by occupying perennial habitat such as natural spring-fed reaches of tributary drainages and more recently, in perennial canal habitat on the lakebed. The "dustbowl" drought of the 1920– 30s appears to have been the most extreme regional drought in at least the last 270 years, and probably the last 700 years (Keen 1937, p.188; Knapp et al. 2004, p.144). The original collection of Cow Head tui chub in 1939 followed that drought. Since that time, periodic droughts have occurred every 10-20 years (Reid 2006a, p. 26-27).

A recent genetic study indicates that the population has maintained genetic diversity comparable to other stream populations of chubs, in spite of the relatively frequent constraints on its distribution and potential population size reductions caused by droughts (Chen 2006, pp. 46-48). The 2001 distribution surveys, undertaken in one of the driest years under current management regimes, showed Cow Head tui chubs were widely distributed, thus providing further evidence of the ability of the chub population to persist given availability of suitable habitat (Scoppettone and Rissler 2006, p.109; Reid 2006a, p.27).

Although it is impossible to accurately predict future climatic conditions, drought will very likely continue to play an important role in the biology of the Cow Head tui chub. Conservation of perennial spring-fed reaches in the tributary drainages and on the lakebed is, therefore, crucial to the long-term survival of the Cow Head tui chub. Public and private land managers are providing grazing management and efforts that have protected and continue to protect and enhance spring resources. We have no reason to believe this situation will change.

Although extreme natural drought has the potential to reduce the distribution of the Cow Head tui chub and its available habitat (and droughts are likely to occur periodically in the future), the chub has demonstrated considerable resiliency in its ability to survive substantial regional droughts experienced over the last century, all under the current management regime. Permanent habitat, provided by perennial spring-fed stream reaches in five subdrainages of the Cow Head Basin, including the lakebed channels, is likely to remain available in the foreseeable future.

Factor E Conclusion

As discussed above, based on the best scientific information currently available, we have determined that none of the natural or manmade factors identified as potential threats in the 1998 proposed rule (63 FR 15152, March 30, 1998), including vulnerabilities associated with local endemic species, pesticide use, nonnative competitors and natural droughts, individually or collectively rise to a level likely to threaten the Cow Head tui chub throughout all or significant portion of its range in the foreseeable future.

Finding

In making this determination, we carefully assessed the best scientific and commercial information available regarding past, present, and future threats to the Cow Head tui chub. Much of this information was developed or improved subsequent to the original 1998 proposal to list the Cow Head tui chub (63 FR 15152, March 30, 1998). As discussed under Factor A, the natural range of the Cow Head tui chub has not changed substantially since 1879. Modification of low-gradient stream habitat in the Cow Head Basin occurred primarily in the early 20th century, and there has been no substantial loss of perennial stream habitat for the Cow Head tui chub due to habitat modification. Although the character of Cow Head Lake itself has changed considerably since the 1800s, management of the Cow Head Basin has been essentially stable since the late 1930s. This is evidenced most dramatically by the fact that a large population of Cow Head tui chub has sustained itself throughout the basin (and specifically in the drainage canals on the lakebed), even following an especially severe, 16-year (1923–1938) drought when the entire lake was naturally dry. There is no reasonable expectation for substantial negative changes to the current management

regime, and habitat conditions are generally upward trending, with management by private and public land managers incorporating strategies that enhance the availability of permanent water and suitable habitat for Cow Head tui chub.

As discussed under Factor B, the Cow Head tui chub is not a commercial or recreational fish species and there are only a few documented scientific collections since 1939. Future collections for scientific purposes presumably would be limited, and overutilization is not likely to threaten the Cow Head tui chub with extinction in the foreseeable future.

As discussed under Factor C, no disease or predator currently threatens the Cow Head tui chub. Furthermore, the introduction and establishment of a disease or nonnative predator into the Cow Head Basin is not likely to occur and, in the unlikely event it were to occur, is not likely to threaten the Cow Head tui chub with extinction in the foreseeable future.

As discussed under Factor D, there are currently no recognized threats to the continued existence of the Cow Head tui chub identified under the other factors that require or would be ameliorated by further regulation. Further, the chub has persisted, with populations still occurring throughout its historic range, with the existing regulatory mechanisms. Therefore, we conclude that the possible inadequacy of existing regulatory mechanisms is not likely to threaten the Cow Head tui chub with extinction in the foreseeable future

As discussed under Factor E, we have not identified additional factors that rise to a level likely to threaten the Cow Head tui chub with extinction throughout all or a significant portion of its range. Extreme natural drought has the potential to severely constrain the distribution of the Cow Head tui chub and its available habitat as it has in the past, and droughts are likely to occur periodically in the future. However, the Cow Head tui chub has demonstrated considerable resiliency in its ability to survive substantial regional droughts experienced over the last century, all under the current management regime. Permanent habitat provided by perennial spring-fed stream reaches in five subdrainages of the Cow Head Basin is likely to remain available in the foreseeable future. Therefore, natural drought and the additional factors discussed in Factor E are not likely to threaten the Cow Head tui chub with extinction in the foreseeable future.

Based on the lack of present or foreseeable threats to its continued

existence, we have determined that the Cow Head tui chub is not likely to become in danger of extinction in the foreseeable future throughout all or a significant portion of its range (section 3(6) of the Act) and, therefore, does not meet the Act's definition of threatened or endangered. Consequently, we withdraw our 1998 proposal to list the Cow Head tui chub as endangered (63 FR 15152, March 30, 1998).

We will continue to monitor the status of the species and to accept additional information and comments from all concerned governmental agencies, the scientific community, industry, or any other interested party concerning this finding. We will reconsider this determination in the event that new information indicates that such an action is appropriate.

References Cited

A complete list of all references cited is available at the Service's Klamath Falls Fish and Wildlife Office (see ADDRESSES).

Author

The primary authors of this notice are the staff of the Service's Klamath Falls Fish and Wildlife Office (see **ADDRESSES** above).

Authority

The authority of this action is section 4(b)(6)(B)(ii) of the Endangered Species Act of 1973 (16 U.S.C. 1531 *et seq.*).

Dated: September 28, 2006.

Marshall Jones,

Acting Director, U.S. Fish and Wildlife Service.

[FR Doc. E6–16544 Filed 10–10–06; 8:45 am] BILLING CODE 4310–55–P

DEPARTMENT OF THE INTERIOR

Fish and Wildlife Service

50 CFR Part 17

Endangered and Threatened Wildlife and Plants; Revised 12-Month Finding for the Beaver Cave Beetle (Pseudanophthalmus major)

AGENCY: Fish and Wildlife Service, Interior.

ACTION: Notice of revised 12-month petition finding.

SUMMARY: We, the U.S. Fish and Wildlife Service (Service), announce our revised 12-month finding for a petition to list the Beaver Cave beetle (*Pseudanophthalmus major*) under the Endangered Species Act (Act) of 1973 (16 U.S.C. 1531 *et seq.*). After a review

of the best available scientific and commercial information, we conclude that this species is not likely to become an endangered or threatened species within the foreseeable future throughout all or a significant portion of its range. Therefore, we find that proposing a rule to list the species is not warranted, and we no longer consider it to be a candidate species for listing. However, the Service will continue to seek new information on the taxonomy, biology, and ecology of this species, as well as potential threats to its continued existence.

DATES: This finding was made on October 11, 2006. Although no further action will result from this finding, we request that you submit new information concerning the taxonomy, biology, ecology, and status of the Beaver Cave beetle, as well as potential threats to its continued existence, whenever such information becomes available.

ADDRESSES: The complete file for this finding is available for inspection, by appointment and during normal business hours, at the U.S. Fish and Wildlife Service, 3761 Georgetown Road, Frankfort, Kentucky 40601. Submit new information, materials, comments, or questions concerning this species to us at the same address.

FOR FURTHER INFORMATION CONTACT: Dr. Michael A. Floyd, Kentucky Ecological Services Field Office at the address listed above, by telephone at 502–695–0468, by facsimile at 502–695–1024, or by e-mail at *mike_floyd@fws.gov*.

SUPPLEMENTARY INFORMATION:

Background

The Act provides two mechanisms for considering species for listing. One method allows the Secretary, on his own initiative, to identify species for listing under the standards of section 4(a)(1). We implement this through an assessment process to identify species that are candidates for listing, which means we have on file sufficient information on biological vulnerability and threats to support a proposal to list the species as endangered or threatened, but for which preparation and publication of a proposal is precluded by higher-priority listing actions. Using this process, we identified the Beaver Cave beetle as a candidate for listing in 2001 and included it in the Candidate Notice of Review (CNOR) published in the Federal Register on October 30, 2001 (66 FR 54808). In subsequent CNORs that we published on June 13, 2002 (67 FR 40657), May 4, 2004 (69 FR 24875), and May 11, 2005 (70 FR 24870), we continued to recognize this

species as a candidate for listing based on updated assessments of its status. We also published a CNOR on September 12, 2006 (71 FR 53755), which maintained the species as a candidate for listing because we had not yet finalized this, our most current review of the species.

A second mechanism that the Act provides for considering species for listing is for the public to petition us to add a species to the Federal Lists of Threatened or Endangered Species (Lists) found at 50 CFR 17.11 (animals) and § 17.12 (plants). Under section 4(b)(3)(A), when we receive such a petition, we must determine within 90 days, to the extent practicable, whether the petition presents substantial scientific or commercial information that listing may be warranted (a "90-day finding"). If we make a positive 90-day finding, we must promptly commence a status review of the species and under section 4(b)(3)(B), we must make and publish one of three possible findings within 12 months of receipt of such a petition (a "12-month finding"):

1. The petitioned action is not warranted;

2. The petitioned action is warranted (in which case we are to promptly publish a proposed regulation to implement the petitioned action); or

3. The petitioned action is warranted but (a) the immediate proposal of a regulation and final promulgation of a regulation implementing the petitioned action is precluded by pending proposals, and (b) expeditious progress is being made to add qualified species to the Lists (i.e., a "warranted but precluded" 12-month petition finding). Our standard for making a species a candidate through our own initiative is identical to the standard for making a "warranted but precluded" 12-month petition finding.

On May 11, $\check{2}004$, the Service received a petition from the Center for Biological Diversity to list 225 species we previously had identified as candidates for listing, including the Beaver Cave beetle. Pursuant to requirements in section 4(b)(3)(B) of the Act, the CNOR and Notice of Findings on Resubmitted Petitions published by the Service on May 11, 2005 (70 FR 24870) included a finding that the immediate issuance of a proposed listing rule and the timely promulgation of a final rule for each of these petitioned species, including the Beaver Cave beetle, was warranted but precluded by higher priority listing actions, and that expeditious progress was being made to add qualified species to the Lists.

Section 4(b)(3)(C)(i) of the Act directs that when we make a "warranted but

precluded" finding on a petition, we are to treat the petition as being one that is resubmitted annually on the date of the finding; thus the Act requires us to reassess the petitioned actions and to publish a finding on the resubmitted petition on an annual basis. We included a "warranted but precluded" finding on the resubmitted petition on the Beaver Cave beetle in the CNOR and Notice of Findings on Resubmitted Petitions published in the Federal Register on September 12, 2006 (71 FR 53755). The resubmitted petition finding was based on an assessment of the Beaver Cave beetle that covered information available as of October 2005. Although we typically make the annual finding for petitioned candidate species through the CNOR, we are not required to wait a full year to reassess the status of such species and may publish a revised petition finding separately from the CNOR. That is what we are doing in this situation.

As a result of new information regarding conservation efforts for the Beaver Cave beetle, we have completed a reassessment of its status (FWS 2006a). The updated assessment document is available from our Kentucky Ecological Services Field Office (see ADDRESSES, above). This resubmitted 12-month finding evaluates new information, as described in the species assessment and related documents referenced in it, and reevaluates previously-acquired information.

Species Information

The Beaver Cave beetle (Pseudanophthalmus major) was described by Krekeler (1973) from 3 specimens collected from Beaver Cave, Harrison County, Kentucky by T.C. Barr and J.R. Holsinger in 1966. Cave beetles in the genus Pseudanophthalmus are small, eyeless, reddish-brown insects that belong to the predatory ground beetle family Carabidae. Like most other insects, they have six legs and a body that consists of a head, thorax, and abdomen. Body length is generally from 3.0 to 8.0 millimeters (mm) (0.12 to 0.32 inches), depending upon the species. Maximum body length for the Beaver Cave beetle is 8 mm. According to Barr (1996), the genus *Pseudanophthalmus* is represented by approximately 255 species. The different species within the genus are differentiated by differences in the shape and size of the various body parts, especially the shape of the male appendages used during reproduction. Most members of the genus are cave dependent (troglobites) and are not found outside the cave environment. All are predatory and feed

upon small cave invertebrates such as spiders, mites, millipedes, and diplurans, while the larger *Pseudanophthalmus* species also feed on cave cricket eggs (Barr 1996). Members of this genus vary in rarity from fairly common, widespread species that are found in many caves to species that are extremely rare and restricted to only one cave, such as the Beaver Cave beetle.

Little detailed life history information is available for the rarest of the cave beetles, including the Beaver Cave beetle. However, the generalized summary that follows is accurate for the more common and more easily studied species and is believed to also apply to the rarer species (Barr 1998). Cave beetles copulate in the fall, and the eggs are deposited in the cave soil during late fall. The eggs hatch and larvae appear in late fall through early winter. Pupation occurs in late winter to early summer with the adult beetles emerging in early summer (Barr 1996).

The limestone caves in which these cave beetles are found provide a unique and fragile environment that supports a variety of species that have evolved to survive and reproduce under the demanding conditions found in cave ecosystems. No photosynthesis takes place within the dark zone of a cave. Therefore, all organisms that are adapted to life within a cave are dependent upon energy from the surface. This energy can be in the form of leaf litter, woody debris or small bits of organic matter that is washed or falls into the cave, or guano deposited by cave-dependent bats that feed on the surface and return to the cave to roost (Barr 1996).

The Beaver Cave beetle is restricted to Beaver Cave, a limestone cave located in the Bluegrass Region of central Kentucky. There are no other caves in the vicinity of Beaver Cave, and the Beaver cave beetle has not been found at any other locations. The only known entrance to Beaver Cave is located in an open pasture and hillside of a dairy farm in eastern Harrison County. The cave generally trends northeastward from its entrance for approximately 350 meters before terminating in a breakdown (i.e., a portion of the cave where the ceiling has collapsed) (Laudermilk 2006). Most of Beaver Cave is comprised of a simple, narrow passage approximately 1 meter wide and 2.5 meters high. However, there are several larger rooms present, and there are multiple levels in a few places (Laudermilk 2006). A more extensive description of the cave can be found in Barr (1996).

Conservation Efforts

The Service's Partners for Fish and Wildlife (Partners) Program (Kentucky Ecological Services Field Office) began working with the owner of the Beaver Cave property in 2002, and other partners (Kentucky Department of Fish and Wildlife Resources (KDFWR), Natural Resource Conservation Service (NRCS), Farm Service Agency (FSA), Kentucky State Nature Preserves Commission, and Kentucky Division of Forestry) soon thereafter, to implement projects that would conserve Beaver Cave and the species that occupy it and in order to eliminate the threats to the Beaver Cave beetle and its habitat or reduce them to the point that listing was no longer warranted. The Partners Program coordinated several conservation efforts that were planned and implemented through five interrelated agreements/contracts between the landowner and the agencies listed above: (a) A Partners Program 15-year Wildlife Habitat Enhancement Agreement; (b) a Continuous Conservation Reserve Program (CCRP) 15-year contract through FSA; (c) a Wildlife Habitat Incentives Program (WHIP) 15-year contract through NRCS; and (d) two Landowner Incentive Program (LIP) 10-year agreements through KDFWR. These projects were initiated in the summer of 2003 and fully implemented by fall of 2005. Collectively, these agreements and contracts encompassed three general conservation efforts: (1) Maintain Beaver Cave and the landowner's surrounding property in a manner that (a) reduces or eliminates sediment and animal waste within the cave's watershed by excluding cattle from the cave entrance with fencing, developing and implementing a rotational grazing program, and installing hardened stream crossings and heavy use areas, and (b) establishes and maintains a forested buffer around the entrance to Beaver Cave; (2) construct and maintain the metal gate at the entrance to Beaver Cave; and (3) control and limit access to Beaver Cave and the landowner's surrounding property.

Many aspects of the conservation efforts identified in the five inter-related agreements are on-going, such as maintenance of the gate and control of access into the cave, and others have already been implemented (e.g., exclusion of cattle, construction of the cave gate, tree plantings, hardened stream crossings). Based on our evaluation of each of the three conservation efforts using the criteria provided in the Policy for Evaluation of Conservation Efforts When Making

Listing Decisions (PECE) (68 FR 15100), we have determined that each of the three efforts is sufficiently certain to be implemented and effective so as to have contributed to the elimination or reduction of threats to the species (FWS 2006b). Therefore, the Service can consider these conservation efforts in making a determination as to whether the Beaver Cave beetle meets the Service's definition of a threatened or endangered species.

Discussion of Listing Factors

Section 4 of the Act and implementing regulations at 50 CFR part 424 set forth procedures for adding species to the Lists. A species may be determined to be an endangered or threatened species based on the applicability of one or more of the five factors described in section 4(a)(1). These factors and their application to the Beaver Cave beetle are summarized below.

A. The Present or Threatened Destruction, Modification, or Curtailment of Its Habitat or Range

In our initial assessment of the Beaver Cave beetle in 2001, we identified this species as a candidate for listing due to the present and threatened destruction and modification of its habitat (66 FR 54800). The activities contributing to this threat factor have now been addressed, as summarized below.

In our initial 2001 assessment and subsequent CNORs and petition findings, we identified and recognized a potential risk of destruction or modification of the cave environment (the species' habitat) which could occur as a result of (1) polluted runoff from the farm operation, specifically animal waste, sediment, or spills of toxic materials in the watershed in which the cave occurs; and (2) unauthorized human entry to Beaver Cave (i.e., trash dumping, vandalism, physical habitat disturbance, and trampling of beetles). We now have determined that the potential risk of polluted stormwater runoff is limited, because these pollutants have been significantly reduced through full implementation of the CCRP contracts, LIP agreement, and Partners agreement specified above. These contracts and agreements and subsequent conservation efforts have eliminated these threats or reduced them to a point that any negative effects are unexpected or would be insignificant to the point that this listing factor no longer applies. The reduction in threats has been accomplished through the installation of two heavyuse feeding areas that are away from the cave and its entrance and associated

exclusion fencing, the development of a rotational grazing program that concentrates cattle away from the cave entrance and its watershed, and the installation of a hardened stream crossing within the Beaver Cave watershed. Also, these agreements and contracts provided funding for cattle exclusion fencing and native vegetation plantings surrounding the cave entrance, thereby protecting it from cattle disturbance and establishing a natural filter (barrier) for any potential non-point source pollutants that could potentially enter the cave during storm events. Toxic material spills from external sources are improbable, because the Beaver Cave watershed is small and not in an area where toxic chemicals are produced or stored, nor is there likely to be transport of toxic materials in the area due to the rural nature of the surrounding area. A trash and debris-filled sinkhole that is connected to Beaver was also unclogged and cleaned, providing further protection against contamination of the underground drainage basin.

To address the unlawful human trespass, trash dumping, vandalism, and habitat degradation of Beaver Cave, a bat-friendly cave gate was constructed just inside the cave entrance in 2004. The WHIP contract provided 53 percent of the funding for the cave gate construction, and the remaining 47 percent was obtained through a second LIP agreement. Under these agreements and contracts, unlawful entry to Beaver Cave is prevented, and the landowner has assumed responsibility for maintaining and inspecting the gate. This includes periodic inspections of the gate, taking necessary steps to repair the gate as needed, and ensuring the gate does not become blocked with rock or other debris that would block access to the cave for native bats or other species or prevent organic matter from entering the cave. Bat guano and other organic matter from the surface are important components of energy flow for the cave environment. Fencing has been erected around an approximate 1-acre area containing the entrance to Beaver Cave to promote the development of natural habitat around the cave entrance, provide further protection to the property, and control access to the cave entrance. These actions promote energy flow and eliminate the threats from dumping, vandalism, and unauthorized trespass such that this listing factor no longer applies.

Many aspects of these conservation efforts are on-going, such as the growth and monitoring of the riparian plantings, maintenance of the cave gate, and control of access into the cave, but all of the primary habitat restoration and protection efforts (e.g., cave gate construction, fencing and subsequent cattle exclusion, hardened feeding areas, tree plantings, sinkhole clean-up) have already been completed.

Based on the information summarized above, the Beaver Cave beetle is not threatened by the present or threatened destruction, modification, or curtailment of its habitat or range.

B. Overutilization for Commercial, Recreational, Scientific, or Educational Purposes

We have no evidence of overutilization of the Beaver Cave beetle in the past for commercial, recreational, scientific, or educational purposes, and have no information that suggests such a threat exists in the foreseeable future. Under the inter-related agreements specified above, collection for scientific purposes would be allowed only with the permission of the landowner and the Service. The cave has been used for recreational purposes by spelunkers and by passive recreationists in the past, but placement of the locked metal gate across the cave entrance in 2004 has effectively eliminated such uses. Further, through maintenance of the metal gate at the cave entrance, as required by the LIP agreement and WHIP contract, all unauthorized access to the cave is prevented. Based on these considerations, overutilization for commercial, recreational, scientific, or educational purposes is not a threat to the species.

C. Disease or Predation

Disease and predation are not known to be threats for this species and are, instead, a normal part of its life history. Mortality from disease or predation likely occurs but has not eliminated this species in the past, and we have no reason to expect disease or predation to pose a substantial risk to the species in the future. Based on these considerations, disease or predation is not a threat to the species.

D. The Inadequacy of Existing Regulatory Mechanisms

Although the Beaver Cave beetle is listed as endangered in Kentucky by the

Kentucky State Nature Preserves Commission, such listings provide no substantive protection under the current Kentucky law. However, there are no foreseeable reasons why specific regulatory mechanisms are necessary to ensure the conservation of this species, because the landowner and the involved agencies have committed to and are implementing various conservation efforts to protect Beaver Cave and the Beaver Cave beetle. These include, but are not limited to, strictly controlling access to the cave and the property surrounding the cave opening and restoring and enhancing the vegetation communities surrounding the cave and in its watershed. The metal gate is effective in preventing unauthorized entry into the cave, and as described above, the landowner has committed to and is implementing measures to strictly control access to the cave. Based on these considerations, the inadequacy of existing regulatory mechanisms is not a threat to the species.

E. Other Natural or Manmade Factors Affecting Its Continued Existence

Populations of this beetle species are restricted to Beaver Cave and are generally thought to be represented by a small number of individuals. Although this is a natural situation, their limited distribution and numbers make this species vulnerable to extirpation due to effects from various manmade factors, such as spills of toxic substances, non-point source pollutants, and habitat-related damage, as described above under Factor A. As described above, the conservation efforts included in the five inter-related agreements summarized above have removed or substantially reduced these habitatrelated risks. Small population sizes for these species may also limit the natural interchange of genetic material within the population, which could affect longterm genetic and population viability. However, this is an endemic species that has persisted over time (i.e., from at least the time of its discovery to the present time) and under conditions that were worse than the current, moreprotective situation despite the perceived risks of limited genetic interchange. For the reasons described above, the Beaver Cave beetle is not

threatened by other natural or humancaused factors.

Revised Petition Finding

We have carefully assessed the best scientific and commercial information available regarding the past, present, and future threats faced by the Beaver Cave beetle.

We have evaluated the threats to the Beaver Cave beetle and considered factors that, individually and in combination, presently or potentially could pose a risk to the species and its habitat. We conclude that listing this species under the Act is not warranted, because the species is not likely to become an endangered or threatened species within the foreseeable future throughout all or a significant portion of its range. This species no longer meets our definition of a candidate and is removed from candidate status.

We will continue to monitor the status of the Beaver Cave beetle, and to accept additional information and comments from all concerned governmental agencies, the scientific community, industry, or any other interested party concerning this finding. We will reconsider this determination in the event that new information indicates that the threats to this species are of a considerably greater magnitude or imminence than identified here.

References

A complete list of all references cited herein is available upon request from the Kentucky Ecological Services Field Office, U.S. Fish and Wildlife Service (see ADDRESSES).

Author

The primary author of this finding is Dr. Michael A. Floyd, U.S. Fish and Wildlife Service (see ADDRESSES).

Authority

The authority for this action is the Endangered Species Act of 1973 (16 U.S.C. 1531 *et seq.*).

Dated: September 28, 2006.

Marshall Jones,

Acting Director, Fish and Wildlife Service.
[FR Doc. E6–16540 Filed 10–10–06; 8:45 am]
BILLING CODE 4310–55–P

Notices

Federal Register

Vol. 71, No. 196

Wednesday, October 11, 2006

This section of the FEDERAL REGISTER contains documents other than rules or proposed rules that are applicable to the public. Notices of hearings and investigations, committee meetings, agency decisions and rulings, delegations of authority, filing of petitions and applications and agency statements of organization and functions are examples of documents appearing in this section.

DEPARTMENT OF AGRICULTURE

Submission for OMB Review; Comment Request

October 4, 2006.

The Department of Agriculture has submitted the following information collection requirement(s) to OMB for review and clearance under the Paperwork Reduction Act of 1995, Public Law 104–13. Comments regarding (a) whether the collection of information is necessary for the proper performance of the functions of the agency, including whether the information will have practical utility; (b) the accuracy of the agency's estimate of burden including the validity of the methodology and assumptions used; (c) ways to enhance the quality, utility and clarity of the information to be collected; (d) ways to minimize the burden of the collection of information on those who are to respond, including through the use of appropriate automated, electronic, mechanical, or other technological collection techniques or other forms of information technology should be addressed to: Desk Officer for Agriculture, Office of Information and Regulatory Affairs, Office of Management and Budget (OMB),

OIRA_Submission@OMB.EOP.GOV or fax (202) 395–5806 and to Departmental Clearance Office, USDA, OCIO, Mail Stop 7602, Washington, DC 20250–7602. Comments regarding these information collections are best assured of having their full effect if received within 30 days of this notification. Copies of the submission(s) may be obtained by calling (202) 720–8958.

An agency may not conduct or sponsor a collection of information unless the collection of information displays a currently valid OMB control number and the agency informs potential persons who are to respond to the collection of information that such persons are not required to respond to

the collection of information unless it displays a currently valid OMB control number.

Food and Nutrition Service

Title: Summer Food Service Program Claim for Reimbursement.

OMB Control Number: 0584-0041. Summary of Collection: The Summer Food Service Program Claim for Reimbursement Form is used to collect meal and cost data from sponsors to determine the reimbursement entitlement for meals served. The form is sent to the Food and Nutrition Service's (FNS) Regional Offices where it is entered into a computerized payment system. The payment system computes earnings to date and the number of meals to date and generates payments for the amount of earnings in excess of prior advance and claim payments. To fulfill the earned reimbursement requirements set forth in the Summer Food Service Program Regulations issued by the Secretary of Agriculture (7 CFR 225.9), the meal and cost data must be collected on the FNS-143, Claim for Reimbursement form.

Need and Use of the Information: FNS will collect information to manage, plan, evaluate, and account for government resources. The reports and records are required to ensure the proper and judicious use of public funds. If the information is not collected on the claim form, the sponsor could not receive reimbursement.

Description of Respondents: Not-forprofit institutions.

Number of Respondents: 123. Frequency of Responses: Recordkeeping; Reporting: Other (5 per year).

Total Burden Hours: 423.

Ruth Brown,

Departmental Information Collection Clearance Officer.

[FR Doc. E6–16724 Filed 10–10–06; 8:45 am] **BILLING CODE 3410–30–P**

DEPARTMENT OF AGRICULTURE

Submission for OMB Review; Comment Request

October 5, 2006.

The Department of Agriculture has submitted the following information collection requirement(s) to OMB for review and clearance under the Paperwork Reduction Act of 1995, Public Law 104-13. Comments regarding (a) whether the collection of information is necessary for the proper performance of the functions of the agency, including whether the information will have practical utility; (b) the accuracy of the agency's estimate of burden including the validity of the methodology and assumptions used; (c) ways to enhance the quality, utility and clarity of the information to be collected; (d) ways to minimize the burden of the collection of information on those who are to respond, including through the use of appropriate automated, electronic, mechanical, or other technological collection techniques or other forms of information technology should be addressed to: Desk Officer for Agriculture, Office of Information and Regulatory Affairs, Office of Management and Budget (OMB),

OIRA_Submission@OMB.EOP.GOV or fax (202) 395–5806 and to Departmental Clearance Office, USDA, OCIO, Mail Stop 7602, Washington, DC 20250–7602. Comments regarding these information collections are best assured of having their full effect if received within 30 days of this notification. Copies of the submission(s) may be obtained by calling (202) 720–8681.

An agency may not conduct or sponsor a collection of information unless the collection of information displays a currently valid OMB control number and the agency informs potential persons who are to respond to the collection of information that such persons are not required to respond to the collection of information unless it displays a currently valid OMB control number.

National Agricultural Statistics Service

Title: Honey Survey.

OMB Control Number: 0535–0153.

Summary of Collection: The National Agricultural Statistics Service (NASS) primary function is to prepare and issue State and national estimates of crop and livestock production. General authority for these data collection activities is granted under U.S. Code Title 7, Section 2204. Domestic honeybees are critical to the pollination of U.S. crops, especially fruits and vegetables. Africanized bees, parasites, diseases, and pesticides threaten the survival of bees. Programs are provided by federal, State and local governments to assist in the survival of

bees and to encourage beekeepers to maintain bee colonies.

Need and Use of the Information: NASS will collect information on the number of colonies, honey production, stocks, and prices. The survey will provide data needed by the Department and other government agencies to administer programs and to set trade quotas and tariffs. Without the information agricultural industry would not be aware of changes at the State and national level.

Description of Respondents: Farms. Number of Respondents: 5,281. Frequency of Responses: Reporting: Annually.

Total Burden Hours: 790.

Charlene Parker,

Departmental Information Collection Clearance Officer.

[FR Doc. E6–16725 Filed 10–10–06; 8:45 am] BILLING CODE 3410–20–P

DEPARTMENT OF AGRICULTURE

Submission for OMB Review; Comment Request

October 4, 2006.

The Department of Agriculture has submitted the following information collection requirement(s) to OMB for review and clearance under the Paperwork Reduction Act of 1995, Public Law 104–13. Comments regarding (a) whether the collection of information is necessary for the proper performance of the functions of the agency, including whether the information will have practical utility; (b) the accuracy of the agency's estimate of burden including the validity of the methodology and assumptions used; (c) ways to enhance the quality, utility and clarity of the information to be collected; (d) ways to minimize the burden of the collection of information on those who are to respond, including through the use of appropriate automated, electronic, mechanical, or other technological collection techniques or other forms of information technology should be addressed to: Desk Officer for Agriculture, Office of Information and Regulatory Affairs, Office of Management and Budget (OMB),

OIRA_Submission@OMB.EOP.GOV or fax (202) 395–5806 and to Departmental Clearance Office, USDA, OCIO, Mail Stop 7602, Washington, DC 20250–7602. Comments regarding these information collections are best assured of having their full effect if received within 30 days of this notification. Copies of the submission(s) may be obtained by calling (202) 720–8681.

An agency may not conduct or sponsor a collection of information unless the collection of information displays a currently valid OMB control number and the agency informs potential persons who are to respond to the collection of information that such persons are not required to respond to the collection of information unless it displays a currently valid OMB control number.

Forest Service

Title: Forest Industries Data Collection System.

OMB Control Number: 0596-0010. Summary of Collection: The Forest and Range Renewable Resources Planning Act of 1974 and the Forest and Rangeland Renewable Resources Research Act of 1978 require the Forest Service (FS) to evaluate trends in the use of logs and wood chips, to forecast anticipated levels of logs and wood chips, and to analyze changes in the harvest of the resources. Forest product and other wood-using industries are important to state, regional, and national economies. In most southern states, the value of rounded timber products is ranked either first or second in relation to other major agricultural crops. The importance and value of the timber products industry is significant in other regions of the United States as well. The FS will collect information using questionnaires.

Need and Use of the Information: FS will collect information to monitor the types, species, volumes, sources, and prices of the timber products harvested throughout the Nation. The data will be used to develop specific economic development plans for a new forestrelated industry in a State and to assist existing industries in identifying raw material problems and opportunities. If the information were not collected, data would not be available for sub-state, state, regional, and national policy makers and program developers to make decisions related to the forestland on a scientific basis.

Description of Respondents: Business or other for-profit; Not-for-profit institutions.

Number of Respondents: 1,816. Frequency of Responses: Reporting: On occasion; Annually.

Total Burden Hours: 1,462.

Forest Service

Title: Application for Permit, Non-Federal Commercial Use of Roads Restricted by Order.

OMB Control Number: 0596–0016. Summary of Collection: The Forest Service (FS) transportation system includes approximately 380,000 miles

of roads. These roads are grouped into five maintenance levels. Level one includes roads, which are closed and maintained only to protect the environment. Level of maintenance increase to level five, which is maintained for safe passenger car use. The roads usually provide the only access to commercial products including timber and minerals found on both Federal and private lands within and adjacent to National Forests. Annual maintenance not performed becomes a backlog that creates a financial burden for the FS. To remedy the backlog and pay for needed maintenance the FS requires commercial users to apply and pay for a permit to use the FS Road System. Maintenance resulting from commercial use is accomplished through collection of funds or requiring the commercial users to perform the maintenance. The vehicle for this is the Road Use Permit. The authority for the Road Use Permit process comes from 36 CFR 212.5, 36 CFR 212.9 and 36 CFR 261.54 Section 212.9 authorizes the FS to develop a road system with private in holders that is mutually beneficial to both parties.

Need and Use of the Information: Persons wishing to haul commercial will use form, FS 7700-40. The form provides identifying information about the applicant such as, the name; address; and telephone number; description of mileage of roads; purpose of use; use schedule; and plans for future use. FS will use the information to prepare the applicant's permit, to identify the road maintenance that is the direct result of the applicant's traffic, to calculate any applicable collections for recovery of past Federal investments in roads and assure that the requirements are met. Without the Road Use Permit, the backlog of maintenance would increase and the FS would have great difficulty providing the transportation system necessary to meet our mission.

Description of Respondents: Business or other for-profit; Individuals or households; State, Local or Tribal Government; Not-for-profit institutions.

Number of Respondents: 2000.

Frequency of Responses: Reports

Frequency of Responses: Reporting: On occasion.

Total Burden Hours: 500.

Charlene Parker,

Departmental Information Collection Clearance Officer.

[FR Doc. E6–16726 Filed 10–10–06; 8:45 am] BILLING CODE 3410–11–P

DEPARTMENT OF AGRICULTURE

Submission for OMB Review; Comment Request

October 4, 2006.

The Department of Agriculture has submitted the following information collection requirement(s) to OMB for review and clearance under the Paperwork Reduction Act of 1995, Public Law 104-13. Comments regarding (a) whether the collection of information is necessary for the proper performance of the functions of the agency, including whether the information will have practical utility; (b) the accuracy of the agency's estimate of burden including the validity of the methodology and assumptions used; (c) ways to enhance the quality, utility and clarity of the information to be collected; (d) ways to minimize the burden of the collection of information on those who are to respond, including through the use of appropriate automated, electronic, mechanical, or other technological collection techniques or other forms of information technology should be addressed to: Desk Officer for Agriculture, Office of Information and Regulatory Affairs, Office of Management and Budget (OMB),

OIRA_Submission@OMB.EOP.GOV or fax (202) 395–5806 and to Departmental Clearance Office, USDA, OCIO, Mail Stop 7602, Washington, DC 20250–7602. Comments regarding these information collections are best assured of having their full effect if received within 30 days of this notification. Copies of the submission(s) may be obtained by calling (202) 720–8681.

An agency may not conduct or sponsor a collection of information unless the collection of information displays a currently valid OMB control number and the agency informs potential persons who are to respond to the collection of information that such persons are not required to respond to the collection of information unless it displays a currently valid OMB control number.

Rural Housing Service

Title: 7 CFR Part 1924-A, Planning and Performing Construction and Other Development.

OMB Control Number: 0575–0042. Summary of Collection: The Rural Housing Service (RHS) is the credit agency for rural housing and community development within the Rural Development mission area of the United States Department of Agriculture. RHS offers a supervised credit program to build modest housing and essential community facilities in rural areas. Section 501 of Title V of the Housing Act of 1949, authorizes the Secretary of Agriculture to extend financial assistance to construct, improve, alter, repair, replace, or rehabilitate dwellings, farm buildings and/or related facilities to provide decent, safe sanitary living conditions and adequate farm building and other structures in rural areas.

Need and Use of the Information: RHS provides several forms to assist in the collection and submission of information. The information will be used to determine whether a loan/grant can be approved; to ensure that RHS has adequate security for the loans financed; to monitor compliance with the terms and conditions of the agency loan/grant and to monitor the prudent use of Federal funds. If the information is not collected and submitted, RHS would have no control over the type and quality of construction and development work planned and performed with Federal funds.

Description of Respondents: Individuals or households; Business or other for-profit; Not-for-profit institutions: Farms.

Number of Respondents: 25,340. Frequency of Responses: Recordkeeping; Report: On occasion. Total Burden Hours: 117,858.

Charlene Parker.

Departmental Information Collection Clearance Officer.

[FR Doc. E6–16727 Filed 10–10–06; 8:45 am] BILLING CODE 3410-XT-P

DEPARTMENT OF AGRICULTURE

Submission for OMB Review; Comment Request

October 5, 2006.

The Department of Agriculture has submitted the following information collection requirement(s) to OMB for review and clearance under the Paperwork Reduction Act of 1995, Public Law 104-13. Comments regarding (a) Whether the collection of information is necessary for the proper performance of the functions of the agency, including whether the information will have practical utility; (b) the accuracy of the agency's estimate of burden including the validity of the methodology and assumptions used; (c) ways to enhance the quality, utility and clarity of the information to be collected; (d) ways to minimize the burden of the collection of information on those who are to respond, including through the use of appropriate automated, electronic, mechanical, or

other technological collection techniques or other forms of information technology should be addressed to: Desk Officer for Agriculture, Office of Information and Regulatory Affairs, Office of Management and Budget (OMB),

OIRA_Submission@OMB.EOP.GOV or fax (202) 395–5806 and to Departmental Clearance Office, USDA, OCIO, Mail Stop 7602, Washington, DC 20250–7602. Comments regarding these information collections are best assured of having their full effect if received within 30 days of this notification. Copies of the submission(s) may be obtained by calling (202) 720–8681.

An agency may not conduct or sponsor a collection of information unless the collection of information displays a currently valid OMB control number and the agency informs potential persons who are to respond to the collection of information that such persons are not required to respond to the collection of information unless it displays a currently valid OMB control number.

Rural Business Service

Title: Intermediary Re-lending Program.

OMB Control Number: 0570–0021. Summary of Collection: The objective of the Intermediary Relending Program (IRP) is to improve community facilities and employment opportunities and increase economic activity in rural areas by financing business facilities and community development. This purpose is achieved through loans made by the Rural Business-Cooperative Service (RBS) to intermediaries that establish programs for the purpose of providing loans to ultimate recipients for business facilities and community development. The Food Security Act of 1985 provides USDA with the authority to make loans to nonprofit entities who will in turn provide financial assistance to rural businesses to improve business, industry and employment opportunities as well as provide a diversification of the economy in rural areas.

Need and Use of the Information: The information requested is necessary for RBS to process applications in a responsible manner, make prudent credit and program decisions, and effectively monitor the intermediaries' activities to protect the Government's financial interest and ensure that funds obtained from the Government are used appropriately. Various forms are used to include information to identify the intermediary, describe the intermediary's experience and expertise, describe how the intermediary will operate its revolving loan fund, provide

for debt instruments, loan agreements, and security, and other material necessary for prudent credit decisions and reasonable program monitoring.

Description of Respondents: Not-forprofit institutions; Business or other forprofit.

Number of Respondents: 202. Frequency of Responses: Reporting: On occasion.

Total Burden Hours: 17,959.

Charlene Parker,

Departmental Information Collection Clearance Officer.

[FR Doc. E6–16752 Filed 10–10–06; 8:45 am] BILLING CODE 3410-XT-P

DEPARTMENT OF AGRICULTURE

Farm Service Agency

Finding of No Significant Impact

AGENCY: Farm Service Agency, USDA.
SUMMARY: The Farm Service Agency
(FSA) is issuing a Finding of No
Significant Impact (FONSI) consistent
with the National Environmental Policy
Act of 1969 with respect to the
implementation of the following
Disaster Assistance Programs: (1)
Hurricane Indemnity Program, (2) Feed
Indemnity Program, (3) Livestock
Indemnity Program, (4) Tree Indemnity
Program, and (5) Aquaculture Grant
Program as well as (6) the 2006
Livestock Assistance Grant Program.

DATES: This action is effective November 13, 2006.

ADDRESSES: The Final Programmatic Environmental Assessment and FONSI may be reviewed at http://www.fsa.usda.gov/dafp/cepd/epb/assessments.htm. Written comments should be directed to Mike Linsenbigler, USDA/FSA/CEPD/Stop 0513, 1400 Independence Ave., SW., Washington, DC 20250–0513. Electronic comments may be submitted to

Mike.Linsenbigler@wdc.usda.gov. Persons with disabilities who require alternative means for communication (Braille, large print, audio tape, etc.) should contact the USDA Target Center at (202) 720–2600 (voice and TDD).

SUPPLEMENTARY INFORMATION: FSA prepared a Final Programmatic Environmental Assessment for disaster assistance programs supporting production loss and damage caused by damaging weather that occurred between 2005 and 2006. Consistent with the National Environmental Policy Act of 1969, as amended (42 U.S.C. 4321, et seq.) (NEPA), the Council on Environmental Quality (CEQ) Regulations for Implementing the

Procedural Provisions of NEPA (40 CFR parts 1500-1508), and FSA's policy and procedures (7 CFR part 799), FSA is issuing a Finding of No Significant Impact (FONSI) with respect to the implementation of the Proposed Action under consideration here. These actions involve 2005-2006 disaster assistance programs that solely transfer funds to offset production and disaster related losses with no site-specific or grounddisturbing actions occurring as an immediate result of implementing these programs. These programs include the following Disaster Assistance Programs: (1) Hurricane Indemnity Program, (2) Feed Indemnity Program, (3) Livestock Indemnity Program, (4) Tree Indemnity Program, (5) Aquaculture Grant Program, and (6) the 2006 Livestock Assistance Grant Program. Because normal agricultural related production was hindered by the widespread and significant destruction caused by the 2005 hurricanes and the severe droughts occurring from March 7, 2006, to August 31, 2006, the Secretary is responding by utilizing the equivalent of 30 percent of annual customs revenues available under Section 32 to restore purchasing power to affected eligible producers.

Current disaster programs operated by USDA and other Federal and State agencies do not fully cover the types of loss and destruction experienced by a majority of producers within the States affected by these hurricanes and drought. Without the immediate financial assistance provided by these programs, producers would face delays and experience additional financial hardships in their efforts to return their farming or livestock operations to predisaster or pre-drought levels.

Under the Proposed Action
Alternative, FSA would disburse up to
\$300 million either through direct
payments to eligible producers or
through grants administered by State
agencies for the grant programs. In
making direct payments, FSA does not
require that payments be used for
specific purposes. These programs
solely provide payments to eligible
producers for weather-related losses.
The direct-payment programs are based
on the producers documenting the type
and amount of the weather-related loss.

Determination: In consideration of the analysis documented in the Final Programmatic Environmental Assessment and the reasons outlined in this FONSI, the preferred alternative would not constitute a major State or Federal action that would significantly affect the human environment. In accordance with the National Environmental Policy Act regulations at 40 CFR part 1502.4, "Major Federal

actions requiring the preparation of Environmental Impact Statements," and 7 CFR Part 799, "Environmental Quality and Related Environmental Concerns—Compliance with NEPA implementing the regulations of the Council on Environmental Quality," and 40 CFR parts 1500–1508, I find that neither the proposed action nor any of the alternatives analyzed constitute a major Federal action significantly affecting the quality of the human environment. Therefore, no environmental impact statement will be prepared.

Signed in Washington DC on October 2, 2006.

Glen L. Keppy,

Acting Administrator, Farm Service Agency. [FR Doc. E6–16734 Filed 10–10–06; 8:45 am] BILLING CODE 3410–05–P

DEPARTMENT OF AGRICULTURE

Forest Service

Notice of New Fees; Federal Lands Recreation Enhancement Act (Title VIII, Pub. L. 108–447)

AGENCY: Chugach National Forest, USDA Forest Service.

ACTION: Notice of new fees.

SUMMARY: The Chugach National Forest will begin charging fees for a group campsite, cabins, individual campsites, and a backcountry permit for the Whistle Stop project area. Fees for other group campsites, cabins, and individual campsites on the Chugach National Forest have shown that the public values the availability of these facilities. In addition, market research conducted for the Whistle Stop project shows that people understand the need for backcountry permits given the remote nature of the area. Fees will be commensurate with the benefits and services provided. Funds received from the fees will be used for the continued operation and maintenance of the facilities and enhanced services of the area.

DATES: Backcountry Permits will be available spring 2007 for the 2007 Whistle Stop season. The group campsite, individual campsites, and cabins are expected to be available in 2008.

ADDRESSES: Forest Supervisor, Chugach National Forest, 3301 C Street, Anchorage, AK 9503.

FOR FURTHER INFORMATION CONTACT: Adam McClory, Whistle Stop Project Manager, 907–754–2352.

SUPPLEMENTARY INFORMATION: The Federal Recreation Lands Enhancement

Act (Title VII, Public Law 108–447) directed the Secretary of Agriculture to publish a six month advance notice in the **Federal Register** whenever new recreation fee areas are established.

The Whistle Stop project is a partnership between the Forest Service and Alaska Railroad that will provide additional recreation opportunities using alternative transportation. This new service will allow the opportunity for visitors to access National Forest lands which were previously inaccessible to the majority of forest visitors. Market research demonstrates a demand for these sorts of recreation opportunities on the Kenai Peninsula. The Forest Service has identified a goal of achieving cost recovery through a combination of revenue sharing with the Alaska Railroad; fees from public-use cabin rentals and campsites; and fees obtained through backcountry permits.

Implementation of backcountry permits, as described in the Record of Decision, will provide the Forest Service with the ability to accurately track recreation use and ensure that use levels and numbers of encounters are not exceeding thresholds established in the Forest Plan and Recreation Opportunity Spectrum (ROS) guidelines. Chugach National Forest goals include maintaining a backcountry social experience and protecting the natural and cultural resources throughout the area. Backcountry permits will be required for visitors utilizing the enhanced amenities provided through the Whistle Stop Project area. Amenities include a developed trail system, backcountry campsites, interpretive materials, and Whistle Stop stations that will include a shelter, restroom facilities and bearproof food storage containers. Issuance of the backcountry permit will allow for better public safety and result in improved visitor education and information about proper camping techniques, fir prevention, safety in bear country, and sanitation. Members of the public are welcome to comment.

Dated: October 4, 2006.

Joe Meade,

Chugach National Forest Supervisor. [FR Doc. 06–8591 Filed 10–10–06; 8:45 am] BILLING CODE 3410–11–M

DEPARTMENT OF COMMERCE

Submission for OMB Review; Comment Request

DOC will submit to the Office of Management and Budget (OMB) for clearance the following proposal for collection of information under the provisions of the Paperwork Reduction Act (44 U.S.C. chapter 35).

Agency: U.S. Census Bureau. Title: American Community Survey, 2007 Methods Panel.

Form Number(s): ACS-1(2005), ACS-1(X)Seq, ACS-1(X)Pro.

Agency Approval Number: None. Type of Request: New collection. Burden: 46,000 hours.

Number of Respondents: Postage Test—20,000; Grid vs. Sequential Test—40,000; Degree Test Reinterview—32,000.

Avg. Hours per Response: Questionnaires—38 minutes; Reinterview—15 minutes.

Needs and Uses: The U.S. Census Bureau requests authorization from the Office of Management and Budget (OMB) to conduct the American Community Survey 2007 Methods Panel tests.

Given the rapid demographic changes experienced in recent years and the strong expectation that such changes will continue and accelerate, the oncea-decade data collection approach of a census is no longer acceptable as a source for the housing and socioeconomic data collected on the census long-form. To meet the needs and expectations of the country, the Census Bureau developed the American Community Survey (ACS). This survey collects detailed socioeconomic data every month and provides tabulations of these data on a yearly basis. The ACS allows the Census Bureau to provide more timely and relevant housing and socio-economic data while also reducing operational risks in the census by eliminating the long-form historically given to one in every six addresses.

Full implementation of the ACS includes an annual sample of approximately three million residential addresses a year in the 50 states and the District of Columbia, and another 36,000 addresses in Puerto Rico. A sample this large allows for annual production and release of single-year estimates for areas with a population of 65,000 or more. Lower levels of geography require aggregates of three and five years' worth of data in order to produce estimates of comparable reliability to the census long-form. However, an ongoing data collection effort with an annual sample of this magnitude requires that the ACS continue to research possible methods for maintaining if not reducing data collection costs. If costs increase, the ACS would have to consider reductions in sample thus reducing the reliability of the data as compared to the reliability of the census long-form, especially at lower levels of geography.

One of the tests included in the 2007 Methods Panel addresses a method for potentially reducing data collection costs. In this test, we will implement the same mailing strategy as ACS production and send each sampled address a prenotice letter, an initial questionnaire (ACS-1(2005)) packet, and a reminder postcard and for those who haven't responded by a certain date, we will send a second questionnaire packet. However, for this test we will send the prenotice letter using standard postage. Current ACS production procedures send all mail pieces using a first-class postage rate. Using standard postage rather than firstclass postage for this mail piece can potentially save the ACS approximately two hundred and thirty thousand dollars in data collection costs each year. The test will evaluate whether the use of standard mailing for the prenotice letter impacts mail response rates.

A second test included in the 2007 Methods Panel addresses another aspect of ACS data collection relative to the census. Both the ACS and the census collect a core set of basic demographic questions (age and date of birth, gender, relationship, Hispanic origin and race). However, the 2010 Census will use a different format (similar to the format for the 2000 Census) from the format used by the ACS for collecting this information on the mail questionnaire. The census format, referred to as a sequential person design, creates a column for each person that includes each question and associated response categories. The ACS format, referred to as the grid design, lists the names of all persons down the left side of the form, the questions across the top of the page, and the response categories fall in the 'cells' created by crossing the person names by question.

This second test will compare the sequential person (ACS-1(X)Seq) and grid (ACS-1(X)Pro) formats for collecting the basic demographic information to measure the impact on data quality, specifically unit and item non-response rates, response distributions, and within household coverage. The outcome of the test will determine whether the different formats might contribute to differences in the estimates for the basic demographic questions. If the format does influence how people respond to these basic demographic questions, the Census Bureau will decide whether the ACS should alter its format of the collection of these data items to more closely reflect the census style format prior to the 2010 Census.

The 2007 Methods Panel may also include a third test contingent on the

funding allocations in the President's budget for 2007. This third test will measure and compare the data quality between two versions of new content proposed by the National Science Foundation for inclusion on the ACS. The proposed content asks about the major field in which a person received his or her bachelor's degree. In this test, half the sample will answer an openended question reporting the actual degree he or she received. The other half of the sample will provide their field of degree information by answering a series of yes/no questions. The test will assess which, if either, version results in data of sufficient quality for inclusion on the ACS.

Given that the ACS collects data every day of the year in every county in the U.S. and in every municipio in Puerto Rico, the ACS provides an opportunity to produce data not available from any other source or survey at the same low levels of geography. The Census Bureau, in conjunction with the Office of Management and Budget, has a policy for determining whether new content or questions will be added to the ACS. As part of the content determination process, the Census Bureau must test the proposed content to determine whether the ACS can produce data of sufficiently high quality for the proposed topic. In all likelihood, this test will fold into the grid versus sequential form design test noted above in an effort to reduce cost and burden. The test would, however, include a Content Follow-Up Reinterview of approximately 80 percent of the sample. The Census Bureau and OMB will consider these results in deciding whether to include the new content, per the Census Bureau's Policy on New Content for the ACS.

In order to provide data of comparable reliability as the census long-form at low levels of geography (e.g., census tract level) or for characteristics of special, small populations, the ACS must collect data on a continual basis and aggregate three to five years worth of data. Essentially the ACS collects data every day of the year, either by mail, telephone interviews or personalvisit interviews in order to have an adequate number of interviews to achieve estimates with comparable reliability to the census long-form at low levels of geography. Federal agencies use the ACS data to determine appropriate funding for state and local governments through block grants. State and local governments use ACS data for program planning, administration and evaluation. Thus, the reliability and the quality of the data must remain high in

order for the users to rely on the data for funding decisions.

Similarly, the federal government as well as state and local governments uses the core, basic demographics collected as part of the census for funding and programmatic decisions. With full implementation of the ACS, those same data are available every year. From a data user's perspective, large differences in the estimates for those core data items between ACS and the census can be problematic in terms of funding and program decisions. Since the ACS is a sample survey rather than a census we expect some differences in results between the two. However, there are many other factors that contribute to different results, such as differences in the interviewing staff, social relevance of the census versus a current survey, and even form design.

Thus, the 2007 Methods Panel will investigate ways to reduce or at least maintain data collection costs so the Census Bureau can continue to provide data of comparable reliability as the census long-form did. Additionally, the 2007 Methods Panel will test whether differences in form design between the census and the ACS may contribute to differences in results for the basic demographic items used by federal, state and local governments for funding and programmatic decisions. Lastly, funding permitting, the Methods panel will test proposed content regarding major field of study for a person's bachelor degree in order to provide the National Science Foundation and the National Center for Education Statistics with current information regarding estimates of types of fields in which people receive bachelor's degrees.

Affected Public: Individuals or households.

Frequency: One time.

Respondent's Obligation: Mandatory. Legal Authority: Title 13, United States Code, Sections 141, 193, and 221.

OMB Desk Officer: Brian Harris-Kojetin, (202) 395–7314.

Copies of the above information collection proposal can be obtained by calling or writing Diana Hynek, Departmental Paperwork Clearance Officer, (202) 482–0266, Department of Commerce, room 6625, 14th and Constitution Avenue, NW., Washington, DC 20230 (or via the Internet at dhynek@doc.gov).

Written comments and recommendations for the proposed information collection should be sent within 30 days of publication of this notice to Brian Harris-Kojetin, OMB Desk Officer either by fax (202–395–7245) or e-mail (bharrisk@omb.eop.gov).

Dated: October 3, 2006.

Madeleine Clayton,

Management Analyst, Office of the Chief Information Officer.

[FR Doc. E6–16728 Filed 10–10–06; 8:45 am] BILLING CODE 3510–07–P

DEPARTMENT OF COMMERCE

Membership of the Office of the Secretary Performance Review Board

ACTION: Department of Commerce. **ACTION:** Notice of Membership on the Office of the Secretary Performance Review Board.

SUMMARY: In accordance with 5 U.S.C., 4314(c)(4), DOC announces the appointment of persons to serve as members of the Office of the Secretary (OS) Performance Review Board (PRB). The OS/PRB is responsible for reviewing performance appraisals and ratings of Senior Executive Service (SES) members. The appointment of these members to the OS/PRB will be for a period of 24 months.

DATES: Effective Date: The effective date of service of appointees to the Office of the Secretary Performance Review Board is upon publication of this notice.

FOR FURTHER INFORMATION CONTACT:

Denise Yaag, Director, Office of Executive Resources, Office of Human Resources Management, Office of the Director, 14th and Constitution Avenue, NW., Washington, DC 20230, (202) 482– 3600.

SUPPLEMENTARY INFORMATION: The names, position titles, and type of appointment of the members of the OS/PRB are set forth below by organization:

Department of Commerce, Office of the Secretary, 2006–2008 Performance Review Board Membership

Office of the Secretary

Tracey S. Rhodes, Director, Executive Secretariat.

Richard Yamamoto, Director, Office of Security (Alternate).

Office of Assistant Secretary for Administration

Lisa Casias, Deputy Director for Financial Policy.

Economic Development Administration

Mary Pleffner, Deputy Assistant Secretary for Management Services and CFO.

National Oceanic and Atmospheric Administration

John E. Jones, Jr., Deputy Assistant Administrator for Weather Services.

Office of the General Counsel

Michael A. Levitt, Assistant General Counsel for Legislation and Regulation.

Dated: September 26, 2006.

Denise Yaag,

Board.

Director, Office of Executive Resources.
[FR Doc. 06–8583 Filed 10–10–06; 8:45 am]
BILLING CODE 3510–BS–M

DEPARTMENT OF COMMERCE

Membership of the Departmental Performance Review Board

AGENCY: Department of Commerce. **ACTION:** Notice of membership on the Departmental Performance Review

SUMMARY: In accordance with 5 U.S.C., 4314(c)(4), Department of Commerce (DOC) announces the appointment of persons to serve as members of the Departmental Performance Review Board (DPRB). The DPRB is responsible for reviewing performance appraisals and ratings of Senior Executive Service (SES) members and serves as the higher level review of executives who report to an appointing authority. The appointment of these members to the DPRB will be for a period of 24 months.

DATES: Effective Date: The effective date of service of appointees to the Departmental Performance Review Board is upon publication of this notice.

FOR FURTHER INFORMATION CONTACT:

Denise Yaag, Director, Office of Executive Resources, Office of Human Resources Management, Office of the Director, 14th and Constitution Avenue, NW., Washington, DC 20230, (202) 482– 3600.

SUPPLEMENTARY INFORMATION: The names and position titles of the members of the DPRB are set forth below by organization:

Department of Commerce, Departmental Performance Review Board Membership 2006–2008

Office of the Secretary

Aimee L. Strudwick, Chief of Staff to the Deputy Secretary.

Office of General Counsel

Michael A. Levitt, Assistant General Counsel for Legislation and Regulation. Joan McGinnis, Assistant General Counsel for Finance and Litigation.

Chief Financial Officer and Assistant Secretary for Administration

William J. Fleming, Deputy Director for Human Resources Management.

Bureau of the Census

Dr. Hermann Habermann, Deputy Director.

Marvin Raines, Associate Director for Field Operations.

Economics and Statistics Administration

James K. White, Associate Under Secretary for Management.

Economics and Development Administration

Mary Pleffner, Deputy Assistant Secretary for Management.

National Telecommunications and Information Administration

Kathy D. Smith, Chief Counsel.

National Oceanic and Atmospheric Administration

Bonnie Morehouse, Director, Program Analysis and Evaluation.

Maureen Wylie, Deputy Chief Financial Officer, Director of Budget. Kathleen A. Kelly, Director, Office of Satellite Operations, NESDIS.

National Technical Information Service

Ellen Herbst, Director, National Technical Information Service.

National Institute of Standards and Technology

Richard F. Kayser, Director, Materials Science and Engineering Laboratory.

Kathleen M. Higgins, Director, Office of Law Enforcement Standards, EEEL.

Dated: September 28, 2006.

Denise Yaag,

Director, Office of Executive Resources.
[FR Doc. 06–8586 Filed 10–10–06; 8:45 am]
BILLING CODE 3510–BS–M

DEPARTMENT OF COMMERCE

Bureau of Industry and Security

Sensors and Instrumentation Technical Advisory Committee; Notice of Partially Closed Meeting

The Sensors and Instrumentation
Technical Advisory Committee (SITAC)
will meet on October 24, 2006, 9:30
a.m., in the Herbert C. Hoover Building,
Room 3884, 14th Street between
Constitution and Pennsylvania
Avenues, NW., Washington, DC. The
Committee advises the Office of the
Assistant Secretary for Export
Administration on technical questions
that affect the level of export controls
applicable to sensors and
instrumentation equipment and
technology.

Agenda

Public Session

- 1. Welcome and Introductions.
- 2. Remarks from the Bureau of Industry and Security Management.
 - 3. Industry Presentations.
 - 4. Government Presentations.
 - 5. New Business.

Closed Session

6. Discussion of matters determined to be exempt from the provisions relating to public meetings found in 5 U.S.C. app. 2 §§ 10(a)(1) and 10(a)(3).

A limited number of seats will be available during the public session of the meeting. Reservations are not accepted. To the extent that time permits, members of the public may present oral statements to the committee. The public may submit written statements at any time before or after the meeting. However, to facilitate distribution of public presentation materials to the Committee members, the Committee suggests that the materials be forwarded before the meeting to Ms. Yvette Springer at *Yspringer@bis.doc.gov.*

The Assistant Secretary for Administration, with the concurrence of the General Counsel, formally determined on September 29, 2006 pursuant to Section 10(d) of the Federal Advisory Committee Act, as amended (5 U.S.C. app. 2 § 10(d)), that the portion of this meeting dealing with predecisional changes to the Commerce Control List and U.S. export control policies shall be exempt from the provisions relating to public meetings found in 5 U.S.C. app. 2 §§ 10(a)(1) and 10(a)(3). The remaining portions of the meeting will be open to the public.

For more information contact Yvette Springer on (202) 482–2813.

Dated: October 5, 2006.

Yvette Springer,

Committee Liaison Officer. [FR Doc. 06–8598 Filed 10–10–06; 8:45 am] BILLING CODE 3510–JT–M

DEPARTMENT OF COMMERCE

International Trade Administration

[A-570-904]

Preliminary Determination of Sales at Less Than Fair Value and Postponement of Final Determination: Certain Activated Carbon From the People's Republic of China

AGENCY: Import Administration, International Trade Administration, Department of Commerce.

EFFECTIVE DATE: October 11, 2006.

SUMMARY: We preliminarily determine that certain activated carbon from the People's Republic of China ("PRC") is being, or is likely to be, sold in the United States at less than fair value ("LTFV"), as provided in section 733 of the Tariff Act of 1930, as amended ("the Act"). The estimated margins of sales at LTFV are shown in the "Preliminary Determination" section of this notice.

FOR FURTHER INFORMATION CONTACT: Catherine Bertrand or Anya Naschak, AD/CVD Operations, Office 9, Import Administration, International Trade Administration, U.S. Department of Commerce, 14th Street and Constitution Avenue, NW., Washington, DC 20230; telephone: 202–482–3207 or 202–482– 6375, respectively.

SUPPLEMENTARY INFORMATION:

Case History

On March 8, 2006, the Department of Commerce ("Department") received a petition on imports of certain activated carbon from the People's Republic of China ("PRC") from Calgon Carbon Corporation and Norit Americas Inc. ("Petitioners"). This investigation was initiated on March 28, 2006. See Initiation of Antidumping Duty Investigation: Certain Activated Carbon From the People's Republic of China, 71 FR 16757 (April 4, 2006) ("Initiation Notice").

Since the initiation of this investigation, the following events have occurred. On April 4, 2006, the Department requested quantity and value ("Q&V") information from the producers and exporters of certain activated carbon that Petitioners identified in the petition. Also, on April 4, 2006, the Department sent a letter requesting Q&V information to the China Bureau of Fair Trade for Imports & Exports ("BOFT") of the Ministry of Commerce ("MOFCOM") requesting that BOFT transmit the letter to all companies who manufacture and export subject merchandise to the United States, or produce the subject merchandise for the companies who were engaged in exporting the subject merchandise to the United States during the period of investigation ("POI").

The Q&V information was due on April 19, 2006. The Department received twenty-three responses. The Department did not receive any type of communication from BOFT regarding its request for Q&V information. For a complete list of all parties from which the Department requested Q&V information, see Memorandum to James C. Doyle, Director, AD/CVD Operations, Office 9, through Carrie Blozy, Program Manager, AD/CVD Operations, Office 9,

from Catherine Bertrand, Senior Case Analyst, Office 9: Selection of Respondents for the Antidumping Investigation of Certain Activated Carbon From the People's Republic of China, dated May 3, 2006 ("Respondent Selection Memo").

On April 21, 2006, the United States International Trade Commission ("ITC") issued its affirmative preliminary determination that there is a reasonable indication that an industry in the United States is materially injured or threatened with material injury by reason of imports from the PRC of certain activated carbon. The ITC's determination was published in the **Federal Register** on May 2, 2006. *See Investigation No. 731–TA–1103* (*Preliminary*), *Certain Activated Carbon From China*, 71 FR 25858 (May 2, 2006).

On May 3, 2006, the Department selected Calgon Carbon (Tianjin) Co., Ltd. ("CCT"), Tianjin Jacobi Int'l Trading Co., Ltd. ("Jacobi Tianjin"), and Datong Huibao Activated Carbon Co., Ltd and its affiliated company Beijing Hibridge Trading Co., Ltd. ("Huibao/Hibridge"), as mandatory respondents in this investigation. See Respondent Selection Memo. On May 4, 2006, the Department issued the full antidumping questionnaire to the selected mandatory respondents.

On May 15, 2006, the Department received a letter from Huibao/Hibridge, informing the Department that Huibao/ Hibridge was withdrawing from this investigation. See Memorandum to the File from Catherine Bertrand, Senior Case Analyst, dated May 15, 2006. Additionally, as described below, although Huibao/Hibridge filed a separate rate application, we have not considered its request for a separate rate in this investigation given its failure to participate as a mandatory respondent. Any references to the separate rate applicants in this notice specifically exclude Huibao/Hibridge.

On May 19, 2006, the Department selected an additional mandatory respondent, Jilin Province Bright Future Chemicals Co. Ltd. ("JBF Chemical") and its affiliated company Jilin Province Bright Future Industry & Commerce Co. Ltd. ("JBF Industry") (collectively, "Jilin Bright Future"). See Memorandum to James C. Doyle, Director, AD/CVD Operations, Office 9, through Carrie Blozy, Program Manager, AD/CVD Operations, Office 9, from Catherine Bertrand, Senior Case Analyst, Office 9: Selection of Additional Mandatory Respondent, dated May 19, 2006, ("Additional Respondent Selection Memo"). On May 19, 2006, the Department issued the full antidumping questionnaire to Jilin Bright Future.

On April 20, 2006, the Department requested comments from all interested parties on proposed product characteristics to be used in the designation of control numbers ("CONNUMs") to be assigned to the subject merchandise. The Department received comments from Petitioners. On May 10, 2006, the Department released the product characteristics to be used in the designation of CONNUMs to be assigned the subject merchandise.

On June 1, 2006, the Department determined that India, Indonesia, Sri Lanka, the Philippines, and Egypt are countries comparable to the PRC in terms of economic development. See Memorandum from Ron Lorentzen, Director, Office of Policy, to James C. Doyle, Office Director, Office 9: Antidumping Investigation of Certain Activated Carbon from the People's Republic of China: Request for a List of Surrogate Countries, dated June 1, 2006. ("Office of Policy Surrogate Countries Memorandum").

On June 6, 2006, the Department invited interested parties to comment on the Department's surrogate country selection and/or significant production in the potential surrogate countries and to submit publicly available information to value the factors of production. On July 25, 2006, we received comments from Petitioners on the selection of a surrogate country. No other party to the proceeding submitted information or comments concerning the selection of a surrogate country. For a detailed discussion of the selection of the surrogate country, See "Surrogate Country" section below, and the Memorandum to James C. Doyle, Director, AD/CVD Operations, Office 9, from Anya Naschak, Senior Case Analyst, AD/CVD Operations, Office 9: Antidumping Duty Investigation of Certain Activated Carbon from the People's Republic of China: Selection of a Surrogate Country, dated October 4, 2006 ("Surrogate Country Memo").

On July 25, 2006, Jacobi Tianjin submitted comments on information with which to value the factors of production in this investigation. Petitioners and Jilin Bright Future submitted comments on information with which to value the factors of production in this investigation on August 10, 2006. Petitioners submitted additional comments on August 21, 2006.

We received questionnaire responses from the mandatory respondents in June and July 2006, and we issued supplemental questionnaires and received responses in July, August, and September 2006. We received separate rate applications from 20 companies. We issued deficiency questionnaires to all applicants. See "Separate Rates" section below, and the Memorandum to James C. Doyle, Director, AD/CVD Operations, Office 9, from Anya Naschak, Senior Case Analyst, AD/CVD Operations, Office 9: Antidumping Duty Investigation of Certain Activated Carbon from the People's Republic of China: Separate Rates Memorandum, dated October 4, 2006 ("Separate Rates Memo").

On July 21, 2006, Petitioners made a timely request pursuant to 733(c)(1)(A) of the Act and 19 CFR 351.205(e) for a fifty-day postponement of the preliminary determination, until October 4, 2006. On August 2, 2006, the Department published a postponement of the preliminary antidumping duty determination on certain activated carbon from the PRC. See Postponement of Preliminary Determination of Antidumping Duty Investigation: Certain Activated Carbon from the People's Republic of China, 71 FR 43714 (August 2, 2006).

Postponement of Final Determination

Section 735(a)(2) of the Act provides that a final determination may be postponed until no later than 135 days after the date of the publication of the preliminary determination if, in the event of an affirmative preliminary determination, a request for such postponement is made by exporters who account for a significant proportion of exports of the subject merchandise or, in the event of a negative preliminary determination, a request for such postponement is made by the Petitioners. The Department's regulations at 19 CFR 351.210(e)(2) require that requests by respondents for postponement of a final determination be accompanied by a request for an extension of the provisional measures from a four-month period to not more than six months.

On September 26, 2006, CCT requested the Department postpone its final determination by 60 days until 135 days after the publication of the preliminary determination. Additionally, CCT requested that the Department extend the provisional measures under Section 733(d) of the Act. Accordingly, because we have made an affirmative preliminary determination and the requesting parties account for a significant proportion of the exports of the subject merchandise, pursuant to 735(a)(2) of the Act, we have postponed the final determination until no later than 135 days after the date of publication of the preliminary determination and are extending the provisional measures accordingly.

Period of Investigation

The period of investigation ("POI") is July 1, 2005, through December 31, 2005.

This period corresponds to the two most recent fiscal quarters prior to the month of the filing of the petition (March 8, 2006). *See* 19 CFR 351.204(b)(1).

Scope of Investigation

The merchandise subject to this investigation is certain activated carbon. Certain activated carbon is a powdered, granular, or pelletized carbon product obtained by "activating" with heat and steam various materials containing carbon, including but not limited to coal (including bituminous, lignite, and anthracite), wood, coconut shells, olive stones, and peat. The thermal and steam treatments remove organic materials and create an internal pore structure in the carbon material. The producer can also use carbon dioxide gas (CO₂) in place of steam in this process. The vast majority of the internal porosity developed during the high temperature steam (or CO₂ gas) activated process is a direct result of oxidation of a portion of the solid carbon atoms in the raw material, converting them into a gaseous form of carbon.

The scope of this investigation covers all forms of activated carbon that are activated by steam or CO₂, regardless of the raw material, grade, mixture, additives, further washing or post-activation chemical treatment (chemical or water washing, chemical impregnation or other treatment), or product form. Unless specifically excluded, the scope of this investigation covers all physical forms of certain activated carbon, including powdered activated carbon ("PAC"), granular activated carbon ("GAC"), and pelletized activated carbon.

Excluded from the scope of the investigation are chemically-activated carbons. The carbon-based raw material used in the chemical activation process is treated with a strong chemical agent, including but not limited to phosphoric acid, zinc chloride sulfuric acid or potassium hydroxide, that dehydrates molecules in the raw material, and results in the formation of water that is removed from the raw material by moderate heat treatment. The activated carbon created by chemical activation has internal porosity developed primarily due to the action of the chemical dehydration agent. Chemically activated carbons are typically used to activate raw materials with a lignocellulosic component such as

cellulose, including wood, sawdust, paper mill waste and peat.

To the extent that an imported activated carbon product is a blend of steam and chemically activated carbons, products containing 50 percent or more steam (or CO_2 gas) activated carbons are within this scope, and those containing more than 50 percent chemically activated carbons are outside this scope.

Also excluded from the scope are reactivated carbons. Reactivated carbons are previously used activated carbons that have had adsorbed materials removed from their pore structure after use through the application of heat, steam and/or chemicals.

Also excluded from the scope is activated carbon cloth. Activated carbon cloth is a woven textile fabric made of or containing activated carbon fibers. It is used in masks and filters and clothing of various types where a woven format is required.

Any activated carbon meeting the physical description of subject merchandise provided above that is not expressly excluded from the scope is included within this scope. The products under investigation are currently classifiable under the Harmonized Tariff Schedule of the United States ("HTSUS") subheading 3802.10.00. Although HTSUS subheadings are provided for convenience and customs purposes, the written description of the scope of this investigation is dispositive.

Scope Comments

In accordance with the preamble to our regulations (see Antidumping Duties; Countervailing Duties, 62 FR 27296, 27323 (May 19, 1997)), in our initiation notice we set aside a period of time for parties to raise issues regarding product coverage and encouraged all parties to submit comments within 20 calendar days of publication of the initiation notice. See Initiation Notice 71 FR at 16758.

On May 4, 2006, Carbochem Inc. ("Carbochem") submitted timely scope comments in which it argued that the Department should issue a ruling that the scope of these investigations does not cover certain grades of Carbochem® activated carbon. Carbochem argued that these certain grades are not manufactured in the United States by the Petitioners. Carbochem further argued that it has developed a number of unique and proprietary grades of activated carbon that exceed the performance capabilities of the products produced by Petitioners.

On August 24, 2006, Petitioners submitted comments on Carbochem's scope request. Petitioners argued that the domestic industry does manufacture products with the same or competitive properties and performance characteristics as the products for which Carbochem proposed an exclusion. Petitioners further argued that the domestic industry is not required to produce every product that is within the scope of the investigation but simply has to be able to produce the class or kind of products covered by the scope, which Petitioners argue that they do. Petitioners assert that there is no basis on which to exclude the products requested by Carbochem. On September 14, 2006, Carbochem filed rebuttal comments in response to Petitioners' August 24, 2006 submission stating that its products are not comparable to those produced by Petitioners.

The Department has analyzed the comments received by Carbochem and Petitioners. For this preliminary determination, the Department has determined to deny the request by Carbochem. For a detailed discussion of this issue, see the Memorandum to James C. Doyle, Office Director, AD/ CVD Operations, Office 9 from Catherine Bertrand, Senior Case Analyst, AD/CVD Operations, Office 9: Antidumping Duty Investigation of Certain Activated Carbon From the People's Republic of China: Comments on the Scope of the Investigation, dated October 4, 2006 ("Scope Memorandum"). We will afford interested parties an opportunity to provide comments on our preliminary finding on this issue in their case and rebuttal briefs, and, if any are provided, we will revisit this issue in our final determination.

Selection of Respondents

Section 777A(c)(1) of the Act directs the Department to calculate individual weighted-average dumping margins for each known exporter and producer of the subject merchandise. Section 777A(c)(2) of the Act gives the Department discretion, when faced with a large number of exporters/producers, to limit its examination to a reasonable number of such companies if it is not practicable to examine all companies. Where it is not practicable to examine all known producers/exporters of subject merchandise, this provision permits the Department to investigate either (A) a sample of exporters, producers, or types of products that is statistically valid based on the information available to the Department at the time of selection or (B) exporters/ producers accounting for the largest volume of the merchandise under investigation that can reasonably be examined. After consideration of the

complexities expected to arise in this proceeding and the available resources, the Department determined that it was not practicable in this investigation to examine all known producers/exporters of subject merchandise. Instead, we limited our examination to the three exporters accounting for the largest volume of shipments of the subject merchandise to the United States during the POI pursuant to section 777A(c)(2)(B) of the Act. We selected CCT, Jacobi Tianjin, and Huibao/ Hibridge to be mandatory respondents, as they are the exporters accounting for the largest volume of exports to the United States during the POI of subject merchandise from the PRC. After Huibao/Hibridge informed the Department that it was withdrawing from this investigation, the Department selected Jilin Bright Future as a mandatory respondent. Jilin Bright Future was the next largest producer/ exporter of those companies that submitted quantity and value responses. See Respondent Selection Memo and Additional Respondent Selection Memo.

Non-Market-Economy Country

For purposes of initiation, Petitioners submitted LTFV analyses for the PRC as a non-market economy ("NME"). See *Initiation Notice.* In every case conducted by the Department involving the PRC, the PRC has been treated as an NME country. In accordance with section 771(18)(C)(i) of the Act, any determination that a foreign country is an NME country shall remain in effect until revoked by the administering authority. See Tapered Roller Bearings and Parts Thereof, Finished and Unfinished, From the People's Republic of China: Preliminary Results 2001-2002 Administrative Review and Partial Rescission of Review, 68 FR 7500 (February 14, 2003), unchanged in Tapered Roller Bearings and Parts Thereof, Finished and Unfinished, From the People's Republic of China: Final Results of 2001-2002 Administrative Review, 68 FR 70488 (December 18, 2003). No party has challenged the designation of the PRC as an NME country in this investigation. Therefore, we have treated the PRC as an NME country for purposes of this preliminary determination.

Surrogate Country

When the Department is investigating imports from an NME, section 773(c)(1) of the Act directs it to base normal value, in most circumstances, on the NME producer's factors of production valued in a surrogate market-economy country or countries considered to be

appropriate by the Department. In accordance with section 773(c)(4) of the Act, in valuing the factors of production, the Department shall utilize, to the extent possible, the prices or costs of factors of production in one or more market-economy countries that are at a level of economic development comparable to that of the NME country and are significant producers of comparable merchandise. The sources of the surrogate values we have used in this investigation are discussed under the normal value section below.

On July 25, 2006, the Department received comments from Petitioners on the appropriate surrogate country for valuing the factors of production ("FOP"). Petitioners argue that India is the most appropriate surrogate country in this investigation because India is at a comparable level of economic development with the PRC based on the Department's repeated use of India as a surrogate. Petitioners also provided evidence demonstrating that India is a significant producer of identical and comparable merchandise. Additionally, Petitioners contend that India provides publicly available information on which to base surrogate values. See Surrogate Country Memo for a complete description of Petitioners' surrogate country arguments.

As detailed in the Surrogate Country Memo, the Department has preliminarily selected India as the surrogate country on the basis that: (1) It is a significant producer of comparable merchandise; (2) it is at a similar level of economic development pursuant to 733(c)(4) of the Act; and (3) we have reliable data from India that we can use to value the FOP. See Surrogate Country Memo. Thus, we have calculated normal value using Indian prices, when available and appropriate, to value the FOP of the certain activated carbon producers. We have obtained and relied upon publicly available information wherever possible. See Memorandum to the File from Anya Naschak, Senior Case Analyst, AD/CVD Operations, Office 9: Certain Activated Carbon from the People's Republic of China: Surrogate Values for the Preliminary Determination, dated October 4, 2006 ("Surrogate Value Memo").

In accordance with 19 CFR 351.301(c)(3)(i), for the final determination in an antidumping investigation, interested parties may submit publicly available information to value the FOP within forty days after the date of publication of the preliminary determination.

Affiliation

Based on the evidence on the record of this investigation, we preliminarily find that Jacobi Tianjin, Jacobi Carbons AB ("Jacobi AB"), and Jacobi Carbons Inc. ("Jacobi US") (collectively, "Jacobi") are affiliated pursuant to sections 771(33)(D), (E), and (G) of the Act. Due to the proprietary nature of this issue, for a detailed discussion of our analysis, see Memorandum to the File from Anya Naschak, Senior Case Analyst, AD/CVD Operations, to James C. Doyle, Director, AD/CVD Operations: Certain Activated Carbon from the People's Republic of China: Affiliation and Treatment of Sales of Jacobi Tianjin International Trading Co., Ltd., Jacobi Carbons AB, and Jacobi Carbons, Inc., dated October 4, 2006 ("Jacobi Affiliation and Treatment of Sales Memo").

With respect to Jilin Bright Future, JBF Chemical and JBF Industry submitted separate rate applications on May 4, 2006. In their applications, JBF Chemical and IBF Industry certified that they were affiliated with each other. See JBF Chemical and JBF Industry's separate rate applications dated May 4, 2006. In their Section A questionnaire responses, dated June 9, 2006, JBF Chemical and JBF Industry stated that both companies are under common ownership. See JBF Chemical's Section A questionnaire response dated June 9, 2006, at 2 and Exhibit A-3; JBF Industry's Section A questionnaire response dated June 9, 2006, at 2 and Exhibit A-3. Based on the evidence on the record of this investigation, we preliminarily find that JBF Chemical and JBF Industry are affiliated pursuant to section 771(33)(E) of the Act.

Separate Rates

CCT has reported that it is wholly foreign-owned. CCT reported that 100 percent of its shares are held by Calgon Carbon Corporation, which is located in the United States. Therefore, there is no PRC ownership of CCT, and because we have no evidence indicating that it is under the control of the PRC, a separate rates analysis is not necessary to determine whether it is independent from government control. See Brake Rotors From the People's Republic of China: Preliminary Results and Partial Rescission of the Fourth New Shipper Review and Rescission of the Third Antidumping Duty Administrative Review, 66 FR 1303, 1306 (January 8, 2001), unchanged in the final determination; Notice of Final Determination of Sales at Less Than Fair Value: Creatine Monohydrate From the People's Republic of China, 64 FR

71104 (December 20, 1999). Accordingly, we have preliminarily granted a separate rate for CCT.

As discussed in detail in the Jacobi Affiliation and Treatment of Sales Memo, the Department has preliminarily determined that Jacobi Tianjin should not be considered the mandatory respondent in this investigation. The Department has preliminarily determined that Jacobi Tianjin's affiliated company, Jacobi AB, conducted all sales-related activities with respect to exports made by Jacobi Tianjin of the merchandise under investigation and sold to unaffiliated U.S. customers through Jacobi US. See Jacobi Affiliation and Treatment of Sales Memo. All exports made by Jacobi Tianjin were negotiated and sold by Jacobi AB and Jacobi Tianjin made no sales during the POI; therefore, Jacobi Tianjin has not demonstrated that it qualifies for a separate rate. 1 However, because the Department has preliminarily determined that Jacobi AB is the respondent in this investigation, because Jacobi AB is a market economy company located in Sweden (see Jacobi's Section A questionnaire response dated June 1, 2006 at page 14), and consistent with the Department's practice where the seller is located in a market economy country, we have preliminarily granted Jacobi AB its own rate. See Notice of Preliminary Determination of Sales at Less Than Fair Value: Silicomanganese From Kazakhstan, 66 FR 56639, 56641 (November 9, 2001), unchanged in Notice of Final Determination of Sales at Less Than Fair Value: Silicomanganese From Kazakhstan, 67 FR 15535 (April 2, 2002). Further, where Jacobi Tianjin acted as an export facilitator for Jacobi AB, those exports are also eligible for Jacobi AB's antidumping duty cash deposit rate. See 19 CFR 351.107(b)(2); Final Determination of Sales at Less Than Fair Value and Final Partial Affirmative Determination of Critical Circumstances: Diamond Sawblades and Parts Thereof from the People's Republic of China, 71 FR 29303 (May 22, 2006) and accompanying Issues and Decision Memorandum at Comment 18. See also Jacobi Affiliation and Treatment of Sales Memo.

In proceedings involving NME countries, the Department begins with a rebuttable presumption that all

companies within the country are subject to government control and thus should be assessed a single antidumping duty rate. It is the Department's policy to assign all exporters of merchandise subject to investigation in an NME country this single rate unless an exporter can demonstrate that it is sufficiently independent so as to be entitled to a separate rate. As explained below, Jilin Bright Future and certain companies who submitted separate rate applications have provided companyspecific information in order to demonstrate that they operate independently of de jure and de facto government control, and, therefore, satisfy the standards for the assignment of a separate rate.

The separate rate application issued in this investigation (see http:// www.trade.gov/ia/) explained that all applications are due sixty calendar days after publication of the *Initiation Notice*, and the Department will not consider applications that remain incomplete by that deadline. We received 20 applications by the deadline. On June 14, 2006, the Department received a request from Ningxia Fengyuan Activated Carbon Co., Ltd. ("NFAC") to extend the time limits with which to submit a response to the Department's quantity and value information, and to submit a separate rate application, until June 28, 2006. On June 27, 2006, the Department noted that NFAC had received notice of the deadlines with respect to the quantity and value questionnaire and the separate rates application in the Initiation Notice, and that the deadline had passed for submitting a separate rate application. The Department informed NFAC that it would be unable to grant NFAC's request for an extension of time to file the quantity and value questionnaire and the separate rate application. See Letter from Carrie Blozy, Program Manager, AD/CVD Operations, Office 9, dated June 27, 2006.

We have considered whether each mandatory respondent and each separate rate applicant 2 is eligible for a separate rate. The Department's separate-rate test is not concerned, in

¹ The Department notes that although Jacobi Tianjin submitted a separate rate application and complete information in its Section A questionnaire response, all documents contained therein demonstrate that Jacobi AB was the seller of the merchandise. See Jacobi Affiliation and Treatment

 $^{^{\}rm 2}\, {\rm We}$ received separate rate applications from the following: Datong Yunguang Chemicals Plant; Hebei Foreign Trade & Advertising Corp.; Ningxia Guanghua Cherishmet Activated Carbon Co. Ltd.; Ningxia Huahui Activated Carbon Co. Ltd.; Ningxia Mineral & Chemical Ltd.; Shanxi DMD Corp; Shanxi Industry Technology Trading Co. Ltd.; Shanxi Newtime Co. Ltd.; Shanxi Qixian Foreign Trade Corp.; Shanxi Sincere Industrial Co. Ltd.; Shanxi Xuanzhong Chemical Industry Co. Ltd.; Tangshan Solid Carbon Co., Ltd.; United Manufacturing Int'l (Beijing) Ltd. Xi'an Shuntong Int'l Trade & Industries Co. Ltd.; Panshan Import and Export Corp; and, Tianjin Maijin Industries Co. Ltd.

general, with macroeconomic/bordertype controls, e.g., export licenses, quotas, and minimum export prices, particularly if these controls are imposed to prevent dumping. Rather, the test focuses on controls over the investment, pricing, and output decision-making process at the individual firm level. See Notice of Final Determination of Sales at Less Than Fair Value: Certain Cut-to-Length Carbon Steel Plate from Ukraine, 62 FR 61754, 61757 (November 19, 1997), and Tapered Roller Bearings and Parts Thereof, Finished and Unfinished, From the People's Republic of China: Final Results of Antidumping Duty Administrative Review, 62 FR 61276, 61279 (November 17, 1997).

To establish whether a firm is sufficiently independent from government control of its export activities to be entitled to a separate rate, the Department analyzes each entity exporting the subject merchandise under a test arising from the Final Determination of Sales at Less Than Fair Value: Sparklers from the People's Republic of China, 56 FR 20588 (May 6, 1991) ("Sparklers"), as amplified by Notice of Final Determination of Sales at Less Than Fair Value: Silicon Carbide from the People's Republic of China, 59 FR 22585 (May 2, 1994) ("Silicon Carbide"), 59 FR at 22586-87. In accordance with the separate-rates criteria, the Department assigns separate rates in NME cases only if respondents can demonstrate the absence of both de jure and de facto governmental control over export activities.

1. Absence of De Jure Control

The Department considers the following *de jure* criteria in determining whether an individual company may be granted a separate rate: (1) An absence of restrictive stipulations associated with an individual exporter's business and export licenses; (2) any legislative enactments decentralizing control of companies; and (3) other formal measures by the government decentralizing control of companies. *See Sparklers*, 56 FR at 20589.

The information provided by Jilin Bright Future and the separate rate applicants supports a preliminary finding of *de jure* absence of governmental control based on the following: (1) An absence of restrictive stipulations associated with the individual exporter's business and export licenses; (2) the applicable legislative enactments decentralizing control of the companies; and (3) any other formal measures by the

government decentralizing control of companies. See Separate Rates Memo.

2. Absence of De Facto Control

Typically the Department considers four factors in evaluating whether each respondent is subject to de facto governmental control of its export functions: (1) Whether the export prices are set by or are subject to the approval of a governmental agency; (2) whether the respondent has authority to negotiate and sign contracts and other agreements; (3) whether the respondent has autonomy from the government in making decisions regarding the selection of management; and (4) whether the respondent retains the proceeds of its export sales and makes independent decisions regarding disposition of profits or financing of losses. See Silicon Carbide, 59 FR at 22587; see also Notice of Final Determination of Sales at Less Than Fair Value: Furfuryl Alcohol From the People's Republic of China, 60 FR 22544, 22545 (May 8, 1995). The Department has determined that an analysis of de facto control is critical in determining whether respondents are, in fact, subject to a degree of governmental control which would preclude the Department from assigning separate rates.

As noted above, the Department considers four factors in evaluating whether each respondent is subject to de facto governmental control of its export functions. In the instant case, we determine that, with regard to Jilin Bright Future and the separate rate applicants, except for Panshan Import and Export Corporation ("Panshan") (hereinafter referred to as the Separate Rate Companies), the evidence on the record supports a preliminary finding of de facto absence of governmental control based on record statements and supporting documentation showing the following: (1) Each exporter sets its own export prices independent of the government and without the approval of a government authority; (2) each exporter retains the proceeds from its sales and makes independent decisions regarding disposition of profits or financing of losses; (3) each exporter has the authority to negotiate and sign contracts and other agreements; and (4) each exporter has autonomy from the government regarding the selection of management.

With regard to Panshan, it failed to provide any evidence that it had autonomy in making decisions regarding the selection of management. The separate rate application requires that the applicant provide specific documentation that evidences independence in the selection of management. Panshan did not provide any evidence of independent selection of management in its application nor in its supplemental response in regard to a specific question from the Department asking for this documentation. See Separate Rates Memo. Therefore, as the application requires the applicant to provide proof of the independent selection of management, Panshan has not met the basic requirements of the application. The Department finds that Panshan's application is deficient and therefore finds that Panshan is not eligible for a separate rate.

The evidence placed on the record of this investigation by Jilin Bright Future and the separate rate applicants, except for Panshan, demonstrates an absence of de jure and de facto government control with respect to each of the exporter's exports of the merchandise under investigation, in accordance with the criteria identified in Sparklers and Silicon Carbide. CCT is wholly-owned by a market economy entity and has therefore been granted a separate rate. Jacobi AB is a market economy entity and has therefore been granted its own rate. As a result, for the purposes of this preliminary determination, we have granted separate, company-specific rates to CCT, Jacobi AB, Jilin Bright Future, and to the Separate Rate Companies, a weight-averaged margin of the mandatory respondents. For a full discussion of this issue, see Separate Rates Memo.

Use of Adverse Facts Available and the PRC-Wide Rate

CCT, Jacobi, Jilin Bright Future, and Huibao/Hibridge were given the opportunity to respond to the Department's questionnaire. As explained above, we received complete separate rates information from CCT, Jacobi, and Jilin Bright Future, and these entities will receive their own rate. The PRC-wide rate applies to all entries of subject merchandise except for entries from PRC producers/exporters that have their own calculated rate. See "Separate Rates" section above. As discussed in the Separate Rates Memo, Huibao/ Hibridge is appropriately considered to be part of the PRC-wide entity because it failed to establish its eligibility for a

We note that Section 776(a)(1) of the Act mandates that the Department use the facts available if necessary information is not available on the record of an antidumping proceeding. In addition, section 776(a)(2) of the Act provides that if an interested party or any other person: (A) Withholds information that has been requested by

the administering authority; (B) fails to provide such information by the deadlines for the submission of the information or in the form and manner requested, subject to subsections (c)(1) and (e) of section 782; (C) significantly impedes a proceeding under this title; or (D) provides such information but the information cannot be verified as provided in section 782(i), the Department shall, subject to section 782(d) of the Act, use the facts otherwise available in reaching the applicable determination under this title. Where the Department determines that a response to a request for information does not comply with the request, section 782(d) of the Act provides that the Department shall promptly inform the party submitting the response of the nature of the deficiency and shall, to the extent practicable, provide that party with an opportunity to remedy or explain the deficiency. Section 782(d) further states that if the party submits further information that is unsatisfactory or untimely, the administering authority may, subject to subsection (e), disregard all or part of the original and subsequent responses. Section 782(e) of the Act provides that the Department shall not decline to consider information that is submitted by an interested party and is necessary to the determination but does not meet all the applicable requirements established by the administering authority if (1) the information is submitted by the deadline established for its submission, (2) the information can be verified, (3) the information is not so incomplete that it cannot serve as a reliable basis for reaching the applicable determination, (4) the interested party has demonstrated that it acted to the best of its ability in providing the information and meeting the requirements established by the administering authority with respect to the information, and (5) the information can be used without undue difficulties.

As addressed below separately for each company, we find that the PRCwide entity, Huibao/Hibridge, and certain suppliers of CCT, did not respond to our request for information, and necessary information either was not provided, or the information provided cannot be verified and is not sufficiently complete to enable the Department to use it for this preliminary determination. Therefore, we find it necessary, under section 776(a)(2) of the Act, to use facts otherwise available as the basis for the preliminary determination of this review for the PRC-wide entity, Huibao/Hibridge, and certain suppliers of CCT.

In their pre-preliminary determination comments, Petitioners have argued for the application of total adverse facts available ("AFA") with respect to Huibao/Hibridge, Datong Huibao Activated Carbon Co., Ltd. ("Datong Huibao") as a supplier to CCT and Jacobi, as well as for total AFA for Jacobi and Jilin Bright Future. As discussed below, we find that total AFA is warranted for Huibao/Hibridge, but AFA is unwarranted for Datong Huibao as a supplier to CCT and Jacobi, and total AFA is unwarranted for Jacobi and Jilin Bright Future.

Jacobi

Petitioners argue that the Department should apply total AFA to Jacobi, as the U.S. sales and factors of production data provided are unreliable. Petitioners allege the information on the record demonstrates a lack of cooperation and that the data is of poor quality and is inconsistent. Petitioners argue that Jacobi's data are based on unsubstantiated estimates and certain documentation has been destroyed, and that, though Jacobi has been given an opportunity to remedy its mistakes, the mistakes still exist. Petitioners also assert that the application of partial AFA is not practicable due to the cumulative effect of the errors, which renders the data unusable. Specifically, Petitioners argue that the omissions and errors include: Failure to identify the composition of carbonized materials and coal inputs for appropriate surrogate valuation; failure to report factors of production for sales of powdered activated carbon; unsubstantiated electricity and water consumption; refusal to report productspecific consumption of impregnation inputs; and its use of standard consumption amounts without appropriate documentation. See Petitioners' September 8, 2006, submission for a detailed discussion of their allegations. Petitioners further argue the use of undocumented standards creates distortions of a degree that the application of AFA is necessary.

The Department disagrees with Petitioners that the use of AFA is appropriate with respect to Jacobi. As noted above, Jacobi responded to the Department's original questionnaire, and several supplemental questionnaires. See Jacobi's Section A response dated June 1, 2006 ("Section A"), Jacobi's Section C and D response dated July 10, 2006 ("Section C&D"), Jacobi's Supplemental Section A, C and D response dated August 23, 2006 ("Jacobi's Supplemental"), Jacobi's Second Supplemental response dated

September 15, 2006 ("Jacobi's Second Supplemental").

Contrary to Petitioners' assertions, Jacobi has provided detailed and potentially verifiable information on its allocation methodologies (see, e.g., Jacobi's Supplemental at Exhibit 52), and for each of its suppliers, reconciled the information reported to the financial statements of the respective suppliers. See Jacobi's Section C&D at Exhibits II-5, III-5, IV-5, V-5, and Jacobi's Supplemental at Exhibit 49. Because Jacobi's suppliers do not maintain CONNUM-specific records, Jacobi has constructed an allocation methodology based on records maintained by each of its suppliers. In addition, Petitioners' allegation that Jacobi's data are based on unsubstantiated estimates is unfounded. Jacobi has provided detailed and potentially verifiable information on the standards used in the ordinary course of business by certain suppliers for raw materials including coal and carbonized material. See Jacobi's Supplemental at Exhibits 48 and 48b. In addition, Jacobi has provided samples of daily production reports, demonstrating that estimated and actual yields are used in the ordinary course of business by its suppliers. See Jacobi's Supplemental at Exhibit 99b. Further, Jacobi has explained that each of its suppliers maintains records on the consumption of all raw materials. Jacobi notes that certain suppliers do not have complete POI records, but claims that it has acted to the best of its ability in providing the information requested by the Department and used the information maintained by the suppliers in providing the requested information, from production records, raw material consumption records, etc. See Jacobi's Second Supplemental at 11. With respect to the U.S. sales information, except where indicated, we have determined to rely on the information provided. Therefore, on the basis of the data submitted by Jacobi, which the Department intends to carefully scrutinize at verification, the Department determines that the use of total adverse facts available is not warranted for the preliminary determination. However, as discussed in the "Normal Value" section below, the Department has applied facts available with respect to the unreported factors of production for one control number of powdered activated carbon.

CCT

For certain of its suppliers, CCT did not report the factors of production used to produce the subject merchandise. Therefore, in accordance with sections 776(a)(2)(A) and (B) of the Act, the Department must use the facts otherwise available in determining the normal value for these sales because CCT withheld the factors information and otherwise failed to provide the information in a timely manner and in the form requested. For the reasons described below, the Department has determined to apply an adverse inference to the unreported factors of production. CCT stated that one of its suppliers, Nuclear Ningxia Activated Carbon Co., Ltd. ("NC"), ceased production after the POI. CCT stated that NC refused to provide the data necessary to prepare an FOP response. See CCT's August 7, 2006, response at page 2. CCT stated that another of its suppliers, Ningxia Luyuanheng Activated Carbon Co., Ltd. ("HD") also ceased production after the POI and also refused to provide data necessary to prepare an FOP response. See id. CCT provided documentation of its attempts to obtain the necessary data from these two companies. See June 29, 2006, letter at Exhibits 2 and 3, and CCT's August 7, 2006, supplemental response at Exhibit M. On September 8, 2006, HD submitted a letter to the Department stating that, due to restructuring, HD temporarily suspended production of activated carbon but resumed production in August 2006. See September 8, 2006 Memorandum to the File from Catherine Bertrand, Senior Case Analyst, AD/CVD Operations, Office 9.

The Department preliminarily finds that, in accordance with sections 776 (a)(2)(A) and (B) of the Act, CCT did not cooperate to the best of its ability regarding its suppliers HD and NC and has determined to use adverse facts available for the preliminary determination with regard to these suppliers and will apply the highest calculated normal value for CCT to the sales of merchandise supplied by HD and NC. See CCT's Prelim Analysis Memo. Due to the proprietary nature of the factual information concerning these suppliers, these issues are addressed in a separate business proprietary memorandum. See Memorandum to James C. Doyle, Director, AD/CVD Operations, Office 9, from Catherine Bertrand, Senior Case Analyst, AD/CVD Operations, Office 9: Application of Adverse Facts Available for Calgon Carbon (Tianjin) Co., Ltd., in the Preliminary Determination in the Antidumping Duty Investigation of Certain Activated Carbon from the People's Republic of China, dated October 4, 2006.

Further, CCT also informed the Department that certain of its suppliers purchased activated carbon from other

producers which was then sold to CCT. CCT did not provide the FOP information for these ultimate suppliers. On August 18, 2006, a full month after CCT's original Section D response was due, CCT informed the Department that certain of the companies that it had previously identified as producers, had in fact sourced activated carbon from upstream producers, which was then sold to CCT. CCT specifically identified suppliers Shanxi Xuanzhong Chemical Industry Co., Ltd. ("SXZ"), Huairen Jinbei Chemical Co. Ltd. ("JB") and Jiaocheng Xinxin Purification Material Co., Ltd. ("XX") as having sourced activated carbon from upstream producers. In CCT's September 12, 2006 response, CCT identified SXZ's suppliers as Datong Changtai Activated Carbon Co., Ltd. ("DCA"), and Yuyang Activated Carbon Co., Ltd. ("YAC") and XX's suppliers as Datong Kangda Activated Carbon Factory ("DKA") and Datong Runmei Activated Carbon Factory ("DRA"). See CCT's September 12, 2006 response at 4. While CCT noted that JB's supplier was Fangyuan Carbonization Co., Ltd., it also noted that all activated carbon sold to the United States from that supply chain was further manufactured in the United States and would be subject to the exclusion under the Department's application of the special rule. For SXZ, and its suppliers, and XX's suppliers, CCT stated that it attempted to obtain the FOP information but was unable to do so. See CCT's September 12, 2006, response.

CCT provided documentation of its attempts to obtain the data from the companies, and also argued that alternative data is available to the Department because certain products are also produced by other suppliers from whom we have FOP information. CCT provided declarations from officials from DCA, DKA, and DRA which stated that these are small companies that do not have the time and labor to provide the requested data. See September 12, 2006, supplemental

response at Exhibit D-42.

As stated above, CCT stated that its supplier XX purchased activated carbon produced by DKA and DRA which was then sold to CCT. See CCT's September 12, 2006 response at 4. Further, CCT stated that "{d}uring the POI most of the merchandise under consideration that XX produced for CCT was made from activated carbon that XX purchased from unaffiliated suppliers." See July 11, 2006, Section D response at D-H. XX reported that the merchandise it purchased from DKA and DRA underwent a second activation at XX's facilities before being sold to CCT. The

Department finds that XX should have reported the factors of production for its suppliers, as instructed, because the material it purchased from DKA and DRA was already steam activated carbon. See Id. at 2. Therefore, although XX did provide a FOP database, the Department is applying the highest normal value for CCT to the sales of XX's merchandise by CCT because XX purchased the activated carbon from the ultimate producers and that FOP information was not reported.

On September 19, 2006, CCT informed the Department that it was also supplied by Ningxia Yinchuan Langiya Activated Carbon Co., Ltd. ("LQY"), and that sales of merchandise produced by LQY were made by CCT pursuant to municipal contracts awarded during the POI. As discussed below in the "Date of Sale" Section, CCT reported that the appropriate date of sale for municipal contracts is the date of the contract award, which is the date when the price and quantity are fixed. Therefore, although certain sales of LQY were invoiced in 2006, which is after the POI, they were made pursuant to municipal contracts from the POI and the appropriate date of sale for these sales is the date the municipal contract was awarded. CCT did include these sales in its U.S. sales database, but did report the FOP information for these sales.

On September 28, 2006, CCT also informed the Department that it was also supplied by Dushanzi Chemical Factory ("DSZ"). See September 28, 2006, supplemental response at page 2. On September 29, 2006, CCT indicated that another supplier, Xingtai Coal Chemical Co., Ltd. ("TX") also supplied CCT. See September 29, 2006,

supplemental response.

The Department's original questionnaire asked CCT to report the factors of production for the ultimate producer of the merchandise under consideration. The original questionnaire states, "If your company did not produce the merchandise under consideration, we request that this section be immediately forwarded to the company that produces the merchandise and supplies it to you or to your customers." See May 4, 2006 Questionnaire to CCT at page D-2. Further, on August 21, 2006, the Department sent CCT a letter which stated, in part,

We are also requiring CCT to report the FOP information for the ultimate producer of the merchandise under consideration. Therefore, for those suppliers of CCT who purchased merchandise under consideration from another supplier, whether affiliated or unaffiliated, which was then sold to CCT, we are requiring CCT to report the FOP information of these ultimate suppliers for the products sold during the POI. This includes, but is not limited to, reporting the FOP information for Shanxi Xuanzhong Chemical Industry Co., Ltd. ("SXZ") and the unnamed suppliers of Huairen Jinbei Chemical Co. Ltd. ("JB") which CCT identified on page 8 of its August 18, 2006 extension request.

See August 21, 2006, letter to CCT. CCT did not provide any FOP data from SXZ, DCA, YAC, DSZ, TX, LQY, DRA, or DKA. Furthermore, XX purchased most of the activated carbon it sold to CCT from DRA and DKA. As such, since CCT did not provide the FOP data from these suppliers after being given two opportunities to do so, the Department finds that the application of adverse facts available is warranted because CCT did not act to the best of its ability. It is the Department's practice to obtain the FOP data from the actual producer of the merchandise under consideration. CCT was therefore required to provide this FOP information and did not do so. Pursuant to section 776(b) of the Act, the Department may use information that is adverse to the interest of that party when the party fails to cooperate by not acting to the best of its ability in responding to the Department's request for information. See Nippon Steel Corp. v. United States, 337 F.3d 1373, 1382 (Fed. Cir. 2003). Further, section 776(b) of the Act authorizes the Department to use as AFA information derived from the petition, the final determination from the LTFV investigation, a previous administrative review, or any other information placed on the record. In selecting a rate for adverse facts available, the Department selects a rate that is sufficiently adverse "as to effectuate the purpose of the facts available rule to induce respondents to provide the Department with complete and accurate information in a timely manner." See Notice of Final Determination of Sales at Less Than Fair Value: Static Random Access Memory Semiconductors from Taiwan, 63 FR 8909, 8932 (February 23, 1998) ("Semiconductors").

In order for the Department to fulfill its obligation to calculate dumping margins as accurately as possible, it is essential that respondents provide the Department with accurate, complete, and verifiable information. In striving to obtain this information, the Department has discretion to modify its reporting requirements when an interested party explains why it is unable to submit the information in the requested form and manner and suggests alternative reporting forms. However, if the

necessary information is not on the record, section 776(a)(1) of the Act provides for the use of facts available.

Moreover, if an interested party has failed to cooperate by not acting to the best of its ability to comply with a request for information, the Department may apply adverse inferences where the use of facts available is appropriate. See section 776(b) of the Act. We have determined that these ultimate producers have failed to cooperate by not acting to the best of their ability to comply with a request for information and thus an adverse inference is warranted. This position is consistent with that taken by the Department in Certain Cased Pencils from the People's Republic of China; Final Results and Partial Rescission of Antidumping Duty Administrative Review, 67 FR 48612 (July 25, 2002), and accompanying Issue and Decision Memorandum at Comment 10, which cited Ferrovanadium and Nitrided Vanadium From the Russian Federation: Notice of Final Results of Antidumping Duty Administrative Review, 62 FR 65656, 65658 (December 15, 1997) ("Ferrovanadium and Nitrided Vanadium"). In Ferrovanadium and Nitrided Vanadium, the Department stated that "by failing to respond Chusovoy {the producer} is an interested party which has not cooperated to the best of its ability under section 776 (b) of the Act. Therefore, we have continued to use an adverse inference in selecting from the facts available to determine the margins for Galt's sales of Chusovoy-produced merchandise * * *"

In the instant investigation, as partial AFA, we have assigned the highest calculated normal value for CCT to the sales of the following suppliers for which CCT did not provide FOP information: SXZ (which includes its ultimate suppliers DCA and YAC); DSZ; TX; LQY; and, XX (which includes its ultimate suppliers DKA and DRA). It was not necessary to apply the highest calculated normal value for CCT to JB's supplier, Fangyuan Carbonization Co., Ltd., because all activated carbon sold in that supply chain was further manufactured in the United States and was subject to exclusion pursuant to the special rule.

Jilin Bright Future

Petitioners also argue in their prepreliminary comments on Jilin Bright Future, dated September 13, 2006, that total AFA is warranted with respect to Jilin Bright Future because Jilin Bright Future has failed to provide reliable factors of production data. Petitioners assert that Jilin Bright Future's submissions to date demonstrate a lack

of cooperation due to the low quality and internal inconsistency of the data. Petitioners allege that the information submitted is based on unsubstantiated and unexplained estimates based on aggregate allocations irrespective of product characteristics. Petitioners argue that despite an opportunity to remedy its errors, Jilin Bright Future failed to do so. Therefore, Petitioners argue, the totality of the deficiencies support the application of total AFA. Petitioners assert that the range of the problems with Jilin Bright Future's response precludes the application of partial AFA. Further, Petitioners argue that some of the information with respect to normal value is not available on the record making the data unusable, and AFA is warranted. Petitioners argue that Jilin Bright Future does not warrant a separate rate due to unexplained connections with its predecessor companies. Further, Petitioners assert that it has provided no support for the reported FOPs of Zuoyun Bright Future Activated Carbon Plant ("ZBF"), one of Jilin Bright Future's suppliers of subject merchandise during the POI. Petitioners discuss in detail claimed deficiencies with ZBF's reported FOPs in their September 13, 2006, submission, a proprietary discussion that cannot be summarized here. In addition, Petitioners assert that Jilin Bright Future's reported standard consumption amounts for ZBF are based on a valuebased allocation methodology rather than the physical amounts actually consumed, an allocation methodology that Jilin Bright Future has not supported. Petitioners also argue that the basis for this value-based allocation, that granular activated carbon has higher costs than powdered activated carbon, is unsupported by Jilin Bright Future's own statements that the production process for these products is the same prior to the screening process. See Petitioners' September 13, 2006, submission for a detailed discussion of this issue. Therefore, Petitioners argue, the application of total AFA is warranted.

The Department disagrees with Petitioners that the use of total AFA is appropriate with respect to Jilin Bright Future. As noted above, Jilin Bright Future responded to the Department's original questionnaire, and several supplemental questionnaires. See JBF Chem and JBF Industry's separate rate application and Section A, dated May 4, 2006, and June 9, 2006, respectively ("JBF Section As"), Jilin Bright Future's Section C and D response dated June 24, 2006 ("JBF Section C&D"), Jilin Bright Future's Supplemental Section C and D

response dated August 25, 2006 ("JBF Supplemental"), Jilin Bright Future's Second Supplemental response dated September 21, 2006 ("JBF Second Supplemental"). Contrary to Petitioners' assertions, Jilin Bright Future has provided detailed and potentially verifiable information on its allocation methodologies (see, e.g., JBF's Supplemental at Exhibits S2-D-33 and S2-D-70; JBF's Second Supplemental at Exhibit S3-5), and for each of its suppliers, reconciled the information reported to the financial statements of the respective suppliers. See JBF's Section C&D at Exhibits D-ZY-10, D-TH-6, and D-XH-6. Because Jilin Bright Future's suppliers do not maintain CONNUM-specific records, Jilin Bright Future has constructed an allocation methodology based on records maintained by each of its suppliers.

In addition, Petitioners' allegation that Jilin Bright Future's data are based on unsubstantiated estimates is unfounded. Jilin Bright Future has provided potentially verifiable information on the standards used in the ordinary course of business by its suppliers for raw materials, including coal, and constructed a reasonable allocation when Jilin Bright Future's suppliers' normal books and records do not maintain the information requested by the Department. In addition, Jilin Bright Future has provided samples of daily production reports that were used by ZBF and standards that were used by Shanxi Xinhua Activated Carbon Co., Ltd. ("Xinhua") to report utilization quantities to the Department, demonstrating that actual yields are used in the ordinary course of business by its suppliers. See JBF's Supplemental at Exhibits S2-D-33 and S2-D-70. Further, Jilin Bright Future has explained that its suppliers maintain records on the total POI consumption of raw materials. Jilin Bright Future notes that certain suppliers do not have complete, product-specific POI records, but the Department finds that its allocations are reasonable, given the records maintained by Jilin Bright Future's suppliers. Therefore, on the basis of the data submitted by Jilin Bright Future, which the Department intends to carefully scrutinize at verification, the Department preliminarily determines that the use of total adverse facts available is not warranted for the preliminary determination.

Datong Huibao and Huibao/Hibridge

Petitioners argue that Datong Huibao should receive total AFA, consistent with the law and past practice because it withdrew from the proceeding as a mandatory respondent (a.k.a., mandatory respondent Huibao/ Hibridge). See section 776 of the Act; Notice of Final Determination of Sales at Less Than Fair Value and Affirmative Final Determination of Critical Circumstances of the Antidumping Investigation: Certain Lined Paper Products from Indonesia, 71 FR 47171 (August 9, 2006), and accompanying Issues and Decision memorandum at Comments 1 through 11. Petitioners also argue that the Department should apply AFA to sales made by Jacobi and CCT that were supplied by Datong Huibao. See Petitioners' September 8, 2006, submission. Petitioners argue that Datong Huibao's withdrawal from the proceeding makes its information unverifiable, which should apply to Datong Huibao as both a mandatory respondent and a supplier to Jacobi and CCT. Petitioners contend that Datong Huibao should receive the highest rate in the petition, 333.66 percent, as a mandatory respondent (a.k.a. Huibao/ Hibridge), and should not qualify for a potentially lower rate through a different export channel. Petitioners assert that Datong Huibao's factors of production information should be deemed unverifiable as a mandatory respondent, and, thus, should also be considered unverifiable as a supplier. Therefore, Petitioners argue, the Department should assign a margin of 333.66 percent to all U.S. sales of products which were produced by Datong Huibao as AFA.

The Department does not find that Petitioners' allegation, that U.S. sales made by cooperating mandatory respondents Jacobi and CCT should be assigned an adverse rate simply because these respondents sourced some of their activated carbon from Datong Huibao (a.k.a., mandatory respondent Huibao/ Hibridge), is consistent with the statute and regulations. Further, the Department's practice on combination rates as explained in Policy Bulletin 05.1, available at http://www.trade.gov/ ia/, is to calculate one rate for the exporter and all of the producers which supplied subject merchandise to it during the POI. Specifically, the Policy Bulletin 05.1 states if "an exporter receiving a separate rate sourced from multiple producers (including itself) during the period of investigation, and provided the Department with the required information about each of these producers, the exporter's cash-deposit rate will be applied to merchandise it sourced from any combination of its identified producers without restriction. In other words, the Department will not assign combination rates to an exporter

and individual producers, but rather to an exporter and its producers as a group" (emphasis added). Therefore, for purposes of a combination rate, because the exporter provided the requested information (as discussed further below), the Department should apply the cash-deposit rate for all combinations of its identified producers "without restriction."

Jacobi and CCT are mandatory respondents that have responded to the Department's requests for information, except where noted above. Jacobi reported that it sourced a portion of its U.S. sales of subject merchandise from Datong Huibao, and reported the factors of production for Datong Huibao. See Jacobi's Section A; Jacobi's Section C&D; Jacobi's Supplemental; and Jacobi's Second Supplemental. Also, Jacobi responded to detailed supplemental questions with respect to the data submitted by Jacobi for Datong Huibao in Jacobi's Supplemental and Jacobi's Second Supplemental. With respect to CCT, although CCT reported that one of its suppliers of the merchandise under investigation during the POI was Datong Huibao, the Department excused CCT from reporting the factors information from several suppliers, including Datong Huibao, due to the large numbers of producers that supplied CCT during the investigation. See Letter to CCT dated July 19, 2006.

The Department does not find that failure to participate as a mandatory respondent should affect the inclusion in a combination rate for another participating mandatory respondent. Section 776(a)(2) of the Act does not provide for the application of adverse facts available for an exporter, in this case Jacobi and CCT, where the information on the record demonstrates that it has provided the information requested by the Department in a timely manner, irrespective of the separate status of any of its suppliers. Therefore, the Department preliminarily determines that sales made by Jacobi and CCT, sourced from merchandise produced by Datong Huibao, should be considered verifiable and the Department will include, for this preliminary determination, these sales in its calculation of a margin for Jacobi and CCT. Further, the Department will, as discussed below under "Combination Rates," include Datong Huibao in Jacobi and CCT's combination rates.

However, the record of this investigation demonstrates that the mandatory respondent Huibao/Hibridge failed to provide information specifically requested by the Department during the course of this investigation. Huibao/Hibridge was

selected as a mandatory respondent in this investigation and was issued the Department's full questionnaire on May 10, 2006. On May 15, 2006, after submission of its separate-rate application and receiving the Department's full sections A, C, and D questionnaire, Huibao/Hibridge submitted a letter stating that it was withdrawing as a mandatory respondent in this investigation and would not be participating further. Although Huibao/ Hibridge submitted a separate rate application, it did not submit a response to any portion of the Department's questionnaire, which it is required to do as a mandatory respondent; therefore, Huibao/Hibridge cannot be considered as a separate rate applicant and is considered part of the PRC-entity. The mandatory respondent Huibao/Hibridge is appropriately considered to be part of the PRC-wide entity because it failed to establish its eligibility for a separate rate.

PRC-Wide Entity

Section 776(a)(2) of the Act provides that, if an interested party (A) withholds information that has been requested by the Department, (B) fails to provide such information in a timely manner or in the form or manner requested, subject to subsections 782(c)(1) and (e) of the Act, (C) significantly impedes a proceeding under the antidumping statute, or (D) provides such information but the information cannot be verified, the Department shall, subject to subsection 782(d) of the Act, use facts otherwise available in reaching the applicable determination. Information on the record of this investigation indicates that the PRC-wide entity was nonresponsive. Huibao/Hibridge did not respond to our questionnaire. As a result, pursuant to section 776(a)(2)(A) of the Act, we find that the use of facts available is appropriate to determine the PRC-wide rate. See Notice of Preliminary Determination of Sales at Less Than Fair Value, Affirmative Preliminary Determination of Critical Circumstances and Postponement of Final Determination: Certain Frozen Fish Fillets from the Socialist Republic of Vietnam, 68 FR 4986, 4991 (January 31, 2003), unchanged in Notice of Final Antidumping Duty Determination of Sales at Less Than Fair Value and Affirmative Critical Circumstances: Certain Frozen Fish Fillets from the Socialist Republic of Vietnam, 68 FR 37116 (June 23, 2003). Section 776(b) of the Act provides that, in selecting from among the facts otherwise available, the Department may employ an adverse inference if an interested party fails to cooperate by not acting to the best of its

ability to comply with requests for information. See Notice of Final Determination of Sales at Less Than Fair Value: Certain Cold-Rolled Flat-Rolled Carbon-Quality Steel Products from the Russian Federation, 65 FR 5510, 5518 (February 4, 2000). See also "Statement of Administrative Action"("SAA") accompanying the Uruguay Round Agreements Act ("URAA"), H.R. Rep. No. 103-316 vol. 1, at 870 (1994). We find that because the PRC-wide entity, including Huibao/ Hibridge, failed to participate in the investigation, failed to respond to the Department's requests for information, and none of the information submitted can be verified, the PRC-wide entity, including Huibao/Hibridge, has failed to cooperate to the best of its ability and will be subject to the PRC-wide rate. Therefore, the Department preliminarily finds that, in selecting from among the facts available, an adverse inference is appropriate.

Further, section 776(b) of the Act authorizes the Department to use as AFA information derived from the petition, the final determination from the LTFV investigation, a previous administrative review, or any other information placed on the record. In selecting a rate for adverse facts available, the Department selects a rate that is sufficiently adverse "as to effectuate the purpose of the facts available rule to induce respondents to provide the Department with complete and accurate information in a timely manner." See Semiconductors 63 FR at 8932. It is the Department's practice to select, as AFA, the higher of the (a) highest margin alleged in the petition, or (b) the highest calculated rate of any respondent in the investigation. See Final Determination of Sales at Less Than Fair Value: Certain Cold-Rolled Flat-Rolled Carbon Quality Steel Products from the People's Republic of China, 65 FR 34660 (May 31, 2000) and accompanying Issues and Decision Memorandum, at "Facts Available." In the instant investigation, as AFA, we have assigned to the PRC-wide entity a margin based on information in the petition.

As there were three margins from the petition, we have used the highest one of the three that is corroborated by the individual margins for the mandatory respondents; this margin is 228.11 percent. Therefore, we have applied the highest corroborated rate of 228.11 percent to the PRC-wide entity.

Corroboration

Section 776(c) of the Act requires that, when the Department relies on secondary information rather than on

information obtained in the course of an investigation as facts available, it must, to the extent practicable, corroborate that information from independent sources reasonably at its disposal.3 The SAA also states that the independent sources may include published price lists, official import statistics and customs data, and information obtained from interested parties during the particular investigation. See id. The SAA also clarifies that "corroborate" means that the Department will satisfy itself that the secondary information to be used has probative value. See SAA at 870. As noted in Tapered Roller Bearings and Parts Thereof, Finished and Unfinished, from Japan, and Tapered Roller Bearings, Four Inches or Less in Outside Diameter, and Components Thereof, from Japan; Preliminary Results of Antidumping Duty Administrative Reviews and Partial Termination of Administrative Reviews, 61 FR 57391, 57392 (November 6, 1996), unchanged in Tapered Roller Bearings and Parts Thereof, Finished and Unfinished, From Japan, and Tapered Roller Bearings, Four Inches or Less in Outside Diameter, and Components Thereof, From Japan: Final Results of Antidumping Duty Administrative Reviews and Termination in Part, 62 FR 11825 (March 13, 1997), to corroborate secondary information, the Department will, to the extent practicable, examine the reliability and relevance of the information used. Petitioners methodology for calculating the export price and normal value in the petition is discussed in the initiation notice. See *Initiation Notice.* To corroborate the AFA margin selected, we compared that margin to the margins we found for the respondents.

Ås discussed in the Memorandum to the File regarding the corroboration of the AFA rate, dated October 4, 2006, we found that the margin of 228.11 percent has probative value. See Memorandum to the File from Catherine Bertrand, Senior Case Analyst, AD/CVD Operations, Office 9: Corroboration of the PRC-Wide Facts Available Rate for the Preliminary Determination in the Antidumping Duty Investigation of Certain Activated Carbon from the People's Republic of China, dated October 4, 2006, ("Corroboration Memo"). Accordingly, we find that the rate of 228.11 percent is corroborated

³ Secondary information is described in the *SAA* as "information derived from the petition that gave rise to the investigation or review, the final determination concerning the subject merchandise, or any previous review under section 751 concerning the subject merchandise." *See SAA* at 870.

within the meaning of section 776(c) of the Act. Consequently, we are applying 228.11 as the single antidumping rate to the PRC-wide entity.

The Department will consider all margins on the record at the time of the final determination for the purpose of determining the most appropriate AFA rate for the PRC-wide entity. See Notice of Preliminary Determination of Sales at Less Than Fair Value: Saccharin from the People's Republic of China, 67 FR 79049, 79053–79054 (December 27, 2002), unchanged in Notice of Final Determination of Sales at Less Than Fair Value: Saccharin From the People's Republic of China, 68 FR 27530 (May 20, 2003) ("Saccharin").

Margin for the Separate Rate Applicants

The Department received timely and complete separate rates applications from the Separate Rates Companies, who are all exporters of certain activated carbon from the PRC, which were not selected as mandatory respondents in this investigation. Through the evidence in their applications, these companies have demonstrated their eligibility for a separate rate, as discussed above in the "Separate Rates" section and in the Separate Rates Memo. Consistent with the Department's practice, as the separate rate, we have established a weight-averaged margin for the Separate Rates Companies based on the rates we calculated for the mandatory respondents, the companies for which the Department calculated an antidumping duty margin for this preliminary determination, excluding any rates that are zero, de minimis, or based entirely on AFA. See Memorandum to the File from Anya Naschak, Preliminary Weight-Averaged Margin for Separate Rate Applicants, dated October 4, 2006, Companies receiving this rate are identified by name in the "Suspension of Liquidation" section of this notice.

Date of Sale

Section 351.401(i) of the Department's regulations state that,

In identifying the date of sale of the subject merchandise or foreign like product, the Secretary normally will use the date of invoice, as recorded in the exporter or producer's records kept in the normal course of business. However, the Secretary may use a date other than the date of invoice if the Secretary is satisfied that a different date better reflects the date on which the exporter or producer establishes the material terms of sale.

See 19 CFR 351.401(i); See also Allied Tube and Conduit Corp. v. United

States, 132 F. Supp. 2d 1087, 1090–1093 (CIT 2001) ("Allied Tube"). The date of sale is generally the date on which the parties agree upon all substantive terms of the sale. This normally includes the price, quantity, delivery terms and payment terms. In order to simplify the determination of date of sale for both the respondent and the Department and in accordance with 19 CFR 351.401(i), the date of sale will normally be the date of the invoice, as recorded in the exporter's or producer's records kept in the ordinary course of business, unless satisfactory evidence is presented that the exporter or producer establishes the material terms of sale on some other date. In other words, the date of the invoice is the presumptive date of sale, although this presumption may be overcome. For instance, in Notice of Final Determination of Sales at Less Than Fair Value: Polyvinyl Alcohol from Taiwan, 61 FR 14064, 14067 (March 29, 1996), the Department used the date of the purchase order as the date of sale because the terms of sale were established at that point.

After examining the questionnaire responses and the sales documentation that Jacobi and Jilin Bright Future provided, we preliminarily determine that invoice date is the most appropriate date of sale for Jacobi and Jilin Bright Future. Jacobi and Jilin Bright Future do not dispute that invoice date is the appropriate date of sale, and the information on the record supports this contention. CCT, however, reported that the appropriate date of sale for spot sales and sales pursuant to framework agreements is the date of invoice while the appropriate date of sale for municipal contracts is the date of the contract award, which is the date when the price and quantity are fixed. The Department finds that, based on the information on the record, CCT has rebutted the presumption that invoice date is the appropriate date of sale for municipal contract sales and the award contract date is the most appropriate date of sale for these types of sales. See Saccharin 68 FR at 27531. This conclusion is based on the information on the record demonstrating that the quantity and value of sales pursuant to the municipal contacts were fixed at the date the contract was awarded.

Fair Value Comparisons

To determine whether sales of certain activated carbon to the United States by CCT, Jacobi, and Jilin were made at less than fair value, we compared either export price ("EP") or constructed export price ("CEP") to normal value ("NV"), as described in the "U.S. Price," and "Normal Value" sections of this

notice. We compared NV to weightedaverage EPs and CEPs in accordance with section 777A(d)(1) of the Act.

U.S. Price

Export Price

For Jilin Bright Future, we based U.S. price on EP in accordance with section 772(a) of the Act, because the first sale to an unaffiliated purchaser was made prior to importation, and CEP was not otherwise warranted by the facts on the record. We calculated EP based on the packed price from the exporter to the first unaffiliated customer in the United States. Where applicable, we deducted foreign movement expenses and foreign brokerage and handling expenses from the starting price (gross unit price), in accordance with section 772(c)(2) of the Act. Where foreign movement services were provided by PRC service providers or paid for in Renminbi ("RMB"), we valued these services using surrogate values (see "Factors of Production" section below for further discussion).

Jilin Bright Future reported that it made U.S. sales of subject merchandise in November 2005, which it characterized as "sample sales" and reported these sales in its Section C database. Jilin Bright Future argues that these samples should be "excluded from the Section C database as an abnormal sale, based on the fact that the amount of sample was comparably small and the production for that certain sample was specially from the laboratory." See JBF's Section C&D response at 2. The Department notes that these samples, far from being an out-of-ordinary transaction, appear on an invoice containing several other types of merchandise and were paid for by the U.S. customer. See JBF Chem's Separate Rate Application dated May 4, 2006, at Exhibit 1. Further, the Department notes that these claimed samples appear on the same purchase order as other nonsample merchandise, and the order summary notes a price for these samples. See JBF Chem's Separate Rate Application dated May 4, 2006, at Exhibit 8.

The Federal Circuit has not required the Department to exclude zero-priced or *de minimis* sales from its analysis, but rather, has defined a sale as requiring "both a transfer of ownership to an unrelated party and consideration." *See NSK Ltd. v. United States*, 115 F.3d 965, 975 (Fed. Cir. 1997). The Courts have consistently ruled that the burden rests with a respondent with respect to its own data. *See, e.g., Zenith Electronics Corp. v. United States*, 988 F. 2d 1573, 1583 (Fed. Cir. 1993) (explaining that the

burden of evidentiary production belongs "to the party in possession of the necessary information"). See also Tianjin Machinery Import & Export Corp. v. United States, 806 F. Supp. 1008, 1015 (CIT 1992) ("The burden of creating an adequate record lies with respondents and not with {the Department}.") (citation omitted). Moreover, "{e}ven where the Department does not ask a respondent for specific information that would enable it to make an exclusion determination in the respondent's favor, the respondent has the burden of proof to present the information in the first place with its request for exclusion.' See Ball Bearings and Parts Thereof from France, Germany, Italy, Japan, Singapore, and the United Kingdom: Final Results of Antidumping Duty Administrative Reviews, 70 FR 54711 (September 16, 2005), and accompanying Issues and Decision Memorandum at Comment 12 (citing NTN Bearing Corp. of America. v. United States, 997 F. 2d 1453, 1458 (Fed. Cir. 1993)). In this case, though Jilin Bright Future has requested that it be excluded from reporting the purported samples, Jilin Bright Future has not demonstrated that these samples were sold in a manner inconsistent with its normal sales process.

As noted above, an analysis of Jilin Bright Future's Section C computer sales listings reveals that it provided these "samples" to the same customers to whom it was selling or had sold products in commercial quantities, and, in this case, on the same invoice. See JBF Chem's Separate Rate Application dated May 4, 2006, at Exhibit 8. Therefore, based on the information on the record, we have for this preliminary determination not excluded these samples from the margin calculation of Jilin Bright Future.

Constructed Export Price

For CCT and Jacobi, we based U.S. price on CEP in accordance with section 772(b) of the Act, because sales were made on behalf of the PRC-based company by its U.S. affiliate to unaffiliated purchasers. For CCT and Jacobi's sales, we based CEP on packed, delivered or ex-warehouse prices to the first unaffiliated purchaser in the United States. Where appropriate, we made deductions from the starting price (gross unit price) for foreign movement expenses, international movement expenses, U.S. movement expenses, and appropriate selling adjustments, in accordance with section 772(c)(2)(A) of the Act.

In accordance with section 772(d)(1) of the Act, we also deducted those

selling expenses associated with economic activities occurring in the United States. We deducted, where appropriate, commissions, inventory carrying costs, interest revenue, credit expenses, warranty expenses, and indirect selling expenses. Where foreign movement expenses, international movement expenses, or U.S. movement expenses were provided by PRC service providers or paid for in Renminbi, we valued these services using surrogate values (see "Factors of Production" section below for further discussion). For those expenses that were provided by a market-economy provider and paid for in market-economy currency, we used the reported expense. Due to the proprietary nature of certain adjustments to U.S. price, for a detailed description of all adjustments made to U.S. price for each company, see the company specific analysis memorandums, dated October 4, 2006.

CCT also requested that the Department apply the "special rule" for merchandise with value added after importation and excuse CCT from reporting U.S. resales of subject merchandise further processed by Calgon Carbon Corporation ("CCC"), CCT's U.S. parent company, in the United States and the U.S. furtherprocessing cost information associated with the resales. CCT made this request with respect to all categories of U.S. sales with further manufacturing. See CCT's August 8, 2006 Letter. Petitioner NORIT submitted a letter on August 2, 2006 requesting that the Department deny CCT's request. The Department analyzed the information on the record with regard to this issue from both CCT and Petitioner. The Department determined that the valued added by CCC in the United States to the further manufactured sales would exceed 65 percent. Also, the quantity of sales not further manufactured was sufficient to provide a reasonable basis for comparison. Moreover, analyzing the further manufactured sales and the further manufacturing costs would impose an unnecessary burden on the Department. See Memorandum to James C. Doyle, Director, AD/CVD Operations, Office 9, through Carrie Blozy, Program Manager, AD/CVD Operations, Office 9, from Catherine Bertrand, Senior Case Analyst, Office 9: Special Rule for Merchandise with Value Added after Importation for the Antidumping Investigation of Certain Activated Carbon from the People's Republic of China, dated September 1, 2006 ("Special Rule Memo"). For those reasons, the Department decided to apply the "special rule" to merchandise

with value added after importation to CCT's U.S. resales of subject merchandise further processed by CCC in the United States and excuse CCT from reporting these U.S. sales and the U.S. further-processing cost information associated with the resales. The "Special Rule for Merchandise with Value Added After Importation" is defined by Section 772(e) the Act as:

Where the subject merchandise is imported by a person affiliated with the exporter or producer, and the value added in the United States by the affiliated person is likely to exceed substantially the value of the subject merchandise, the administering authority shall determine the constructed export price for such merchandise by using one of the following prices if there is a sufficient quantity of sales to provide a reasonable basis for comparison, and the administering authority determines that the use of such sales is appropriate:

(1) The price of identical subject merchandise sold by the exporter or producer

to an unaffiliated person.

(2) The price of other subject merchandise sold by the exporter or producer to an unaffiliated person.

If there is not sufficient quantity of sales to provide a reasonable basis for comparison under paragraph (1) and (2), or the administering authority determines that neither of the prices described in such paragraphs is appropriate, then the constructed export price may be determined on any other reasonable basis.

Also, the Department's regulation, 19 CFR 351.402(c)(2), states that the value added in the United States by the affiliated person is likely to exceed substantially the value of the subject merchandise when the value added is estimated to be at least 65 percent of the price charged to the first unaffiliated purchaser for the merchandise as sold in the United States. For a full discussion of the issue, see the Special Rule Memo. For purposes of the preliminary determination, we have applied the weighted-average margin from CCT's other U.S. sales to the quantity of U.S. further manufactures sales. See CCT Prelim Analysis Memo.

The Department's original questionnaire defines "other direct selling expenses" to be "the unit cost of other direct selling expenses you incurred on sales of the subject merchandise which are not reported in other fields." See the Department's questionnaire dated May 4, 2006. The Department notes that direct selling expenses are expenses that can be tied to specific sales transactions and related directly to the sales reported, and salaries for sales personnel are normally considered an indirect selling expense. As a result, the Department requested that Jacobi reclassify its reported sales personal salaries from direct selling

expenses to be part of its indirect selling expense calculation. As Jacobi has continued to report these expenses as a direct selling expense, the Department has re-classified these expenses as part of total CEP selling expenses for purposes of the margin calculation. See Jacobi's Analysis Memo.

Normal Value

Section 773(c)(1) of the Act provides that the Department shall determine the NV using a factors-of-production methodology if the merchandise is exported from an NME and the information does not permit the calculation of NV using home-market prices, third-country prices, or constructed value under section 773(a) of the Act. The Department bases NV on the FOP because the presence of government controls on various aspects of non-market economies renders price comparisons and the calculation of production costs invalid under the Department's normal methodologies.

Factor Methodology

During the POI, CCT did not have production of all types of merchandise for which it had POI sales. Consequently, CCT requested that it be allowed to report the factors-ofproduction data for the most similar products produced during the POI as a surrogate for products sold during the POI, but produced prior to the POI. However, the Department denied this request and requested that CCT expand the FOP reporting for certain suppliers to report the FOP data based on twelve months from January 1, 2005 to December 31, 2005. See August 9, 2005 Letter to CCT. For the CONNUMs for which FOPs are still not included in the expanded FOP database, the Department has assigned FOPs for similar subject merchandise that was produced by CCT, as facts available. The Department then calculated an average of the FOPs for each product grouping and assigned the product-group average FOPs to CONNUMs where no FOPs were reported by CCT. See CCT Prelim Analysis Memo.

On June 29, 2006, CCT requested to be excused from reporting factors of production data for certain of its suppliers due to the large number of suppliers from which CCT purchased certain activated carbon during the POI. Due to the large numbers of producers that supplied CCT during the POI, the Department excused CCT from reporting the factors of production data for certain suppliers and also the quantity relating to the unknown suppliers for which CCT had been unable to identify the actual suppliers. See June 29, 2006,

letter from CCT. The Department determined that CCT was not required to report the factors of production data for the following suppliers: Datong Fuping Activated Carbon Co., Ltd. ("FP"); Datong Huibao Activated Carbon Co., Ltd. ("HB"); Datong Hongtai Activated Carbon Co., Ltd. ("HT"); Ningxia Honghua Carbon Industrial Corp. ("HA"); Honke Activated Carbon Co., Ltd. ("HK"); and Ningxia Tianfu Activated Carbon Co., Ltd. ("TF"). See Letters to CCT dated July 19, 2006, and August 10, 2006. As the corresponding U.S. sales from the material supplied by the above producers were reported in the U.S. sales listing, we have assigned FOPs for similar subject merchandise that was produced by CCT, as facts available, using the same methodology described above for products that were not produced during the expanded POI. See CCT Prelim Analysis Memo.

Jacobi has reported certain U.S. sales of powdered activated carbon, sourced from Datong Huibao, that Jacobi considers a byproduct of the production process. Jacobi states on page 12 of its Second Supplemental that it is unable to determine appropriate FOPs for this CONNUM, because Datong Huibao has no way of determining the products from which it was generated. Jacobi argues that all material inputs have been reported in the other products produced during the POI by this supplier, and Datong Huibao has no basis by which to make an allocation to this product. Based on the information on the record, the Department has preliminarily determined that Jacobi acted to the best of its ability, and that to apply an allocation which would increase the quantity of input and output on Datong Huibao's factors of production worksheets would make any reconciliation of Datong Huibao's factors of production impossible. Therefore, the Department has preliminarily determined to apply neutral facts available and apply the average of the usage rates reported by Datong Huibao to the unreported factors for this CONNUM. See Memorandum to the File from Anya Naschak, Senior Case Analyst, AD/CVD Operations, Office 9: Program Analysis for the Preliminary Determination of Antidumping Duty Investigation of Activated Carbon from the People's Republic of China: Tianjin Jacobi International Trading Co., Ltd. and Jacobi Carbons, Inc., dated October 4 2006 ("Jacobi Analysis Memo") for a detailed discussion of the methodology.

Factor Valuations

In accordance with section 773(c) of the Act, we calculated NV based on

factors of production reported by respondents for the POI, except as noted above. To calculate NV, we multiplied the reported per-unit factorconsumption rates by publicly available Indian surrogate values. In selecting the surrogate values, we considered the quality, specificity, and contemporaneity of the data. As appropriate, we adjusted input prices by including freight costs to make them delivered prices. Specifically, we added to Indian import surrogate values a surrogate freight cost using the shorter of the reported distance from the domestic supplier to the factory of production or the distance from the nearest seaport to the factory of production where appropriate. This adjustment is in accordance with the Court of Appeals for the Federal Circuit's decision in Sigma Corp. v. United States, 117 F. 3d 1401, 1407-1408 (Fed. Cir. 1997). Where we did not use Indian Import Statistics, we calculated freight based on the reported distance from the supplier to the factory.

For this preliminary determination, in accordance with the Department's practice, we used data from the Indian Import Statistics in order to calculate surrogate values for the mandatory respondents' material inputs, except where noted below. In selecting the best available information for valuing FOP in accordance with section 773(c)(1) of the Act, the Department's practice is to select, to the extent practicable, surrogate values which are non-export average values, most contemporaneous with the POI, product-specific, and taxexclusive. See, e.g., Notice of Preliminary Determination of Sales at Less Than Fair Value, Negative Preliminary Determination of Critical Circumstances and Postponement of Final Determination: Certain Frozen and Canned Warmwater Shrimp From the Socialist Republic of Vietnam, 69 FR 42672, 42682 (July 16, 2004), unchanged in Final Determination of Sales at Less Than Fair Value: Certain Frozen and Canned Warmwater Shrimp from the Socialist Republic of Vietnam, 69 FR 71005 (December 8, 2004). The record shows that data in the Indian Import Statistics represent import data that are contemporaneous with the POI, product-specific, and tax-exclusive. Where we could not obtain publicly available information contemporaneous to the POI with which to value factors, we adjusted the surrogate values using, where appropriate, the Indian Wholesale Price Index ("WPI") as published in the International Financial Statistics of the International Monetary Fund.

Furthermore, with regard to the Indian import-based surrogate values. we have disregarded import prices that we have reason to believe or suspect may be subsidized. We have reason to believe or suspect that prices of inputs from Indonesia, South Korea, and Thailand may have been subsidized. We have found in other proceedings that these countries maintain broadly available, non-industry-specific export subsidies and, therefore, it is reasonable to infer that all exports to all markets from these countries may be subsidized. See Honey from the People's Republic of China: Preliminary Results and Partial Rescission of Antidumping Duty Administrative Review, 70 FR 74764, 74773 (December 16, 2005), unchanged in Honey from the People's Republic of China: Final Results and Final Rescission, In Part, of Antidumping Duty Administrative Review, 71 FR 34893 (June 16, 2006); see also Tapered Roller Bearings and Parts Thereof, Finished and Unfinished, from the People's Republic of China: Final Results of 1999–2000 Administrative Review, Partial Rescission of Review, and Determination Not to Revoke Order in Part, 66 FR 57420 (November 15, 2001), and accompanying Issues and Decision Memorandum at Comment 1. We are also directed by the legislative history not to conduct a formal investigation to ensure that such prices are not subsidized. See H.R. Rep. 100-576 at 590 (1988). Rather, Congress directed the Department to base its decision on information that is available to it at the time it makes its determination. Therefore, we have not used prices from these countries in calculating the Indian import-based surrogate values.

We valued certain factors based on price data obtained from the Indian publication *Chemical Weekly*. These prices represent prices available in the Indian domestic market. In all cases, we assumed the chemical concentration to be 100 percent since we had no information to the contrary. Where multiple prices were available, we used the average of all prices with effective dates during the POI. We adjusted the average value to exclude excise and sales tax in each case where the price was specifically identified as being inclusive of excise and sales tax or solely inclusive of excise tax, as appropriate. Based on the 16 percent excise tax identified in Central Excise Tariff 1998-99 (as published by Cen-Cus Publications, New Delhi), we calculated tax-exclusive prices. We then calculated a weighted-average POI price for each

material. This methodology was applied for the following inputs: Hydrochloric acid; potassium iodide; and, potassium permanganate.

To value electricity, the Department used rates from *Key World Energy Statistics 2003*, published by the International Energy Agency. Because these data were not contemporaneous to the POI, we adjusted for inflation using WPI. *See* Surrogate Value Memo.

Jacobi has reported that it purchased plastic bags during the POI from a market economy country and paid for these bags in a market economy currency. However, the Department has preliminarily determined that certain of these bags should more appropriately be valued using surrogate values because they were purchased from countries that maintain subsidies or were purchased prior to the POI. See Surrogate Value Memo and Jacobi Analysis Memo.

For direct, indirect, and packing labor, consistent with 19 CFR 351.408(c)(3), we used the PRC regression-based wage rate as reported on Import Administration's home page, Import Library, Expected Wages of Selected NME Countries, revised in November 2005, http://ia.ita.doc.gov/ wages/index.html. The source of these wage-rate data on the Import Administration's Web site is the Yearbook of Labour Statistics 2002, ILO (Geneva: 2002), Chapter 5B: Wages in Manufacturing. Because this regressionbased wage rate does not separate the labor rates into different skill levels or types of labor, we have applied the same wage rate to all skill levels and types of labor reported by the respondent. See Surrogate Value Memo.

Because water is essential to the production process of the subject merchandise, the Department is considering water to be a direct material input, and not as overhead, and valued water with a surrogate value according to our practice. See Final Determination of Sales at Less Than Fair Value and Ćritical Circumstances: Certain Malleable Iron Pipe Fittings From the People's Republic of China, 68 FR 61395 (October 28, 2003) and, accompanying Issue and Decision Memorandum at Comment 11. Although some suppliers have reported that they obtain water from a well, we find that whether the producer pays for water is irrelevant in determining whether it should be considered a direct material input. Further, there is no evidence on the record that the Indian producer of activated carbon from which we are obtaining an overhead financial ratio accounts for water as an overhead expense. The Department valued water using data from the Maharashtra

Industrial Development Corporation (http://www.midcindia.org) since it includes a wide range of industrial water tariffs. This source provides 386 industrial water rates within the Maharashtra province from June 2003: 193 for the "inside industrial areas" usage category and 193 for the "outside industrial areas" usage category. Because the value was not contemporaneous with the POI, we adjusted the rate for inflation. See Surrogate Value Memo.

For natural gas, we applied a surrogate value obtained from the Gas Authority of India Ltd. Web site, a supplier of natural gas in India, covering the period January through June 2002. In addition, based on the February 1, 2005, article from Chemical Weekly, we note that the Petroleum Ministry had been considering raising the price but no action was taken. Therefore, consistent with the Department's recent determination in Polyvinyl Alcohol from the People's Republic of China, we took the average of the base and ceiling prices, added the transportation charge, and inflated the calculated value using the appropriate WPI inflator. See Surrogate Value Memo and *Polyvinyl* Alcohol From the People's Republic of China: Final Results of Antidumping Duty Administrative Review, 71 FR 27991 (May 15, 2006), and accompanying Issues and Decision Memorandum at Comment 2.

The Department valued steam following the methodology used in the investigation of Certain Tissue Paper Products and Certain Crepe Paper Products from the People's Republic of China, but updated the natural gas price. See Surrogate Value Memo and Notice of Preliminary Determinations of Sales at Less Than Fair Value, Affirmative Preliminary Determination of Critical Circumstances and Postponement of Final Determination for Certain Tissue Paper Products, 69 FR 56407 (September 21, 2004), unchanged in the final determination, Notice of Final Determination of Sales at Less Than Fair Value: Certain Tissue Paper Products from the People's Republic of China, 70 FR 7475 (February 14, 2005).

The Department used Indian transport information in order to value the freightin cost of the raw materials. We determined the best available information for valuing truck freight to be from http://www.infreight.com. This source provides daily rates from six major points of origin to five destinations in India during the POI. We obtained a price quote on the first day of each month of the POI from each point of origin to each destination and averaged the data accordingly. See

Surrogate Value Memo. To value rail freight, the Department used an average of rail freight prices based on the publicly available freight rates reported by the official Web site of the Indian Ministry of Railways at http:// www.indianrailways.gov.in/railway/ freightrates/freight_charges.htm. The Department used an average of the price-per-kilogram rate for class 130 based on the freight distances between cities. As the prices were denoted in quintals, the Department divided the price by 100 to derive a value in Rupees per kilogram. Consistent with the calculation of inland truck freight, the Department used the same freight distances used in the calculation of inland truck freight, as reported by http://www.infreight.com to derive a value in Rupees per kilogram per kilometer. See Surrogate Value Memo.

The Department used two sources to calculate a surrogate value for domestic brokerage expenses. The Department used a simple average of the publicly summarized version of the average value (adjusted for inflation) for brokerage and handling expenses reported in the U.S. sales listings in the submission from Essar Steel Ltd. (Essar Steel), dated February 28, 2005, in the antidumping duty review of Certain Hot-Rolled Carbon Steel Flat Products from India, and the submission from Agro Dutch Industries Limited (Agro Dutch), dated May 24, 2005, in the antidumping duty administrative review of Certain Preserved Mushrooms from India. See Notice of Final Determination of Sales at Less Than Fair Value: Certain Hot-Rolled Carbon Steel Flat

Products from India, 66 FR 50406 (October 3, 2001), Certain Preserved Mushrooms From India: Final Results of Antidumping Duty Administrative Review, 71 FR 10646 (March 2, 2006), and Surrogate Value Memo.

With respect to the respondents' request for by-product offsets, the Department has preliminarily determined that the products respondents have claimed as a byproduct are in fact merchandise within the scope of this investigation because they are still considered activated carbon, and, therefore, should not be considered a by-product. We are therefore not granting by-product credits in our margin calculations, except for coal tar as reported by Jilin Bright Future because this is not subject merchandise. See Analysis Memos for CCT, Jilin Bright Future, and Jacobi.

Currency Conversion

We made currency conversions into U.S. dollars, in accordance with section 773A(a) of the Act, based on the exchange rates in effect on the dates of the U.S. sales as certified by the Federal Reserve Bank.

Verification

As provided in section 782(i)(1) of the Act, we intend to verify the information upon which we will rely in making our final determination.

Combination Rates

In the *Initiation Notice* the Department stated that it would calculate combination rates for certain respondents that are eligible for a separate rate in this investigation. *See*

Initiation Notice. This change in practice is described in Policy Bulletin 05.1, available at http://ia.ita.doc.gov/.
The Policy Bulletin 05.1, states:

{w}hile continuing the practice of assigning separate rates only to exporters, all separate rates that the Department will now assign in its NME investigations will be specific to those producers that supplied the exporter during the period of investigation. Note, however, that one rate is calculated for the exporter and all of the producers which supplied subject merchandise to it during the period of investigation. This practice applies both to mandatory respondents receiving an individually calculated separate rate as well as the pool of non-investigated firms receiving the weighted-average of the individually calculated rates. This practice is referred to as the application of "combination rates" because such rates apply to specific combinations of exporters and one or more producers. The cash-deposit rate assigned to an exporter will apply only to merchandise both exported by the firm in question and produced by a firm that supplied the exporter during the period of investigation. See Policy Bulletin 05.1, at page 6.

Also, the Department is not including Ningxia Haoqing Activated Carbon Co., Ltd ("HQG"), or Ningxia Guanghua Activated Carbon Co., Ltd ("GH"), in the combination rate for CCT as both HQG and GH are trading companies who sold other companies' merchandise to CCT during the POI. See Policy Bulletin 05.1 and Memo to the File from Catherine Bertrand, Senior Case Analyst, AD/CVD Operations, Office 9, dated October 3, 2006

Preliminary Determination

The weighted-average ("WA") dumping margins are as follows:

Exporter	Supplier	WA margin
Beijing Pacific Activated Carbon Products Co., Ltd	Alashan Yongtai Activated Carbon Co., Ltd	72.52
Beijing Pacific Activated Carbon Products Co., Ltd	Changji Hongke Activated Carbon Co., Ltd	72.52
Beijing Pacific Activated Carbon Products Co., Ltd	Datong Forward Activated Carbon Co., Ltd	72.52
Beijing Pacific Activated Carbon Products Co., Ltd	Datong Locomotive Coal & Chemicals Co., Ltd	72.52
Beijing Pacific Activated Carbon Products Co., Ltd	Datong Yunguang Chemicals Plant	72.52
Beijing Pacific Activated Carbon Products Co., Ltd	Ningxia Guanghua Cherishment Activated Carbon Co., Ltd	72.52
Beijing Pacific Activated Carbon Products Co., Ltd	Ningxia Luyuangheng Activated Carbon Co., Ltd	72.52
Calgon Carbon Tianjin Co., Ltd	Calgon Carbon Tianjin Co., Ltd	84.45
Calgon Carbon Tianjin Co., Ltd	Datong Carbon Corporation	84.45
Calgon Carbon Tianjin Co., Ltd	Datong Changtai Activated Carbon Co., Ltd	84.45
Calgon Carbon Tianjin Co., Ltd	Datong Forward Activated Carbon Co., Ltd	84.45
Calgon Carbon Tianjin Co., Ltd	Datong Fuping Activated Carbon Co., Ltd	84.45
Calgon Carbon Tianjin Co., Ltd	Datong Hongtai Activated Carbon Co., Ltd	84.45
Calgon Carbon Tianjin Co., Ltd	Datong Huanqing Activated Carbon Co., Ltd	84.45
Calgon Carbon Tianjin Co., Ltd	Datong Huibao Activated Carbon Co., Ltd	84.45
Calgon Carbon Tianjin Co., Ltd	Datong Kangda Activated Carbon Factory	84.45
Calgon Carbon Tianjin Co., Ltd	Datong Runmei Activated Carbon Factory	84.45
Calgon Carbon Tianjin Co., Ltd	Dushanzi Chemical Factory	84.45
Calgon Carbon Tianjin Co., Ltd	Fangyuan Carbonization Co., Ltd	84.45
Calgon Carbon Tianjin Co., Ltd	Hongke Activated Carbon Co., Ltd	84.45
Calgon Carbon Tianjin Co., Ltd	Huairen Jinbei Chemical Co., Ltd	84.45
Calgon Carbon Tianjin Co., Ltd	Jiaocheng Xinxin Purification Material Co., Ltd	84.45
Calgon Carbon Tianjin Co., Ltd	Ningxia Guanghua Cherishment Activated Carbon Co., Ltd	84.45
Calgon Carbon Tianjin Co., Ltd	Ningxia Guanghua A/C Co., Ltd	84.45
Calgon Carbon Tianjin Co., Ltd	Ningxia Honghua Carbon Industrial Corporation	84.45
Calgon Carbon Tianjin Co., Ltd	Ningxia Luyuanheng Activated Carbon Co., Ltd	84.45

Exporter	Supplier	WA margin
Calgon Carbon Tianjin Co., Ltd	Ningxia Pingluo Yaofu Activated Carbon Factory	84.45
Calgon Carbon Tianjin Co., Ltd	Ningxia Tianfu Activated Carbon Co., Ltd	84.45
Calgon Carbon Tianjin Co., Ltd	Ningxia Yinchuan Lanqiya Activated Carbon Co., Ltd	84.45
Calgon Carbon Tianjin Co., Ltd	Nuclear Ningxia Activated Carbon Co., Ltd	84.45
Calgon Carbon Tianjin Co., Ltd	Pingluo Xuanzhong Activated Carbon Co., Ltd	84.45
Calgon Carbon Tianjin Co., Ltd	Shanxi Xuanzhong Chemical Industry Co., Ltd	84.45
Calgon Carbon Tianjin Co., Ltd	Xingtai Coal Chemical Co., Ltd	84.45
Calgon Carbon Tianjin Co., Ltd	Yuyang Activated Carbon Co., Ltd	84.45
Datong Juqiang Activated Carbon Co., Ltd	Datong Juqiang Activated Carbon Co., Ltd	72.52 72.52
Datong Locomotive Coal & Chemicals Co., Ltd	Datong Locomotive Coal & Chemicals Co., Ltd	72.52
Datong Yunguang Chemicals Plant	Datong Yunguang Chemicals Plant	72.52
Hebei Foreign Trade and Advertising Corporation	Da Neng Zheng Da Activated Carbon Co., Ltd	72.52
Hebei Foreign Trade and Advertising Corporation	Shanxi Bluesky Purification Material Co., Ltd	72.52
Jacobi Carbons AB	Datong Forward Activated Carbon Co., Ltd	49.09
Jacobi Carbons AB	Datong Hongtai Activated Carbon Co., Ltd	49.09
Jacobi Carbons AB	Datong Huibao Activated Carbon Co., Ltd	49.09
Jacobi Carbons AB	Ningxia Guanghua Activated Carbon Co., Ltd	49.09
Jacobi Carbons AB	Ningxia Huahui Activated Carbon Company Limited	49.09
Jilin Bright Future Chemicals Company, Ltd	Shanxi Xinhua Chemicals Co., Ltd	13.78
Jilin Bright Future Chemicals Company, Ltd	Tonghua Bright Future Activated Carbon Plant	13.78
Jilin Bright Future Chemicals Company, Ltd	Zuoyun Bright Future Activated Carbon Plant	13.78
Jilin Province Bright Future Industry and Commerce Co., Ltd	Shanxi Xinhua Chemicals Co., Ltd	13.78
Jilin Province Bright Future Industry and Commerce Co., Ltd	Tonghua Bright Future Activated Carbon Plant	13.78
Jilin Province Bright Future Industry and Commerce Co., Ltd	Zuoyun Bright Future Activated Carbon Plant	13.78
Ningxia Guanghua Cherishment Activated Carbon Co., Ltd	Ningxia Guanghua Cherishment Activated Carbon Co., Ltd	72.52
Ningxia Huahui Activated Carbon Co., Ltd	Ningxia Huahui Activated Carbon Co., Ltd	72.52 72.52
Ningxia Mineral & Chemical Limited Shanxi DMD Corporation	Ningxia Baota Activated Carbon Co., Ltd	72.52 72.52
Shanxi DMD Corporation	Ningxia Guanghua Activated Carbon Co., Ltd	72.52
Shanxi DMD Corporation	Shanxi Xinhua Chemical Co., Ltd	72.52
Shanxi DMD Corporation	Tonghua Xinpeng Activated Carbon Factory	72.52
Shanxi Industry Technology Trading Co., Ltd	Actview Carbon Technology Co., Ltd	72.52
Shanxi Industry Technology Trading Co., Ltd	Datong Forward Activated Carbon Co., Ltd	72.52
Shanxi Industry Technology Trading Co., Ltd	Datong Tri-Star & Power Carbon Plant	72.52
Shanxi Industry Technology Trading Co., Ltd	Fu Yuan Activated Carbon Co., Ltd	72.52
Shanxi Industry Technology Trading Co., Ltd	Jing Mao (Dongguan) Activated Carbon Co., Ltd	72.52
Shanxi Industry Technology Trading Co., Ltd	Xi Li Activated Carbon Co., Ltd	72.52
Shanxi Newtime Co., Ltd	Datong Forward Activated Carbon Co., Ltd	72.52
Shanxi Newtime Co., Ltd	Ningxia Guanghua Chemical Activated Carbon Co., Ltd	72.52
Shanxi Newtime Co., Ltd	Ningxia Tianfu Activated Carbon Co., Ltd	72.52
Shanxi Qixian Foreign Trade Corporation	Datong Locomotive Coal & Chemicals Co., Ltd	72.52
Shanxi Qixian Foreign Trade Corporation	Datong Tianzhao Activated Carbon Co., Ltd	72.52 72.52
Shanxi Qixian Foreign Trade Corporation	Ningxia Huinong Xingsheng Activated Carbon Co., Ltd	72.52 72.52
Shanxi Qixian Foreign Trade Corporation	Ninxia Tongfu Coking Co., Ltd	72.52
Shanxi Qixian Foreign Trade Corporation	Shanxi Xiaoyi Huanyu Chemicals Co., Ltd	72.52
Shanxi Sincere Industrial Co., Ltd	Datong Guanghua Activated Co., Ltd	72.52
Shanxi Sincere Industrial Co., Ltd	Ningxia Guanghua Cherishmemt Activated Carbon Co., Ltd	72.52
Shanxi Sincere Industrial Co., Ltd	Ningxia Pingluo County YaoFu Activated Carbon Factory	72.52
Shanxi Xuanzhong Chemical Industry Co., Ltd	Ningxia Pingluo Xuanzhong Activated Carbon Co., Ltd	72.52
Tangshan Solid Carbon Co., Ltd	Datong Zuoyun Biyun Activated Carbon Co., Ltd	72.52
Tangshan Solid Carbon Co., Ltd	Ningxia Guanghua Activated Carbon Co., Ltd	72.52
Tangshan Solid Carbon Co., Ltd	Ningxia Xingsheng Coal and Active Carbon Co., Ltd	72.52
Tangshan Solid Carbon Co., Ltd	Pingluo Yu Yang Activated Carbon Co., Ltd	72.52
Tianjin Maijin Industries Co., Ltd	Hegongye Ninxia Activated Carbon Factory	72.52
Tianjin Maijin Industries Co., Ltd	Ningxia Pingluo County YaoFu Activated Carbon Plant	72.52
Tianjin Maijin Industries Co., Ltd	Yinchuan Lanqiya Activated Carbon Co., Ltd	72.52
United Manufacturing International (Beijing) Ltd United Manufacturing International (Beijing) Ltd	Datong Fu Ping Activated Carbon Co., Ltd	72.52
United Manufacturing International (Beijing) Ltd	Xinhua Chemical Company Ltd	72.52 72.52
Xi'an Shuntong International Trade & Industrials Co., Ltd	DaTong Tri-Star & Power Carbon Plant	72.52
Xi'an Shuntong International Trade & Industrials Co., Ltd	Ningxia Huahui Activated Carbon Company Limited	72.52
PRC-Wide Rate	Thingsia Fluaria Fluaria Garbon Company Elimica	228.11

As discussed above in the "Affiliation" section, the WA Margin of Jacobi Carbons AB of 49.09 percent applies to exports made by Jacobi Tianjin.

Disclosure

We will disclose the calculations performed within five days of the date of publication of this notice to parties in this proceeding in accordance with 19 CFR 351.224(b).

Suspension of Liquidation

In accordance with section 733(d) of the Act, we will instruct U.S. Customs and Border Protection ("CBP") to suspend liquidation of all entries of subject merchandise, entered, or withdrawn from warehouse, for consumption on or after the date of publication of this notice in the **Federal Register**. We will instruct CBP to require a cash deposit or the posting of a bond equal to the weighted-average amount by which the normal value exceeds U.S. price, as indicated above. The suspension of liquidation will remain in effect until further notice.

International Trade Commission Notification

In accordance with section 733(f) of the Act, we have notified the ITC of our preliminary affirmative determination of sales at less than fair value. Section 735(b)(2) of the Act requires the ITC to make its final determination as to whether the domestic industry in the United States is materially injured, or threatened with material injury, by reason of imports of certain activated carbon, or sales (or the likelihood of sales) for importation, of the subject merchandise within 45 days of our final determination.

Public Comment

Case briefs or other written comments may be submitted to the Assistant Secretary for Import Administration no later than seven days after the date of the final verification report is issued in this proceeding. See 19 CFR 351.309(c). Rebuttal briefs limited to issues raised in case briefs may be submitted no later than five days after the deadline date for case briefs. See 19 CFR 351.309(d). A list of authorities used and an executive summary of issues should accompany any briefs submitted to the Department. This summary should be limited to five pages total, including footnotes.

In accordance with section 774 of the Act, we will hold a public hearing, if requested, to afford interested parties an opportunity to comment on arguments raised in case or rebuttal briefs. If a request for a hearing is made, we intend to hold the hearing three days after the deadline of submission of rebuttal briefs at the U.S. Department of Commerce, 14th Street and Constitution Ave. NW., Washington, DC 20230, at a time and location to be determined. Parties should confirm by telephone the date, time, and location of the hearing two days before the scheduled date.

Interested parties who wish to request a hearing, or to participate if one is requested, must submit a written request to the Assistant Secretary for Import Administration, U.S. Department of Commerce, Room 1870, within 30 days after the date of publication of this notice. See 19 CFR 351.310(c). Requests should contain the party's name, address, and telephone number, the

number of participants, and a list of the issues to be discussed. At the hearing, each party may make an affirmative presentation only on issues raised in that party's case brief and may make rebuttal presentations only on arguments included in that party's rebuttal brief.

We will make our final determination no later than 135 days after the date of publication of this preliminary determination, pursuant to section 735(a)(2) of the Act.

This determination is issued and published in accordance with sections 733(f) and 777(i)(1) of the Act.

Dated: October 4, 2006.

David Spooner,

Assistant Secretary for Import Administration.

[FR Doc. 06–8622 Filed 10–10–06; 8:45 am] **BILLING CODE 3510–DS–P**

DEPARTMENT OF COMMERCE

International Trade Administration

A-570-848

Notice of Extension of the Preliminary Results of New Shipper Antidumping Duty Reviews: Freshwater Crawfish Tail Meat from the People's Republic of China

AGENCY: Import Administration, International Trade Administration, Department of Commerce.

SUMMARY: The Department of Commerce ("Department") is conducting new shipper antidumping duty reviews of freshwater crawfish tail meat from the People's Republic of China ("PRC") in response to requests by Nanjing Merry Trading Co., Ltd. ("Nanjing Merry"), Leping Lotai Foods Co., Ltd. ("Leping Lotai"), Weishan Hongrun Aquatic Co., Ltd. ("Weishan Hongrun"), and Shanghai Strong International Trading Co., Ltd. ("Shanghai Strong"). These reviews cover shipments to the United States for the period September 1, 2005, to February 28, 2006, by these four respondents. For the reasons discussed below, we are extending the preliminary results of the new shipper reviews of Nanjing Merry, Leping Lotai, and Weishan Hongrun by an additional 90 days, and the new shipper review of Shanghai Strong by an additional 65 days, to no later than January 23, 2007. **EFFECTIVE DATE:** October 11, 2006.

FOR FURTHER INFORMATION CONTACT: Erin Begnal or Mike Quigley; AD/CVD Operations, Office 9, Import Administration, International Trade Administration, U.S. Department of

Commerce, 14th Street and Constitution

Avenue, NW., Washington, DC 20230; telephone: (202) 482–1442 and (202) 482–4047, respectively.

SUPPLEMENTARY INFORMATION:

Background

The Department received timely requests from Nanjing Merry, Leping Lotai, Weishan Hongrun, and Shanghai Strong in accordance with 19 CFR 351.214(c) for new shipper reviews of the antidumping duty order on freshwater crawfish tail meat from the PRC. On May 5, 2006, the Department found that the requests for review with respect to Nanjing Merry, Leping Lotai, and Weishan Hongrun met all of the regulatory requirements set forth in 19 CFR 351.214(b) and initiated these new shipper antidumping duty reviews covering the period September 1, 2005, through February 28, 2006. See Freshwater Crawfish Tail Meat From the People's Republic of China: Initiation of Antidumping Duty New Shipper Reviews, 71 FR 26453 (May 5, 2006).

On May 31, 2006, the Department found that the request for review with respect to Shanghai Strong met all of the regulatory requirements set forth in 19 CFR 351.214(b) and initiated a new shipper antidumping duty review covering the period September 1, 2005, through February 28, 2006. See Freshwater Crawfish Tail Meat From the People's Republic of China: Initiation of Antidumping Duty New Shipper Review, 71 FR 30866 (May 31, 2006).

Extension of Time Limits for Preliminary Results

Section 751(a)(2)(B)(iv) of the Tariff Act of 1930, as amended (the Act), and 19 CFR 351.214(i)(1) require the Department to issue the preliminary results of a new shipper review within 180 days after the date on which the new shipper review was initiated and final results of a review within 90 days after the date on which the preliminary results were issued. The Department may, however, extend the deadline for completion of the preliminary results of a new shipper review to 300 days if it determines that the case is extraordinarily complicated (19 CFR 351.214 (i)(2)).

The Department has determined that the review is extraordinarily complicated as the Department must gather additional publicly available information, issue additional supplemental questionnaires, and conduct verifications of the four respondents. Based on the timing of the case and the additional information that must be gathered and verified, the preliminary results of this new shipper review cannot be completed within the

statutory time limit of 180 days. Accordingly, the Department is extending the time limit for the completion of the preliminary results of the new shipper reviews of Nanjing Merry, Leping Lotai, and Weishan Hongrun by 90 days from the original October 25, 2006, deadline. Additionally, the Department is extending the time limit for the completion of the preliminary results of the new shipper review of Shanghai Strong by 65 days from the original November 19, 2006, deadline. The preliminary results for all four new shipper reviews will now be due January 23, 2007, in accordance with section 751(a)(2)(B)(iv) of the Act and 19 CFR 351.214(i)(2). The final results will, in turn, be due 90 days after the date of issuance of the preliminary results, unless extended.

This notice is published pursuant to sections 751(a)(2)(B)(iv) and 777(i)(1) of the Act.

Dated: September 3, 2006.

Stephen J. Claeys,

Deputy Assistant Secretaryfor Import Administration

[FR Doc. E6–16819 Filed 10–10–06; 8:45 am] BILLING CODE 3510–DS-S

DEPARTMENT OF COMMERCE

International Trade Administration (A–580–829)

Stainless Steel Wire Rod from the Republic of Korea: Preliminary Results of Antidumping Duty Administrative Review

AGENCY: Import Administration, International Trade Administration, Department of Commerce. **SUMMARY:** In response to a request by domestic interested parties,1 the Department of Commerce (the "Department") is conducting an administrative review of the antidumping duty order on stainless steel wire rod ("SSWR") from the Republic of Korea ("Korea"). This review covers two producer/exporters of the subject merchandise that have been collapsed for purposes of the Department's analysis, consistent with the record of this review and prior determinations in this proceeding. The period of review ("POR") is September 1, 2004, through August 31, 2005.

The Department has preliminarily determined that the companies subject

to this review made U.S. sales of SSWR at prices less than normal value ("NV"). If these preliminary results are adopted in our final results of administrative review, we will instruct U.S. Customs and Border Protection ("CBP") to assess antidumping duties on all appropriate entries. Interested parties are invited to comment on these preliminary results of review. We will issue the final results of review no later than 120 days from the date of publication of this notice.

EFFECTIVE DATE: October 11, 2006.

FOR FURTHER INFORMATION CONTACT:
Karine Gziryan or Malcolm Burke, AD/
CVD Operations, Office 4, Import
Administration, International Trade
Administration, U.S. Department of
Commerce, 14th Street and Constitution
Avenue, NW., Washington, DC 20230,
telephone: (202) 482–4081 and (202)
482–3584, respectively.

SUPPLEMENTARY INFORMATION:

Background

On September 15, 1998, the Department published in the Federal Register the antidumping duty order on SSWR from Korea. See Notice of Amendment of Final Determination of Sales at Less Than Fair Value and Antidumping Duty Order: Stainless Steel Wire Rod From Korea, 63 FR 49331 (September 15, 1998) ("Amended Final Determination") and Stainless Steel Wire Rod From Korea: Amendment of Final Determination of Sales at Less Than Fair Value Pursuant to Court Decision, 66 FR 41550 (August 8, 2001) ("Amended Final Determination Pursuant to Court Decision").2 In September 2005, the Department published in the Federal Register a notice of "Opportunity to Request Administrative Review" of the antidumping duty order on SSWR from Korea. See Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Opportunity to Request Administrative Review, 70 FR 52072 (September 1, 2005).

On September 30, 2005, in accordance with 19 CFR § 351.213(b)(1), the Domestic Interested Parties requested that the Department conduct a review of Changwon and Dongbang Special Steel Co., Ltd. ("Dongbang"), and any of their affiliates (collectively, as a collapsed entity, the "Respondents" or "Changwon/Dongbang") for the period

from September 1, 2004, through August 31, 2005. See the "Collapsing of Respondents" section of this notice below.

In October 2005, the Department initiated an administrative review of the Respondents. See Initiation of Antidumping and Countervailing Duty Administrative Reviews, 70 FR 61601 (October 25, 2005). Also in October, the Department issued its antidumping questionnaire to the Respondents, and in December 2005, the Respondents responded to this questionnaire. Thereafter, the Department issued supplemental questionnaires to the Respondents - to which the Department received timely responses- and the Domestic Interested Parties submitted comments regarding the Respondents' questionnaire and supplemental questionnaire responses.

In May 2006, the Department extended the deadline for issuing the preliminary results in this administrative review until October 2, 2006. See Stainless Steel Wire Rod from the Republic of Korea: Notice of Extension of Time Limit for Preliminary Results of Antidumping Duty Administrative Review, 71 FR 30658 (May 30, 2006).

The Department is conducting this administrative review in accordance with section 751 of the Tariff Act of 1930, as amended (the "Act").

Collapsing of Respondents

In the less-than-fair value ("LTFV") investigation in this proceeding, the Department determined that Pohang Iron and Steel Co., Ltd. ("POSCO"), and its subsidiary, Changwon, were affiliated with Dongbang through a close supplier relationship and that all three companies should be treated as one entity (collapsed). See Notice of Final Determination of Sales at Less than Fair Value: Stainless Steel Wire Rod from Korea, 63 FR 40404, 40408 (July 29, 1998) ("Final Determination") (Comment 2). The Department found a close supplier relationship between POSCO/Changwon and Dongbang based on the fact that Dongbang, whose operations were almost exclusively dependent upon finishing unfinished SSWR (also known as black coil), was not able to obtain suitable black coil from sources other than POSCO/ Changwon. See Memorandum from the Team to Holly Kuga regarding: "Whether Pohang Iron and Steel Co., Ltd. (POSCO), and its subsidiary Changwon Specialty Steel Co., Ltd. (Changwon), are affiliated with Dongbang Special Steel Co., Ltd. (Dongbang). Whether to collapse Dongbang with the already collapsed

¹ The domestic interested parties are Carpenter Technology Corporation; Dunkirk Specialty Steel, LLC, a subsidiary of Universal Stainless & Alloy Products; and North American Stainless (hereinafter, the "Domestic Interested Parties").

² In the Amended Final Determination Pursuant To Court Decision, the Department reclassified Changwon Specialty Steel Co., Ltd.'s ("Changwon") U.S. sales as constructed export price ("CEP") sales and recalculated the dumping margin for the collapsed entity which included Changwon. As a result of the recalculation, the "all others" rate also changed. See Amended Final Determination Pursuant To Court Decision, 66 FR at 41550.

entity POSCO/Changwon for antidumping analysis purposes," dated July 20, 1998 (LTFV affiliation memorandum) at page 8 (which the Department has placed on the record of this administrative review). The Department collapsed these companies because their interdependent operations resulted in a significant potential for the manipulation of price and production and the nature of their facilities allowed them to shift the production of SSWR among one another. See id. Specifically, the Department found a significant potential for manipulation of price and production based on the importance of the black coil trade between the companies (Dongbang's reliance upon POSCO/Changwon for black coil as well as its position as a significant consumer of POSCO/Changwon's black coil), POSCO/Changwon's leverage over SSWR production due to the fact that it supplied a major input used in production, and the fact that the companies had facilities for producing subject merchandise.

Consistent with the record from the LTFV investigation, we find that the instant record indicates that Dongbang has not obtained suitable black coil from alternative sources but continues to exclusively rely upon POSCO/ Changwon for this input. See Dongbang's December 1, 2005, questionnaire response at 14. Additionally, POSCO/Changwon and Dongbang are still able to shift the production of SSWR among one another and there continues to be a significant potential for the manipulation of price and production because these companies remain intertwined by virtue of the significant transactions between them, including sales of both SSWR and black coil for the production of SSWR. See Dongbang's December 1, 2005, questionnaire response at 3 and 14. Finally, Dongbang's business operations remain considerably dependent upon the production of subject merchandise. See Dongbang's May 12, 2006, Sales Reconciliation at Attachment 1. Given these facts, we continue to find that POSCO and Changwon are affiliated with Dongbang through a close supplier relationship and the three companies should continue to be treated as a single entity for purposes of the Department's dumping analysis. See LTFV affiliation memorandum.

Period of Review

The POR is September 1, 2004, through August 31, 2005.

Scope of the Order

For purposes of this order, the products covered are those SSWR that

are hot-rolled or hot-rolled annealed and/or pickled and/or descaled rounds, squares, octagons, hexagons or other shapes, in coils, that may also be coated with a lubricant containing copper, lime or oxalate. SSWR is made of alloy steels containing, by weight, 1.2 percent or less of carbon and 10.5 percent or more of chromium, with or without other elements. These products are manufactured only by hot-rolling or hot-rolling annealing, and/or pickling and/or descaling, are normally sold in coiled form, and are of solid crosssection. The majority of SSWR sold in the United States is round in crosssectional shape, annealed and pickled, and later cold-finished into stainless steel wire or small-diameter bar. The most common size for such products is 5.5 millimeters or 0.217 inches in diameter, which represents the smallest size that normally is produced on a rolling mill and is the size that most wire-drawing machines are set up to draw. The range of SSWR sizes normally sold in the United States is between 0.20 inches and 1.312 inches in diameter.

Two stainless steel grades are excluded from the scope of the order. SF20T and K–M35FL are excluded. The chemical makeup for the excluded grades is as follows:

SF20T	
Carbon Manganese Phosphorous Sulfur Silicon Chromium Molybdenum Lead-added Tellurium-added	0.05 max 2.00 max 0.05 max 0.15 max 1.00 max 19.00/21.00 1.50/2.50 (0.10/0.30) (0.03 min)

K-M35FL	
Carbon	0.015 max
Silicon	0.70/1.00
Manganese	0.40 max
Phosphorous	0.04 max
Sulfur	0.03 max
Nickel	0.30 max
Chromium	12.50/14.00
Lead	0.10/0.30
Aluminum	0.20/0.35

The products subject to the order are currently classifiable under subheadings 7221.00.0005, 7221.00.0015, 7221.00.0030, 7221.00.0045, and 7221.00.0075 of the Harmonized Tariff Schedule of the United States ("HTSUS"). Although the HTSUS subheadings are provided for convenience and customs purposes, the written description of the scope of the order is dispositive.

Affiliation

During this administrative review, the Respondents reported U.S. sales to trading companies which they classified as unaffiliated parties in their questionnaire responses. The Domestic Interested Parties contend that these trading companies are affiliated with the Respondents through a principal-agent relationship, while the Respondents maintain that they have no agency relationship with these customers. In reviewing the record evidence, we find that the Respondents did not have principal-agent relationships with their respective trading company customers and, therefore, we have preliminarily determined that the Respondents are not affiliated with these customers through a principal-agent relationship pursuant to section 771(33)(G) of the Act. See the proprietary memorandum to Thomas F. Futtner from Malcolm Burke, Agency Analysis of Respondents' Reseller Customers, dated concurrently with this notice.

Comparison Methodology

To determine whether the Respondents sold SSWR in the United States at prices less than NV, the Department compared the export price ("EP") and CEP of individual U.S. sales to the weighted-average NV of sales of the foreign like product made in the ordinary course of trade in a month contemporaneous with the month in which the U.S. sale was made. See section 777A(d)(2) of the Act; see also section 773(a)(1)(B)(i) of the Act. Section 771(16) of the Act defines foreign like product as merchandise that is identical or similar to subject merchandise and produced by the same person and in the same country as the subject merchandise. Thus, we considered all products covered by the scope of the order, that were produced by the same person and in the same country as the subject merchandise, and sold by Respondents in the home market during the POR, to be foreign like products for the purpose of determining appropriate product comparisons to SSWR sold in the United States.

The Department compared U.S. sales to sales made in the home market within the contemporaneous window period, which extends from three months prior to the month in which the U.S. sale was made until two months after the month in which the U.S. sale was made. Where there were no sales of identical merchandise made in the home market in the ordinary course of trade, the Department compared U.S. sales to sales of the most similar foreign

like product made in the ordinary course of trade. In making product comparisons, the Department selected identical and most similar foreign like products based on the physical characteristics reported by the Respondents in the following order of importance: grade, diameter, further processing, and coating.

Date of Sale

Respondents used invoice date as the date of sale for their EP, CEP, and home market sales. In comments filed with the Department, the Domestic Interested Parties contested the use of the invoice date as the date of sale and argued for use of the order input date or revised purchase order date. Normally, the Department considers the respondent's invoice date as recorded in its business records to be the date of sale unless a date other than the invoice date better reflects the date on which the company establishes the material terms of sale. See 19 CFR § 351.401(i). In this case, after additional inquiry, the Department determined that the use of a date other than the invoice date was not appropriate. Specifically, Changwon and Dongbang reported that the information obtained on the order input date was informal in nature, nonbinding on the customer, and was obtained only to schedule production. Further, Changwon and Dongbang reported that the final price and quantity of a particular order were established when a particular shipment was invoiced, with that invoice being the first written documentation of those confirmed sales terms. Moreover, Changwon and Dongbang presented evidence that the material terms of sale were subject to change between the order date and the invoice date and, in fact, did change for numerous sales. See Dongbang's June 20, 2006, supplemental questionnaire response at 3 and Appendix SB-3, Dongbang's April 24, 2006, supplemental questionnaire response at 3 and Appendix SC-2, Changwon's April 6, 2006, supplemental questionnaire response at 5 and Appendix SA-2, and Changwon's January 23, 2006, supplemental questionnaire response at 11-13. Thus, when compared to invoice date, the record does not demonstrate that the order input date or revised purchase order date better reflects the date on which the material terms of sale were established. Therefore, consistent with prior segments of this proceeding, we have preliminarily used invoice date as the date of sale for both the U.S. and home markets. However, consistent with the Department's practice, where the invoice was issued after the date of

shipment to the first unaffiliated customer, we relied upon the date of shipment as the date of sale. See e.g., Certain Cold–Rolled and Corrosion–Resistant Carbon Steel Flat Products From Korea: Final Results of Antidumping Duty Administrative Reviews, 64 FR 12927, 12935 (March 16, 1999).

Export Price and Constructed Export Price

The Department based the price of the Respondents' U.S. sales of subject merchandise on EP or CEP, as appropriate. Specifically, when Changwon or Dongbang sold subject merchandise to unaffiliated purchasers in the United States prior to importation, and CEP was not otherwise warranted based on the facts of the record, we based the price of the sale on EP, in accordance with section 772(a) of the Act. Alternatively, when Changwon sold subject merchandise to unaffiliated purchasers in the United States through a U.S. affiliate, Pohang Steel America Corporation ("POSAM"), after importation, we based the price of the sale on CEP, in accordance with section 772(b) of the Act.

In accordance with sections 772(a) and (c) of the Act, we calculated EP using the prices the Respondents charged for packed subject merchandise. From this price we deducted, where applicable, the following expenses: foreign inland freight charges (from the Respondents' plants to the port of exportation) - including wharfage charges, terminal handling charges, container taxes, document and miscellaneous fees, international freight, and marine insurance, consistent with section 772(c)(2)(A) of the Act. Additionally, we added to the starting price an amount for duty drawback pursuant to section 772(c)(1)(B) of the Act.

In accordance with sections 772(c)(2)(A) and 772(d)(1) and (3) of the Act, we calculated CEP using the prices charged for packed subject merchandise sold to the first unaffiliated purchaser in the United States, from which we deducted the following expenses: foreign inland freight (from the Respondents' plants to the port of exportation), brokerage and handling, international ocean freight, marine insurance, container handling fee, harbor fee, other U.S. transportation, U.S. duty, direct and indirect selling expenses (to the extent these expenses are associated with economic activity in the United States), and CEP profit (profit allocated to expenses deducted under sections 772(d)(1) and (d)(2) of the Act in accordance with sections 772(d)(3)

and 772(f) of the Act). We computed profit by deducting from total revenue realized on sales in both the U.S. and home markets, all expenses associated with those sales. We then allocated profit to expenses incurred with respect to U.S. economic activity, based on the ratio of total U.S. expenses to total expenses for both the U.S. and home markets. Lastly, we added to the starting price an amount for duty drawback pursuant to section 772(c)(1)(B) of the Act.

Normal Value

After testing home market viability, whether home market sales to affiliates were at arm's—length prices, and whether home market sales were at below—cost prices, we calculated NV for Respondents as noted in the "Price—to-Price Comparisons" section of this notice.

A. Home Market Viability

In accordance with section 773(a)(1)(C) of the Act, in order to determine whether there was a sufficient volume of sales in the home market to serve as a viable basis for calculating NV (i.e., the aggregate volume of home market sales of the foreign like product is greater than or equal to five percent of the aggregate volume of U.S. sales), we compared the aggregate volume of the Respondents' home market sales of the foreign like product to the aggregate volume of their U.S. sales of subject merchandise. Because the aggregate volume of the Respondents' home market sales of foreign like product is more than five percent of the aggregate volume of their U.S. sales of subject merchandise, we based NV on sales of the foreign like product in the Respondents' home market.

B. Affiliated–Party Transactions and Arm's–Length Test

The Department may calculate NV based on a sale to an affiliated party only if it is satisfied that the price to the affiliated party is comparable to the prices at which sales are made to parties not affiliated with the exporter or producer, i.e., sales at arm's-length. See 19 CFR § 351.403(c). Sales to affiliated customers for consumption in the home market that are determined not to be at arm's-length are excluded from our analysis. In this proceeding the Respondents reported sales of the foreign like product to an affiliated customer. To test whether these sales were made at arm's-length prices, the Department compared the prices of sales of comparable merchandise to affiliated and unaffiliated customers, net of all

movement charges, direct selling expenses, and packing. Pursuant to 19 CFR § 351.403(c), and in accordance with the Department's practice, when the prices charged to an affiliated party were, on average, between 98 and 102 percent of the prices charged to unaffiliated parties for merchandise comparable to that sold to the affiliated party, we determined that the sales to the affiliated party were at arm's-length. See Antidumping Proceedings: Affiliated Party Sales in the Ordinary Course of Trade, 67 FR 69186, 69187 (November 15, 2002). Where the Respondents' sales to affiliated home market customers did not pass the arm's length test we excluded those sales from our analysis.

C. Cost of Production ("COP") Analysis

In the most recent administrative review in this proceeding, the Department determined that the Respondents sold foreign like product at prices below the cost of producing the product and excluded such sales from the calculation of NV. See Stainless Steel Wire Rod from Korea: Final Results of Antidumping Duty Administrative Review, 69 FR 19153 (April 12, 2004). As a result, in accordance with section 773(b)(2)(A)(ii) of the Act, the Department has determined that there are reasonable grounds to believe or suspect that during the instant POR, the Respondents sold foreign like product at prices below the cost of producing the product. Thus, the Department initiated a sales below cost inquiry with respect to the Respondents.

1. Calculation of COP

In accordance with section 773(b)(3) of the Act, for each foreign like product sold by the Respondents during the POR, we calculated a weighted-average COP based on the sum of the Respondents' materials and fabrication costs and general and administrative ("G&A") expenses, including interest expenses. We adjusted the cost data reported by Respondents by setting Changwon's negative interest expense to zero. For further information see the Calculation Memorandum dated concurrently with this notice, on file in the Central Records Unit, Room B-099 of the Main Commerce Building (CRU).

2. Test of Home Market Sales Prices

In order to determine whether sales were made at prices below the COP, on a product–specific basis we compared the Respondents' weighted–average COP to the prices of its home market sales of foreign like product, as required under section 773(b) of the Act. In

accordance with sections 773(b)(1)(A) and (B) of the Act, in determining whether to disregard home market sales made at prices less than the COP, we examined whether such sales were made: (1) in substantial quantities within an extended period of time; and (2) at prices which permitted the recovery of all costs within a reasonable period of time. We compared the COP to home market sales prices, less any applicable movement charges, direct and indirect selling, or packing expenses.

3. Results of the COP Test

Pursuant to section 773(b)(2)(C) of the Act, where less than 20 percent of the Respondents' sales of a given product were made at prices less than the COP, we did not disregard any below-cost sales of that product because the belowcost sales were not made in "substantial quantities." Where 20 percent or more of the Respondents' sales of a given product were made at prices less than the COP during the POR, we determined such sales to have been made in "substantial quantities" for an extended period of time (i.e., one year) pursuant to sections 773(b)(2)(B) and (C) of the Act. In such cases, because we used POR average costs we also determined, in accordance with section 773(b)(2)(D) of the Act, that these sales were not made at prices which would permit recovery of all costs within a reasonable period of time. Based on the results of our cost test, we disregarded the Respondents' below-cost sales.

Price-to-Price Comparisons

Where it was appropriate to base NV on prices, we used the prices at which the foreign like product was first sold by the Respondents for consumption in the home market, in the usual commercial quantities, in the ordinary course of trade, and, to the extent possible, at the same level of trade ("LOT") as the comparison U.S. sale.

We calculated NV using prices for packed foreign like product delivered to unaffiliated purchasers or, were appropriate, affiliated purchasers in the home market. In accordance with sections 773(a)(6)(A), (B), and (C) of the Act, where appropriate, we deducted from the starting price warranty expenses, movement expenses, home market packing costs, credit expenses and other direct selling expenses, and added U.S. packing costs and, for NVs compared to EPs, credit expenses and other direct selling expenses. Additionally, where appropriate, we made price adjustments for physical differences in the merchandise. See

773(a)(6)(C)(ii) of the Act and 19 CFR § 351.410(e).

Level of Trade

In accordance with section 773(a)(1)(B) of the Act, to the extent practicable, we determined NV based on sales in the home market at the same LOT as the EP or CEP sales. The NV LOT is based on the starting price of the sales in the home market or, when NV is based on constructed value, the starting price of the sales from which we derive selling general and administrative expenses and profit. For EP sales, the U.S. LOT is based on the starting price of the sales to the U.S. market. For CEP sales, the U.S. LOT is based on the starting price of the sales to the U.S. market, as adjusted under section 772(d) of the Act. See Micron Technology, Inc. v. United States, 243 F.3d, 1301, 1315 (Fed. Cir. 2001).

To determine whether NV sales are at a different LOT than the EP and CEP sales, the Department examines stages in the marketing process and selling functions along the chain of distribution between the producer and the customer. If the comparison-market sales are at a different LOT than the EP and CEP sales, and the difference affects price comparability, as manifested by a pattern of consistent price differences between comparison-market sales at the NV LOT and comparison-market sales at the LOT of the export transaction, the Department makes a LOT adjustment under section 773(a)(7)(A) of the Act. For CEP sales, if the NV LOT is at a more advanced stage of distribution than the CEP LOT and there is no basis for determining whether the difference between the NV and CEP LOTs affects price comparability, the Department adjusts NV under section 773(A)(7)(B) of the Act (the CEP offset provision). See Notice of Final Determination of Sales at Less Than Fair Value: Certain Carbon Steel Plate from South Africa, 62 FR 61731 (November 19, 1997)

In determining whether the Respondents made sales at separate LOTs, we obtained information from the Respondents regarding the marketing stages for the reported U.S. and home market sales, including a description of the selling activities performed by Respondents for each channel of distribution. Generally, if the reported LOTs are the same, the functions and activities of the seller at each level should be similar. Conversely, if a party reports that LOTs are different for different groups of sales, the selling functions and activities of the seller for each group should be dissimilar.

In the home market, Changwon and Dongbang each sold foreign like product during the POR directly to end users through one channel of distribution. We compared the types of selling activities performed in each channel of distribution, as well as the level of intensity at which each activity was performed and found no significant differences between the two channels (we cannot discuss the comparison here without referencing business proprietary information; therefore, for a detailed analysis, see the proprietary memorandum to Thomas F. Futtner from the Team regarding level of trade, dated concurrently herewith ("Level of Trade Memorandum''). Thus, we determined that there is one home market LOT.

In the U.S. market, Changwon sold subject merchandise during the POR to trading companies and end users through two channels of distribution, namely through unaffiliated Korean trading companies and an affiliated company located in the United States. Dongbang sold subject merchandise during the POR to trading companies and end users through only one channel of distribution, unaffiliated Korean trading companies. We compared the types of selling activities performed in each channel of distribution, as well as the level of intensity at which each activity was performed and found no significant differences between the U.S. channels. See the Level of Trade Memorandum. Thus, we determined that there is one U.S. market LOT.

We then compared the home market LOT to the U.S. market LOT. We did not find substantial differences in the selling activities performed in the two LOTs. See the Level of Trade Memorandum for further analysis. Therefore, we determined that the home and U.S. LOTs are at the same level. See 19 CFR § 351.412(c)(2) (noting that "substantial differences in selling" activities are a necessary ... condition for determining that there is a difference in the stage of marketing"). Thus, neither a LOT adjustment to NV, pursuant to section 773(a)(7)(A) of the Act, nor a CEP offset pursuant to 773(a)(7)(B) of the Act, is warranted. See Antidumping Duties; Countervailing Duties; Final Rule, 62 FR 27296, 27372 (May 19, 1997) ("{t}he Department will not make a CEP offset where ... the Department bases normal value on home market sales at the same LOT as the CEP").

Currency Conversion

Pursuant to section 773A(a) of the Act, we converted amounts expressed in foreign currencies into U.S. dollar amounts based on the exchange rates in

effect on the dates of the U.S. sales, as reported by the Federal Reserve Bank.

Preliminary Results of Review

As a result of this review, we preliminarily determine that the following weighted- average dumping margin exists for the period September 1, 2004, through August 31, 2005.

Manufacturer/Exporter	Margin (percent)	
POSCO/Changwon/Dongbang	9.77 %	

Public Comment

Within 10 days of publicly announcing the preliminary results of this review, we will disclose to interested parties any calculations performed in connection with the preliminary results. See 19 CFR § 351.224(Ď). Any interested party may request a hearing within 30 days of the publication of this notice in the Federal **Register**. See 19 CFR § 351.310(c). If requested, a hearing will be held 44 days after the date of publication of this notice in the Federal Register, or the first workday thereafter. Interested parties are invited to comment on the preliminary results of this review. The Department will consider case briefs filed by interested parties within 30 days after the date of publication of this notice in the Federal Register. Also, interested parties may file rebuttal briefs, limited to issues raised in the case briefs. The Department will consider rebuttal briefs filed not later than five days after the time limit for filing case briefs. Parties who submit arguments are requested to submit with each argument: (1) A statement of the issue, (2) a brief summary of the argument and (3) a table of authorities cited. Further, we request that parties submitting written comments provide the Department with a diskette containing an electronic copy of the public version of such comments. Unless the deadline for issuing the final results of review is extended, the Department will issue the final results of this administrative review, including the results of its analysis of issues raised in the written comments, within 120 days of publication of the preliminary results in the Federal Register.

Assessment Rates

In accordance with 19 CFR § 351.212(b)(1), in these preliminary results of review we calculated importer/customer—specific assessment rates. Where the importer/customer—specific assessment rate is above de minimis (i.e., 0.50 percent ad valorem or greater), we will instruct CBP to assess

the importer/customer—specific rate uniformly, as appropriate, on all entries of subject merchandise during the POR that were entered by the importer or sold to the customer. Within 15 days of publication of the final results of review, the Department will issue instructions to CBP directing it to assess the final assessment rates (if above *de minimis*) uniformly on all entries of subject merchandise made by the relevant importer or sold to the relevant customer during the POR.

The Department clarified its "automatic assessment" regulation on May 6, 2003 (68 FR 23954). This clarification applies to POR entries of subject merchandise produced by companies examined in this review (i.e., companies for which a dumping margin was calculated) where the companies did not know that their merchandise was destined for the United States. In such instances, we will instruct CBP to liquidate unreviewed entries at the allothers rate if there is no rate for the intermediate company(ies) involved in the transaction. For a full discussion of this clarification, see Antidumping and Countervailing Duty Proceedings: Assessment of Antidumping Duties, 68 FR 23954 (May 6, 2003).

Cash Deposit Requirements

The following cash deposit requirements will be effective for all shipments of the subject merchandise entered, or withdrawn from warehouse, for consumption on or after the publication date of the final results of this administrative review, as provided by section 751(a)(1) of the Act: (1) the cash deposit rate for the companies examined in the instant review will be the rate established in the final results of this review (except that if the rate for a particular company is de minimis, i.e., less than 0.50 percent, no cash deposit will be required for that company); (2) for previously investigated or reviewed companies not listed above, the cash deposit rate will continue to be the company-specific rate published for the most recent period; (3) if the exporter is not a firm covered in this review, a prior review, or the LTFV investigation, but the manufacturer is, the cash deposit rate will be the rate established for the most recent period for the manufacturer of the subject merchandise; and (4) the cash deposit rate for all other manufacturers or exporters will continue to be the "all others" rate of 5.77 percent, which is the "all others" rate established in the LTFV investigation, as adjusted in a subsequent remand redetermination. See Amended Final Determination and Amended Final Determination Pursuant to Court Decision. These cash deposit rates, when imposed, shall remain in effect until publication of the final results of the next administrative review

Notification to Importers

This notice also serves as a preliminary reminder to importers of their responsibility under 19 CFR § 351.402(f)(2) to file a certificate regarding the reimbursement of antidumping duties prior to liquidation of the relevant entries during this review period. Failure to comply with this requirement could result in the Secretary's presumption that reimbursement of antidumping occurred and the subsequent assessment of double antidumping duties.

We are issuing and publishing this notice in accordance with sections 751(a)(1) and 777(i)(1) of the Act.

Dated: October 2, 2006.

Joseph A. Spetrini,

Acting Assistant Secretary for Import Administration.

[FR Doc. E6–16820 Filed 10–10–06; 8:45 am] BILLING CODE 3510–DS-S

DEPARTMENT OF COMMERCE

International Trade Administration

The President's Export Council: Meeting of the President's Export Council; Sunshine Act

AGENCY: International Trade Administration, U.S. Department of Commerce

ACTION: Notice of an open meeting via teleconference.

SUMMARY: The President's Export Council will hold a meeting via teleconference to deliberate a draft recommendation to the President regarding Asia-Pacific Economic Cooperation.

DATE: November 1, 2006.

TIME: 2 p.m. (EST).

FOR THE CONFERENCE CALL-IN NUMBER AND FURTHER INFORMATION, CONTACT: The

President's Export Council Executive Secretariat, Room 4043, Washington, DC 20230 (Phone: 202–482–1124), or visit the PEC Web site, http:// www.export.gov/pec.

Dated: October 6, 2006.

J. Marc Chittum,

Staff Director and Executive Secretary, President's Export Council.

[FR Doc. 06–8634 Filed 10–6–06; 2:04 pm]

BILLING CODE 3510-DR-P

DEPARTMENT OF COMMERCE

National Institute of Standards and Technology

Announcement of a Meeting for the Proposed Autonomous Guided Vehicle Consortia

AGENCY: National Institute of Standards and Technology, Commerce.

ACTION: Notice of Public Meeting.

SUMMARY: The National Institute of Standards and Technology (NIST) invites interested parties to attend a meeting on November 1, 2006, at 9:30 a.m. at the NIST main campus in Gaithersburg, MD to discuss collaboration, between NIST and industry, in the Autonomous Guided Vehicle (AGV) Consortium. The objective of this meeting will be to briefly explain the proposed consortium tasks and to solicit interested AGV companies to join the consortium. The consortium is open to members joining prior to November 17, 2006. Beyond this date, joining the collaboration will not be allowed. The consortium will research advanced 3D imaging techniques for AGVs over a three phase

DATES: The meeting will take place on Wednesday, November 1, 2006, at 9:30 a.m. Interested parties who wish to attend and participate in the meeting must inform NIST at the contact information shown below at least 48 hours prior to the meeting.

ADDRESSES: The meeting will take place at the National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899, Shops Building 304 Conference Room.

FOR FURTHER INFORMATION CONTACT:

Roger Bostelman, Intelligent Systems Division, National Institute of Standards and Technology (NIST), 100 Bureau Drive MS 8230, Gaithersburg, MD 20899. Telephone (301) 975–3426; email: roger.bostelman@nist.gov.

SUPPLEMENTARY INFORMATION: Any program undertaken will be within the scope and confines of The Federal Technology Transfer Act of 1986 (Pub.

L. 99–502, 15 U.S.C. 3710a), which provides federal laboratories including NIST, with the authority to enter into cooperative research agreements with qualified parties. Under this law, NIST may contribute personnel, equipment, and facilities but no funds to the cooperative research program. This is not a grant program.

Dated: October 3, 2006.

James E. Hill,

Acting Deputy Director.

[FR Doc. E6-16822 Filed 10-10-06; 8:45 am]

BILLING CODE 3510-13-P

DEPARTMENT OF COMMERCE

National Institute of Standards and Technology

National Fire Protection Association (NFPA) Proposes To Revise Codes and Standards

AGENCY: National Institute of Standards and Technology, Commerce.

ACTION: Notice.

SUMMARY: The National Fire Protection Association (NFPA) proposes to revise some of its safety codes and standards and requests proposals from the public to amend existing or begin the process of developing new NFPA safety codes and standards. The purpose of this request is to increase public participation in the system used by NFPA to develop its codes and standards. The publication of this notice of request for proposals by the National Institute of Standards and Technology (NIST) on behalf of NFPA is being undertaken as a public service; NIST does not necessarily endorse, approve, or recommend any of the standards referenced in the notice.

The NFPA process provides ample opportunity for public participation in the development of its codes and standards. All NFPA codes and standards are revised and updated every three to five years in Revision Cycles that begin twice each year and that takes approximately two years to complete. Each Revision Cycle proceeds according to a published schedule that includes final dates for all major events in the process. The process contains five basic steps that are followed both for developing new documents as well as revising existing documents. These steps are: Calling for Proposals; Publishing the Proposals in the Report on Proposals; Calling for Comments on the Committee's disposition of the proposals and these Comments are published in the Report on Comments; having a Technical Report Session at the NFPA Annual Meeting; and finally, the Standards Council Consideration and Issuance of documents.

Note: Under new rules effective Fall 2005, anyone wishing to make Amending Motions on the Technical Committee Reports (ROP and ROC) must signal their intention by submitting a Notice of Intent to Make a Motion by the Deadline stated in the ROC.

Certified motions will then be posted on the NFPA Web site. Documents that receive notice of proper Amending Motions (Certified Amending Motions) will be presented for action at the annual June Association Technical Meeting. Documents that receive no motions will be forwarded directly to the Standards Council for action on issuance.

For more information on these new rules and for up-to-date information on schedules and deadlines for processing NFPA Documents, check the NFPA Web site at www.nfpa.org or contact NFPA Codes and Standards Administration.

DATES: Interested persons may submit proposals on or before the dates listed with the standards.

ADDRESSES: Casey C. Grant, Secretary, Standards Council, NFPA, 1 Batterymarch Park, Quincy, Massachusetts 02269–7471.

FOR FURTHER INFORMATION CONTACT: Casey C. Grant, Secretary, Standards Council, at above address, (617) 770—

SUPPLEMENTARY INFORMATION:

Background

The National Fire Protection Association (NFPA) develops building, fire, and electrical safety codes and standards. Federal agencies frequently use these codes and standards as the basis for developing Federal regulations concerning safety. Often, the Office of the Federal Register approves the incorporation by reference of these standards under 5 U.S.C. 552(a) and 1 CFR Part 51.

When a Technical Committee begins the development of a new or revised NFPA code or standard, it enters one of two Revision Cycles available each year. The Revision Cycle begins with the Call for Proposals, that is, a public notice asking for any interested persons to submit specific written proposals for developing or revising the Document. The Call for Proposals is published in a variety of publications. Interested parties have approximately twenty weeks to respond to the Call for Proposals.

Following the Call for Proposals period, the Technical Committee holds a meeting to consider and accept, reject

or revise, in whole or in part, all the submitted Proposals. The committee may also develop its own Proposals. A document known as the Report on Proposals, or ROP, is prepared containing all the Public Proposals, the Technical Committees' action and each Proposal, as well as all Committeegenerated Proposals. The ROP is then submitted for the approval of the Technical Committee by a formal written ballot. If the ROP does not receive approval by a two-thirds vote calculated in accordance with NFPA rules, the Report is returned to the committee for further consideration and is not published. If the necessary approval is received, the ROP is published in a compilation of Reports on Proposals issued by NFPA twice vearly for public review and comment, and the process continues to the next

The Reports on Proposals are sent automatically free of charge to all who submitted proposals and each respective committee member, as well as anyone else who requests a copy. All ROP's are also available for free downloading at www.nfpa.org.

Once the ROP becomes available, there is a 60-day comment period during which anyone may submit a Public Comment on the proposed changes in the ROP. The committee then reconvenes at the end of the comment period and acts on all Comments.

As before, a two-thirds approval vote by written ballot of the eligible members of the committee is required for approval of actions on the Comments. All of this information is complied into a second Report, called the Report on Comments (ROC), which, like the ROP, is published and made available for public review for a seven-week period.

The process of public input and review does not end with the publication of the ROP and ROC. Following the completion of the Proposal and Comment periods, there is yet a further opportunity for debate and discussion through the Technical Report Sessions that take place at the NFPA Annual Meeting.

The Technical Report Session

The Technical Report Session provides an opportunity for the final

Technical Committee Report (i.e., the ROP and ROC) on each proposed new or revised code or standard to be presented to the NFPA membership for the debate and consideration of motions to amend the Report. Before making an allowable motion at a Technical Report Session, the intended maker of the motion must file, in advance of the session, and within the published deadline, a Notice of Intent to Make a Motion. A Motions Committee appointed by the Standards Council then reviews all notices and certifies all amending motions that are proper. Only these Certified Amending Motions, together with certain allowable Follow-Up Motions (that is, motions that have become necessary as a result of previous successful amending motions) will be allowed at the Technical Report Session.

For more information on dates/ locations of NFPA Technical Committee meetings and NFPA Annual Technical Report Sessions, check the NFPA Web site at: http://www.nfpa.org/ itemDetail.asp?categoryID=822& itemID=22818

The specific rules for the types of motions that can be made are who can make them are set forth in NFPA's Regulation Governing Committee Projects which should always be consulted by those wishing to bring an issue before the membership at a Technical Report Session.

Interested persons may submit proposals, supported by written data, views, or arguments to Casey C. Grant, Secretary, Standards Council, NFPA, 1 Batterymarch Park, Quincy, Massachusetts 02269–7471. Proposals should be submitted on forms available from the NFPA Codes and Standards Administration Office or on NFPA's Web site at www.nfpa.org.

Each person must include his or her name and address, identify the document and give reasons for the proposal. Proposals received before or by 5 p.m. local time on the closing date indicated would be acted on by the Committee. The NFPA will consider any proposal that it receives on or before the date listed with the codes or standard.

Document—Edition	Document title	Proposal clos- ing date
NFPA 45—2004	Standard on Fire Protection for Laboratories Using Chemicals	11/22/2006
NFPA 51B—2003	Standard for Fire Prevention During Welding, Cutting, and Other Hot Work	11/22/2006
NFPA 52—2006	Vehicular Fuel Systems Code	11/22/2006
NFPA 54—2006	National Fuel Gas Code	11/22/2006
NFPA 55—2005	Standard for the Storage, Use, and Handling of Compressed Gases and Cryogenic Fluids in Portable and Stationary Containers, Cylinders, and Tanks.	5/25/2007
NFPA 59A—2006	Standard for the Production, Storage, and Handling of Liquefied Natural Gas (LNG)	11/22/2006
NFPA 90A—2002	Standard for the Installation of Air-Conditioning and Ventilating Systems	11/22/2006

Document—Edition	Document title	Proposal clos- ing date
NFPA 90B—2006	Standard for the Installation of Warm Air Heating and Air-Conditioning Systems	11/22/2006
NFPA 92A—2006	Standard for Smoke-Control Systems Utilizing Barriers and Pressure Differences	11/22/2006
NFPA 92B—2005	Standard for Smoke Management Systems in Malls, Atria, and Large Spaces	11/22/2006
NFPA 170—2006	Standard for Fire Safety and Emergency Symbols	11/22/2006
NFPA 241—2004	Standard for Safeguarding Construction, Alteration, and Demolition Operations	11/22/2006
NFPA 256—2003	Standard Methods of Fire Tests of Roof Coverings	11/22/2006
NFPA 260—2003	Standard Methods of Tests and Classification System for Cigarette Ignition Resistance of Components of Upholstered Furniture.	11/22/2006
NFPA 261—2003	Standard Method of Test for Determining Resistance of Mock-Up Upholstered Fur-	11/22/2006
	niture Material Assemblies to Ignition by Smoldering Cigarettes.	
NFPA 274—2003	Standard Test Method to Evaluate Fire Performance Characteristics of Pipe Insulation.	11/22/2006
NFPA 275—P*	Standard Method of Tests for the Evaluation of Thermal Barriers Used Over Foam	11/22/2006
NITA 275—1	Plastic.	11/22/2000
NFPA 290—2003	Standard for Fire Testing of Passive Protection Materials for Use on LP-Gas Con-	11/22/2006
	tainers.	
NFPA 306—2003	Standard for the Control of Gas Hazards on Vessels	11/22/2006
NFPA 318—2006	Standard for the Protection of Semiconductor Fabrication Facilities	11/22/2006
NFPA 450—2004	Guide for Emergency Medical Services and Systems	11/22/2006
NFPA 484—2006	Standard for Combustible Metals	11/22/2006
NFPA 505—2006	Fire Safety Standard for Powered Industrial Trucks Including Type Designations,	11/22/2006
	Areas of Use, Conversions, Maintenance, and Operations.	
NFPA 555—2004	Guide on Methods for Evaluating Potential for Room Flashover	11/22/2006
NFPA 610—2003	Guide for Emergency and Safety Operations at Motorsports Venues	11/22/2006
NFPA 705—2003	Recommended Practice for a Field Flame Test for Textiles and Films	11/22/2006
NFPA 1002—2003	Standard for Fire Apparatus Driver/Operator Professional Qualifications	11/22/2006
NFPA 1021—2003	Standard for Fire Officer Professional Qualifications	11/22/2006
NFPA 1026—P*	Standard for Incident Management Personnel Professional Qualifications	11/22/2006
NFPA 1031—2003	Standard for Professional Qualifications for Fire Inspector and Plan Examiner	11/22/2006
NFPA 1033—2003	Standard for Professional Qualifications for Fire Investigator	11/22/2006
NFPA 1143—2003	Standard for Wildland Fire Management	11/22/2006
NFPA 1620—2003	Recommended Practice for Pre-Incident Planning	11/22/2006
NFPA 1670—2004	Standard on Operations and Training for Technical Search and Rescue Incidents	5/25/2007
NFPA 1963—2003	Standard for Fire Hose Connections	5/25/2007
NFPA 1965—2003	Standard for Fire Hose Appliances	5/25/2007
NFPA 2010—2006	Standard for Fixed Aerosol Fire Extinguishing Systems	11/22/2006

^{*}P Proposed NEW drafts are available from NFPA's Web site—www.nfpa.org or may be obtained from NFPA's Codes and Standards Administration, 1 Batterymarch Park, Quincy, Massachusetts 02269—7471.

Dated: October 3, 2006.

James E. Hill,

 $Acting \, Deputy \, Director.$

[FR Doc. E6-16818 Filed 10-10-06; 8:45 am]

BILLING CODE 3510-13-P

DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric Administration

Proposed Information Collection; Comment Request; An Observer Program for Catcher Vessels in the Pacific Coast Groundfish Fishery

AGENCY: National Oceanic and Atmospheric Administration (NOAA). **ACTION:** Notice.

SUMMARY: The Department of Commerce, as part of its continuing effort to reduce paperwork and respondent burden, invites the general public and other Federal agencies to take this opportunity to comment on proposed and/or continuing information collections, as required by the Paperwork Reduction Act of 1995.

DATES: Written comments must be submitted on or before December 11, 2006.

ADDRESSES: Direct all written comments to Diana Hynek, Departmental Paperwork Clearance Officer, Department of Commerce, Room 6625, 14th and Constitution Avenue, NW., Washington, DC 20230 (or via the Internet at dHynek@doc.gov).

FOR FURTHER INFORMATION CONTACT:

Requests for additional information or copies of the information collection instrument and instructions should be directed to Jonathan Cusick, 360–332–2793 or Jonathan. Cusick@noaa.gov.

SUPPLEMENTARY INFORMATION:

I. Abstract

This data collection requires that a representative (owner, operator, or manager) for selected catcher vessels participating in the Pacific Coast Groundfish Fishery provide National Marine Fisheries Service with notification at least 24 hours before departure for a fishing trip and notification when the vessel ceases to

participate in the observed portion of the fleet. The information will be used to plan for fishery observer assignments.

II. Method of Collection

Telephone calls are required from participants.

III. Data

OMB Number: 0648-0423.

Form Number: None.

Type of Review: Regular submission. Affected Public: Business or other forprofit organizations.

Estimated Number of Respondents: 2,116.

Estimated Time Per Response: 10 minutes.

Estimated Total Annual Burden Hours: 1,763.

Estimated Total Annual Cost to Public: \$0 in recordkeeping/reporting costs

IV. Request for Comments

Comments are invited on: (a) Whether the proposed collection of information is necessary for the proper performance of the functions of the agency, including whether the information shall have practical utility; (b) the accuracy of the agency's estimate of the burden (including hours and cost) of the proposed collection of information; (c) ways to enhance the quality, utility, and clarity of the information to be collected; and (d) ways to minimize the burden of the collection of information on respondents, including through the use of automated collection techniques or other forms of information technology.

Comments submitted in response to this notice will be summarized and/or included in the request for OMB approval of this information collection; they also will become a matter of public record.

Dated: October 4, 2006.

Gwellnar Banks,

Management Analyst, Office of the Chief Information Officer.

[FR Doc. E6–16733 Filed 10–10–06; 8:45 am] BILLING CODE 3510–22–P

DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric Administration

[I.D. 100406D]

Gulf of Mexico Fishery Management Council; Public Meetings

AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce.

ACTION: Notice of Closed Session SEDAR Selection Committee Conference Call.

SUMMARY: The Gulf of Mexico Fishery Management Council (Council) will convene its Southeast Data, Assessment and Review (SEDAR) Selection Committee via Conference Call to select participants for SEDAR 12 for red grouper for recommendation to the Council.

DATES: The Conference Call will be held on Friday, October 27, 2006, from 11 a.m. EDT to 11:30 a.m. EDT.

ADDRESSES: The meeting will be held via Closed Session conference call.

Council address: Gulf of Mexico Fishery Management Council, 2203 North Lois Avenue, Suite 1100, Tampa, FL 33607.

FOR FURTHER INFORMATION CONTACT: Mr. Wayne Swingle, Executive Director, Gulf of Mexico Fishery Management Council; telephone: (813) 348–1630.

SUPPLEMENTARY INFORMATION: The Gulf of Mexico Fishery Management Council (Council) will convene its Southeast Data, Assessment and Review (SEDAR) Selection Committee in a closed session conference call on Friday, October 27, 2006 at 11 a.m. EDT. The purpose of the meeting is to select members for the SEDAR 12 series for Red Grouper for recommendation to the Council. The Committee recommendations will be presented to the Council at the November 13 - 17, 2006 Council Meeting in Galveston, TX.

Special Accommodations

This meeting is physically accessible to people with disabilities. Requests for sign language interpretation or other auxiliary aids should be directed to Tina Trezza at the Council (see ADDRESSES) at least 5 working days prior to the meeting.

Dated: October 5, 2006.

Tracey L. Thompson,

Acting Director, Office of Sustainable Fisheries, National Marine Fisheries Service. [FR Doc. E6–16787 Filed 10–10–06; 8:45 am] BILLING CODE 3510–22–8

DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric Administration

[I.D. 100406C]

New England Fishery Management Council; Public Meeting

AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce.

ACTION: Notice of public meetings.

SUMMARY: The New England Fishery Management Council (Council) is scheduling a public meetings of its Monkfish Advisory Panel and Monkfish Oversight Committee in October and November, 2006, to consider actions affecting New England fisheries in the exclusive economic zone (EEZ). Recommendations from these groups will be brought to the full Council for formal consideration and action, if appropriate.

DATES: These meetings will be held on Tuesday, October 31, 2006, at 9:30 a.m. and Wednesday, November 1, 2006, at 9:30 a.m.

ADDRESSES: These meetings will be held at the Sheraton Ferncroft, 50 Ferncroft Road, Danvers, MA 01923; telephone: (978) 777–2500; fax: (978) 750–7991.

Council address: New England Fishery Management Council, 50 Water Street, Mill 2, Newburyport, MA 01950.

FOR FURTHER INFORMATION CONTACT: Paul J. Howard, Executive Director, New England Fishery Management Council; telephone: (978) 465–0492.

SUPPLEMENTARY INFORMATION: The schedule and agenda for the following meetings are as follows:

1. Tuesday, October 31, 2006; Monkfish Advisory Panel meeting.

The advisory panel will review the draft Framework Adjustment 4 documents and analyses and make recommendations to the Monkfish Committee and the Councils for final measures to be adopted at the November New England Council meeting and the December Mid-Atlantic Council meeting, and subsequently submitted to the National Marine Fisheries Service. Framework 4 includes alternatives for target total allowable catch (TAC) alternatives and associated trip limits and days-at-sea (DAS) alternatives for the final three years of the monkfish rebuilding program starting May 1, 2007. Framework 4 also contains other alternatives including eliminating the directed fishery; backstop provisions to ensure that management measures achieve the target TAC on an ongoing basis; modification or elimination of the DAS carryover provision; and modification of the boundary of the North Carolina/Virginia area monkfish fishery. Following the completion of the Framework 4 business, the advisors will discuss and make recommendations to the Monkfish Committee on possible adjustment to the monkfish incidental catch limit on scallop vessels fishing in the scallop closed area access programs. The advisors will also discuss and outline the issues related to the development of a monkfish DAS leasing program.

2. Wednesday, November 1, 2006; Monkfish Oversight Committee meeting.

The Committee will review the draft Framework Adjustment 4 documents and analyses and the recommendations of the Monkfish Advisory Panel and finalize recommendations for measures to be adopted at the November New England Council meeting and the December Mid-Atlantic Council meeting and subsequently submitted to the National Marine Fisheries Service. Framework 4 includes alternatives for target total allowable catch (TAC) alternatives and associated trip limits and days-at-sea alternatives for the final three years of the monkfish rebuilding program starting May 1, 2007. Framework 4 also contains other alternatives including eliminating the directed fishery; backstop provisions to ensure that management measures achieve the target TACs on an ongoing basis; modification or elimination of the DAS carryover provision and

modification of the boundary of the North Carolina/Virginia area monkfish fishery. Following the completion of the Framework 4 business, the Committee will discuss and make

recommendations to the Councils on possible adjustment to the monkfish incidental catch limit on scallop vessels fishing in the scallop closed area access programs. The Committee will also review comments and recommendations of the Advisory Panel on the development of a monkfish DAS leasing

program.

Although non-emergency issues not contained in this agenda may come before these groups for discussion, those issues may not be the subject of formal action during this meeting. Action will be restricted to those issues specifically listed in this notice and any issues arising after publication of this notice that require emergency action under section 305(c) of the Magnuson-Stevens Act, provided the public has been notified of the Council's intent to take final action to address the emergency.

Special Accommodations

These meetings are physically accessible to people with disabilities. Requests for sign language interpretation or other auxiliary aids should be directed to Paul J. Howard, Executive Director, at (978) 465–0492, at least 5 days prior to the meeting date.

Authority: 16 U.S.C. 1801 et seq.

Dated: October 5, 2006.

Tracey L. Thompson,

Acting Director, Office of Sustainable Fisheries, National Marine Fisheries Service. [FR Doc. E6–16786 Filed 10–10–06; 8:45 am] BILLING CODE 3510–22–8

DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric Administration

Membership of the National Oceanic and Atmospheric Administration Performance Review Board

AGENCY: National Oceanic and Atmospheric Administration (NOAA), Department of Commerce.

ACTION: Notice of Membership of the NOAA Performance Review Board.

SUMMARY: In accordance with 5 U.S.C. 4314(c)(4), NOAA announces the appointment of twenty-three members to serve on the NOAA Performance Review Board (PRB). The NOAA PRB is responsible for reviewing performance appraisals and ratings of Senior Executive Service (SES) members and making written recommendations to the

appointing authority on SES retention and compensation matters, including performance-based pay adjustments, awarding of bonuses and reviewing recommendations for potential Presidential Rank Award nominees. The appointment of members to the NOAA PRB will be for a period of 24 months.

DATES: Effective Date: The effective date

of service of the twenty-three appointees to the NOAA Performance Review Board is October 13, 2006.

FOR FURTHER INFORMATION CONTACT:

Claudia McMahon, Executive Resources Program Manager, Workforce Management Office, NOAA, 1305 East-West Highway, Silver Spring, Maryland 20910, (301) 713–6306.

supplementary information: The names and position titles of the members of the NOAA PRB are set forth below (all are NOAA officials except Tyra D. Smith, Director, Human Resources, Bureau of the Census, Department of Commerce; William J. Fleming, Deputy Director for Human Resources Management, Office of Human Resources Management, Department of Commerce:

John E. Oliver, Jr., Deputy Assistant Administrator for Operations, National Marine Fisheries Service.

Craig N. McLean, Deputy Assistant Administrator for Programs and Administration, Office of Oceanic and Atmospheric Research.

John E. Jones, Jr., Deputy Assistant Administrator for Weather Services, National Weather Service.

Charles S. Baker, Chief Financial Officer, Chief Administrative Officer for Environmental Satellite, Data and Information, National Environmental Satellite, Data and Information Service.

Bonnie L. Morehouse, Director, Program Analysis and Evaluation.

Maureen E. Wylie, Chief Financial Officer.

Timothy R.E. Kenney, Deputy Assistant Secretary.

Elizabeth Ř. Scheffler, Associate Assistant Administrator for Management and CFO/CAO, National Ocean Service.

Tyra D. Smith, Director, Human Services, Bureau of the Census, Department of Commerce.

David M. Kennedy, Director for Ocean and Coastal Resource Management, National Ocean Service.

Steven A. Murawski, Director, Scientific Programs and Chief Science Advisor, National Marine Fisheries Service.

Alexander E. MacDonald, Deputy Assistant Administrator for Laboratories and Cooperative Institutes and Director, ESRL, Office of Oceanic and Atmospheric Research.

Ants Leetmaa, Director, Geophysical Fluid Dynamics Laboratory, Office of Oceanic and Atmospheric Research.

Helen H. Hurcombe, Director, Acquisition and Grants Office.

Gregory A. Mandt, Director, Science and Technology, National Weather Service.

Louis W. Uccellini, Director, National Centers for Environmental Prediction, National Weather Service.

Samuel D. Rauch III, Deputy Assistant Administrator for Regulatory Programs, National Marine Fisheries Service.

Steven I. Gallagher, Director, Budget Office.

William F. Broglie, Chief Administrative Officer.

Kathleen A. Kelly, Director, Office of Satellite Operations, National Environmental Satellite, Data and Information Service.

Daniel J. Basta, Director, Office of National Marine Sanctuaries, National Ocean Service.

Jordan P. St. John, Director, Office of Public and Constituent Affairs.

William J. Fleming, Deputy Director for Human Resources Management, Department of Commerce.

Dated: September 29, 2006.

Conrad C. Lautenbacher, Jr.,

Vice Admiral, U.S. Navy (Ret.), Under Secretary of Commerce for Oceans and Atmosphere.

[FR Doc. 06-8575 Filed 10-10-06; 8:45 am]

DEPARTMENT OF DEFENSE

Office of the Secretary

Defense Science Board

AGENCY: Department of Defense **ACTION:** Notice of advisory committee meetings.

SUMMARY: The Defense Science Board Task Force on Software Assurance will meet in closed session on *October 16–17, 2006:* at Science Applications International Corporation (SAIC), 4001 N. Fairfax Drive, Arlington, VA. This meeting is to assess the future direction of space requirements and identify the industrial base to meet the Nation's future requirements.

The mission of the Defense Science Board is to advise the Secretary of Defense and the Under Secretary of Defense for Acquisition, Technology & Logistics on scientific and technical matters as they affect the perceived needs of the Department of Defense. At these meetings, the Defense Science Board Task Force will: assess the health of the U.S. space industrial base and determine if there is any adverse impact from export controls, in particular, on the health of lower-tier contractors; anticipate future space requirements and the shape of the space industrial base required to achieve the anticipated capabilities; and recommend improvements to current policies and processes, where applicable, while also identifying policies and processes that can shape the space industrial base to deliver future capabilities.

In accordance with Section 10(d) of the Federal Advisory Committee Act, Pub. L. No. 92–463, as amended (5 U.S.C. App. II), it has been determined that these Defense Science Board Task Force meetings concern matters listed in 5 U.S.C. 552b(c)(1) and that, accordingly, the meetings will be closed to the public.

FOR FURTHER INFORMATION CONTACT:

LCDR Clifton Phillips, USN, Defense Science Board, 3140 Defense Pentagon, Room 3C553, Washington, DC 20301–3140, via e-mail at

clifton.phillips@osd.mil, or via phone at (703) 571–0083.

Due to scheduling and work burden difficulties, there is insufficient time to provide timely notice required by Section 10(a) of the Federal Advisory Committee Act and Subsection 102–3.150(b) of the GSA Final Rule on Federal Advisory Committee Management, 41 CFR Part 102–3.150(b), which further requires publication at least 15 calendar days prior to the meeting.

Dated: October 4, 2006.

C.R. Choate,

Alternate OSD Federal Register Liaison Officer, Department of Defense. [FR Doc. 06–8595 Filed 10–10–06; 8:45 am]

BILLING CODE 5001-06-M

DEPARTMENT OF EDUCATION

Notice of Proposed Information Collection Requests

AGENCY: Department of Education.
SUMMARY: The IC Clearance Official,
Regulatory Information Management
Services, Office of Management, invites
comments on the proposed information
collection requests as required by the
Paperwork Reduction Act of 1995.

DATES: Interested persons are invited to submit comments on or before December 11, 2006.

SUPPLEMENTARY INFORMATION: Section 3506 of the Paperwork Reduction Act of 1995 (44 U.S.C. Chapter 35) requires

that the Office of Management and Budget (OMB) provide interested Federal agencies and the public an early opportunity to comment on information collection requests. OMB may amend or waive the requirement for public consultation to the extent that public participation in the approval process would defeat the purpose of the information collection, violate State or Federal law, or substantially interfere with any agency's ability to perform its statutory obligations. The IC Clearance Official, Regulatory Information Management Services, Office of Management, publishes that notice containing proposed information collection requests prior to submission of these requests to OMB. Each proposed information collection, grouped by office, contains the following: (1) Type of review requested, e.g. new, revision, extension, existing or reinstatement; (2) Title; (3) Summary of the collection; (4) Description of the need for, and proposed use of, the information; (5) Respondents and frequency of collection; and (6) Reporting and/or Recordkeeping burden. OMB invites public comment.

The Department of Education is especially interested in public comment addressing the following issues: (1) Is this collection necessary to the proper functions of the Department; (2) Will this information be processed and used in a timely manner; (3) Is the estimate of burden accurate; (4) How might the Department enhance the quality, utility, and clarity of the information to be collected; and (5) How might the Department minimize the burden of this collection on the respondents, including through the use of information technology.

Dated: October 4, 2006.

Angela C. Arrington,

IC Clearance Official, Regulatory Information Management Services, Office of Management.

Institute of Education Sciences

Type of Review: New.
Title: National Study on Alternate

Assessments (NSAA). *Frequency:* Annually.

Affected Public: State, Local, or Tribal Gov't, SEAs or LEAs.

Reporting and Recordkeeping Hour Burden:

Responses: 104. Burden Hours: 232.

Abstract: The National Study on Alternate Assessments (NSAA) examines the development and use of alternate assessments in ensuring that schools are accountable for the performance of students with disabilities. The purpose of the National Study on Alternate Assessment (NSAA) is to evaluate the degree to which states and schools provide grade-level, modified, and alternate achievement standards; access to standards; include them in state accountability; and improve their education and academic performance.

Requests for copies of the proposed information collection request may be accessed from http://edicsweb.ed.gov, by selecting the "Browse Pending Collections" link and by clicking on link number 3209. When you access the information collection, click on "Download Attachments" to view. Written requests for information should be addressed to U.S. Department of Education, 400 Maryland Avenue, SW., Potomac Center, 9th Floor, Washington, DC 20202-4700. Requests may also be electronically mailed to ICDocketMgr@ed.gov or faxed to 202– 245-6623. Please specify the complete title of the information collection when making your request.

Comments regarding burden and/or the collection activity requirements should be electronically mailed to *ICDocketMgr@ed.gov*. Individuals who use a telecommunications device for the deaf (TDD) may call the Federal Information Relay Service (FIRS) at 1–800–877–8339.

[FR Doc. E6–16753 Filed 10–10–06; 8:45 am] BILLING CODE 4000–01–P

DEPARTMENT OF EDUCATION

Office of Postsecondary Education; Overview Information; Business and International Education Program; Notice Inviting Applications for New Awards for Fiscal Year (FY) 2007

Catalog of Federal Domestic Assistance (CFDA) Number: 84.153A.

DATES: Applications Available: October 11, 2006.

Deadline for Transmittal of Applications: November 21, 2006. Deadline for Intergovernmental Review: January 22, 2007.

Eligible Applicants: Institutions of higher education that enter into agreements with business enterprises, trade organizations or associations that are engaged in international economic activity—or a combination or consortium of these enterprises, organizations, or associations—for the purposes of pursuing the activities authorized under this program.

Estimated Available Funds: The Administration has requested \$2,195,000 for new awards for this program for FY 2007. The actual level of funding, if any, depends on final congressional action. However, we are inviting applications to allow enough time to complete the grant process if Congress appropriates funds for this program.

Estimated Range of Awards: \$50,000—\$110,000.

Estimated Average Size of Awards: \$84,000.

Maximum Award: We will reject any application that proposes a budget exceeding \$110,000 for a single budget period of 12 months. The Assistant Secretary for Postsecondary Education may change the maximum amount through a notice published in the Federal Register.

Estimated Number of Awards: 26.

Note: The Department is not bound by any estimates in this notice.

Project Period: Up to 24 months.

Full Text of Announcement

I. Funding Opportunity Description

Purpose of Program: The Business and International Education program provides grants to enhance international business education programs and to expand the capacity of the business community to engage in international economic activities.

Competitive Preference Priority: For FY 2007 this priority is a competitive preference priority. Under 34 CFR 75.105(c)(2)(i) and 34 CFR 661.32 we award up to an additional five (5) points to an application, depending on how well the application meets this priority. In accordance with 34 CFR 75.105(b)(2)(ii), this priority is from the regulations for this program (34 CFR 661.32).

This priority is:

Innovation and improvement of international education curricula to serve the needs of the business community, including the development of new programs for nontraditional, mid-career, or part-time students.

Invitational Priorities: For FY 2007 these priorities are invitational priorities. Under 34 CFR 75.105(c)(1) we do not give an application that meets these invitational priorities a competitive or absolute preference over other applications.

These priorities are: *Invitational Priority I:*

Applications from institutions of higher education that propose educational projects that include activities focused on the targeted world areas of the Middle East, East Asia, South Asia, Russia, and Africa. These projects should be integrated into the curricula of the home institution or institutions.

Invitational Priority II:

Applications that focus on developing, improving and/or disseminating best practices of international business training programs, teaching, and curriculum development to increase American competitiveness.

Program Authority: 20 U.S.C. 1130-1130b.

Applicable Regulations: (a) The Education Department General Administrative Regulations (EDGAR) in 34 CFR parts 74, 75, 77, 79, 80, 81, 82, 84, 85, 86, 97, 98, and 99. (b) The regulations in 34 CFR parts 655 and 661.

Note: The regulations in 34 CFR part 86 apply to institutions of higher education only.

II. Award Information

Type of Award: Discretionary grants. Estimated Available Funds: The Administration has requested \$2,195,000 for this program for FY 2007. The actual level of funding, if any, depends on final congressional action. However, we are inviting applications to allow enough time to complete the grant process if Congress appropriates funds for this program.

Estimated Range of Awards: \$50,000– \$110,000

Estimated Average Size of Awards: \$84,000.

Maximum Award: We will reject any application that proposes a budget exceeding \$110,000 for a single budget period of 12 months. The Assistant Secretary for Postsecondary Education may change the maximum amount through a notice published in the Federal Register.

Estimated Number of Awards: 26.

Note: The Department is not bound by any estimates in this notice.

Project Period: Up to 24 months.

III. Eligibility Information

1. Eligible Applicants: Institutions of higher education that enter into agreements with business enterprises, trade organizations or associations that are engaged in international economic activity—or a combination or consortium of these enterprises, organizations, or associations—for the purposes of pursuing the activities authorized under this program.

2. Cost Sharing or Matching: The matching requirement is described in section 613(d) of the Higher Education Act of 1965, as amended (20 U.S.C. 1130a) (HEA). The HEA provides that the applicant's share of the total cost of carrying out a program supported by a grant under this program must be no less than 50 percent of the total cost of

the project in each fiscal year. The non-Federal share of the cost may be provided either in-kind or in cash.

IV. Application and Submission Information

1. Address to Request Application Package: Ms. Tanyelle Richardson, International Education Programs Service, U.S. Department of Education, 1990 K Street, NW., room 6017, Washington, DC 20006–8521. Telephone: (202) 502–7626 or by e-mail: tanyelle.richardson@ed.gov or visit http://www.ed.gov/HEP/iegps to download an application.

If you use a telecommunications device for the deaf (TDD), you may call the Federal Relay Service (FRS) at 1–

800-877-8339.

Individuals with disabilities may obtain a copy of the application package in an alternative format (e.g., Braille, large print, audiotape, or computer diskette) by contacting the program contact person listed in this section.

2. Content and Form of Application Submission: Requirements concerning the content of an application, together with the forms you must submit, are in the application package for this

program.

Page Limit: The application narrative is where you, the applicant, address the selection criteria that reviewers use to evaluate your application. You must limit the section of the narrative that addresses the selection criteria to the equivalent of no more than 40 pages, using the following standards:

- using the following standards:
 A "page" is 8.5" x 11", on one side only, with 1" margins at the top, bottom,
- and both sides.
- Double space (no more than three lines per vertical inch) all text in the application narrative, including titles, headings, footnotes, quotations, references, and captions. However, you may single space all text in charts, tables, figures and graphs.

• Use a font that is either 12-point or larger or no smaller than 10 pitch (characters per inch). However, you may use a 10-point font in charts, tables,

figures, and graphs.

• Use one of the following fonts: Times New Roman, Courier, Courier New or Arial. Applications submitted in any other font (including Times Roman, Arial Narrow) will not be accepted.

The page limit does not apply to the cover sheet; the budget section, including the narrative budget justification; the assurances and certifications; the one-page abstract; or the appendices. However, you must include your complete response to the selection criteria in the application narrative.

We will reject your application if—

- You apply these standards and exceed the page limit; or
- You apply other standards and exceed the equivalent of the page limit. 3. Submission Dates and Times:

Applications Available: October 11, 2006.

Deadline for Transmittal of Applications: November 21, 2006.

Applications for grants under this program must be submitted electronically using the Grants.gov Apply site (Grants.gov). For information (including dates and times) about how to submit your application electronically or by mail or hand delivery if you qualify for an exception to the electronic submission requirement, please refer to section IV. 6. Other Submission Requirements in this notice.

Deadline for Intergovernmental Review: January 22, 2007.

- 4. Intergovernmental Review: This program is subject to Executive Order 12372 and the regulations in 34 CFR part 79. Information about Intergovernmental Review of Federal Programs under Executive Order 12372 is in the application package for this program.
- 5. Funding Restrictions: We reference regulations outlining funding restrictions in the Applicable Regulations section of this notice.
- 6. Other Submission Requirements: Applications for grants under this program must be submitted electronically unless you qualify for an exception to this requirement in accordance with the instructions in this section.
 - a. Electronic Submission of
 Applications. Applications for
 grants under the Business and
 International Education program
 must be submitted electronically
 using the Grants.gov Apply site at:
 http://www.grants.gov. Through
 this site, you will be able to
 download a copy of the application
 package, complete it offline, and
 then upload and submit your
 application. You may not e-mail an
 electronic copy of a grant
 application to us.

We will reject your application if you submit it in paper format unless, as described elsewhere in this section, you qualify for one of the exceptions to the electronic submission requirement and submit, no later than two weeks before the application deadline date, a written statement to the Department that you qualify for one of these exceptions. Further information regarding calculation of the date that is two weeks

before the application deadline date is provided later in this section under *Exception to Electronic Submission Requirement.*

You may access the electronic grant application for the Business and International Education program at: http://www.grants.gov/. You must search for the downloadable application package for this competition by the CFDA number. Do not include the CFDA number's alpha suffix in your search

Please note the following:

- When you enter the Grants.gov site, you will find information about submitting an application electronically through the site, as well as the hours of operation.
- Applications received by Grants.gov are time and date stamped. Your application must be fully uploaded and submitted, and must be date/time stamped by the Grants.gov system no later than 4:30 p.m., Washington, DC time, on the application deadline date. Except as otherwise noted in this section, we will not consider your application if it is date/time stamped by the Grants.gov system later than 4:30 p.m., Washington, DC time, on the application deadline date. When we retrieve your application from Grants.gov, we will notify you if we are rejecting your application because it was date/time stamped by the Grants.gov system after 4:30 p.m., Washington, DC time, on the application deadline date.
- The amount of time it can take to upload an application will vary depending on a variety of factors including the size of the application and the speed of your Internet connection. Therefore, we strongly recommend that you do not wait until the application deadline date to begin the submission process through Grants.gov.
- You should review and follow the Education Submission Procedures for submitting an application through Grants.gov that are included in the application package for this program to ensure that you submit your application in a timely manner to the Grants.gov system. You can also find the Education Submission Procedures pertaining to Grants.gov at: http://e-Grants.ed.gov/help/

GrantsgovSubmissionProcedures.pdf.
• To submit your application via
Grants.gov, you must complete all the
steps in the Grants.gov registration
process (see http://www.grants.gov/
applicants/get_registered.jsp). These
steps include (1) registering your
organization, (2) registering yourself as
an Authorized Organization
Representative (AOR), and (3) getting

authorized as an AOR by your organization. Details on these steps are outlined in the Grants.gov 3-Step Registration Guide (see http://www.grants.gov/section910/Grants.govRegistrationBrochure.pdf). You must also provide on your application the same D-U-N-S Number used with this registration. Please note that the registration process may take five or more business days to complete.

• You will not receive additional point value because you submit your application in electronic format, nor will we penalize you if you qualify for an exception to the electronic submission requirement, as described elsewhere in this section, and submit your application in paper format.

- You must submit all documents electronically, including all information typically included on the Application for Federal Assistance (SF 424), Budget Information—Non-Construction Programs (ED 524), and all necessary assurances and certifications. You must attach any narrative sections of your application as files in a .DOC (document), .RTF (rich text), or .PDF (Portable Document) format. If you upload a file type other than the three file types specified above or submit a password protected file, we will not review that material.
- Your electronic application must comply with any page limit requirements described in this notice.
- After you electronically submit your application, you will receive an automatic acknowledgement from Grants.gov that contains a Grants.gov tracking number. The Department will retrieve your application from Grants.gov and send you a second confirmation by e-mail that will include a PR/Award number (an ED-specified identifying number unique to your application).

• We may request that you provide us original signatures on forms at a later

Application Deadline Date Extension in Case of Technical Issues with the Grants.gov System: If you are prevented from electronically submitting your application on the application deadline date because of technical problems with the Grants.gov system, we will grant you an extension until 4:30 p.m., Washington, DC time, the following business day to enable you to transmit your application electronically, or by hand delivery. You also may mail your application by following the mailing instructions as described elsewhere in this notice. If you submit an application after 4:30 p.m., Washington, DC time, on the deadline date, please contact the person listed elsewhere in this notice

under for further information **CONTACT**, and provide an explanation of the technical problem you experienced with Grants.gov, along with the Grants.gov Support Desk Case Number (if available). We will accept your application if we can confirm that a technical problem occurred with the Grants.gov system and that that problem affected your ability to submit your application by 4:30 p.m., Washington, DC time, on the application deadline date. The Department will contact you after a determination is made on whether your application will be accepted.

Note: Extensions referred to in this section apply only to the unavailability of or technical problems with the Grants.gov system. We will not grant you an extension if you failed to fully register to submit your application to Grants.gov before the deadline date and time or if the technical problem you experienced is unrelated to the Grants.gov system.

Exception to Electronic Submission Requirement: You qualify for an exception to the electronic submission requirement, and may submit your application in paper format, if you are unable to submit an application through the Grants.gov system because—

- You do not have access to the Internet; or
- You do not have the capacity to upload large documents to the Grants.gov system;

and

• No later than two weeks before the application deadline date (14 calendar days or, if the fourteenth calendar day before the application deadline date falls on a Federal holiday, the next business day following the Federal holiday), you mail or fax a written statement to the Department, explaining which of the two grounds for an exception prevent you from using the Internet to submit your application. If you mail your written statement to the Department, it must be postmarked no later than two weeks before the application deadline date. If you fax your written statement to the Department, we must receive the faxed statement no later than two weeks before the application deadline date.

Address and mail or fax your statement to: Ms. Tanyelle Richardson, U.S. Department of Education, 1990 K Street, NW., 6th Floor, Washington, DC 20006–8521. FAX: (202) 502–7691.

Your paper application must be submitted in accordance with the mail or hand delivery instructions described in this notice.

b. Submission of Paper Applications by Mail. If you qualify for an exception

to the electronic submission requirement, you may mail (through the U.S. Postal Service or a commercial carrier) your application to the Department. You must mail the original and two copies of your application, on or before the application deadline date, to the Department at the applicable following address:

By mail through the U.S. Postal Service: U.S. Department of Education, Application Control Center, Attention: 84.153A, 400 Maryland Avenue, SW., Washington, DC 20202–4260, or

By mail through a commercial carrier: U.S. Department of Education, Application Control Center—Stop 4260, Attention: 84.153A, 7100 Old Landover Road, Landover, MD 20785–1506.

Regardless of which address you use, you must show proof of mailing consisting of one of the following:

- (1) A legibly dated U.S. Postal Service
- (2) A legible mail receipt with the date of mailing stamped by the U.S. Postal Service,
- (3) A dated shipping label, invoice, or receipt from a commercial carrier, or
- (4) Any other proof of mailing acceptable to the Secretary of the U.S. Department of Education.

If you mail your application through the U.S. Postal Service, we do not accept either of the following as proof of mailing:

(1) A private metered postmark, or (2) A mail receipt that is not dated by the U.S. Postal Service.

If your application is postmarked after the application deadline date, we will not consider your application.

Note: The U.S. Postal Service does not uniformly provide a dated postmark. Before relying on this method, you should check with your local post office.

c. Submission of Paper Applications by Hand Delivery. If you qualify for an exception to the electronic submission requirement, you (or a courier service) may deliver your paper application to the Department by hand. You must deliver the original and two copies of your application by hand, on or before the application deadline date, to the Department at the following address: U.S. Department of Education, Application Control Center, Attention: 84.153A, 550 12th Street, SW., Room 7041, Potomac Center Plaza, Washington, DC 20202–4260.

The Application Control Center accepts hand deliveries daily between 8 a.m. and 4:30 p.m., Washington, DC time, except Saturdays, Sundays and Federal holidays.

Note for Mail or Hand Delivery of Paper Applications: If you mail or hand

deliver your application to the Department:

- (1) You must indicate on the envelope and—if not provided by the Department—in Item 11 of the Application for Federal Assistance (SF 424) the CFDA number—and suffix letter, if any—of the competition under which you are submitting your application.
- (2) The Application Control Center will mail a grant application receipt acknowledgment to you. If you do not receive the grant application receipt acknowledgment within 15 business days from the application deadline date, you should call the U.S. Department of Education Application Control Center at (202) 245–6288.

V. Application Review Information

Selection Criteria: The selection criteria for this program are in 34 CFR 661.31 and are as follows: (a) Need for the project (25 points); (b) plan of operation (20 points); (c) qualifications of the key personnel (10 points); (d) budget and cost effectiveness (15 points); (e) evaluation plan (25 points); and (f) adequacy of resources (5 points).

VI. Award Administration Information

1. Award Notices: If your application is successful, we notify your U.S. Representative and U.S. Senators and send you a Grant Award Notification (GAN). We may also notify you informally.

If your application is not evaluated or not selected for funding, we notify you.

2. Administrative and National Policy Requirements: We identify administrative and national policy requirements in the application package and reference these and other requirements in the Applicable Regulations section of this notice.

We reference the regulations outlining the terms and conditions of an award in the *Applicable Regulations* section of this notice and include these and other specific conditions in the GAN. The GAN also incorporates your approved application as part of your binding commitments under the grant.

3. Reporting: At the end of your project period, you must submit a final performance report, including financial information, as directed by the Secretary. If you receive a multi-year award, you must submit an annual performance report that provides the most current performance and financial expenditure information as specified by the Secretary in 34 CFR 75.118. The applicant is required to use the electronic data instrument Evaluation of Exchange, Language, International and

Areas Studies (EELIAS) system to complete the final report.

4. Performance Measures: Under the Government Performance and Results Act of 1993 (GPRA), the objective for the BIE program is to meet the nation's security and economic needs through the development of a national capacity in foreign languages, and area and international studies.

The Department will use the following measures to evaluate its success in meeting this objective.

BIE Performance Measures: (1) The number of outreach activities that are adopted or further disseminated within a year, divided by the total number of BIE outreach activities conducted in the current year. (2) Percentage of projects judged to be successful by the program officer, based on a review of information provided in annual performance reports.

If funded, information from your final performance report submitted via the electronic Evaluation of Exchange, Language, International, and Area Studies system will be used to record and evaluate the performance of your project.

VII. Agency Contact

For Further Information Contact: Ms. Tanyelle Richardson, International Education Programs Service, U.S. Department of Education, 1990 K Street, NW., room 6017, Washington, DC 20006–8521. Telephone: (202) 502–7626 or by e-mail:

tanyelle.richardson@ed.gov.

If you use a telecommunications device for the deaf (TDD), you may call the Federal Relay Service (FRS) at 1–800–877–8339.

Individuals with disabilities may obtain this document in an alternative format (e.g., Braille, large print, audiotape, or computer diskette) on request to the program contact person listed in this section.

VIII. Other Information

Electronic Access to This Document: You may view this document, as well as all other documents of this Department published in the **Federal Register**, in text or Adobe Portable Document Format (PDF) on the Internet at the following site: http://www.ed.gov/news/fedregister.

To use PDF you must have Adobe Acrobat Reader, which is available free at this site. If you have questions about using PDF, call the U.S. Government Printing Office (GPO), toll free, at 1–888–293–6498; or in the Washington, DC, area at (202) 512–1530.

Note: The official version of this document is the document published in the **Federal**

Register. Free Internet access to the official edition of the **Federal Register** and the Code of Federal Regulations is available on GPO Access at: http://www.gpoaccess.gov/nara/index.html.

Dated: October 5, 2006.

James F. Manning,

Acting Assistant Secretary for Postsecondary Education.

[FR Doc. E6–16827 Filed 10–10–06; 8:45 am] BILLING CODE 4000–01–P

ELECTION ASSISTANCE COMMISSION

Sunshine Act Notice; Meeting

AGENCY: United States Election Assistance Commission.

ACTION: Notice of Public Meeting and Hearing Agenda.

DATE AND TIME: Thursday, October 26, 2006, 10:00 a.m.-4:00 p.m.

PLACE: U.S. Election Assistance Commission (EAC), 1225 New York Ave., NW., Suite 1100, Washington, DC 20005. (Metro Stop: Metro Center)

AGENDA: The Commission will conduct a public meeting and hearing on EAC's post-election voting system testing and certification program. The Commission will receive presentations by representatives of the National Institute of Standards and Technology (NIST), representatives of testing laboratories, equipment manufacturers, election officials, community interest groups and Commission staff members. The Commission will also meet to consider other administrative matters.

EAC will provide a public comment period to receive comments regarding the voting system testing and certification program. Members of the public who wish to speak must contact and register with EAC by 5:00 p.m. on Tuesday, October 24, 2006. Speakers may contact EAC via e-mail at testimony@ec.gov, or via mail addressed to the U.S. Election Assistance Commission, 1225 New York Ave., NW., Suite 1100, Washington, DC 20005, or by fax at 202/566-3127. Comments will be strictly limited to 3 minutes per person or organization to ensure the fullest participation possible. All speakers will be contacted prior to the hearing. EAC also encourages members of the public to submit written testimony via e-mail, mail or fax. All public comments will be taken in writing via e-mail at testimony@eac.gov, or via mail addressed to the U.S. Election Assistance Commission, 1225 New York Ave., NW., Suite 1100, Washington, DC 20005, or by fax at 202/ 566-3127.

This meeting and hearing will be open to the public.

FOR FURTHER INFORMATION CONTACT:

Bryan Whitener, Telephone: (202) 566–3100.

Thomas R. Wilkey,

Executive Director, U.S. Election Assistance Commission.

[FR Doc. 06–8645 Filed 10–6–06; 4:01 pm] **BILLING CODE 6820–KF–M**

DEPARTMENT OF ENERGY

The No FEAR Act Notice

AGENCY: Department of Energy (DOE). **ACTION:** Notice.

SUMMARY: DOE is providing notice to all of its employees, former employees, and applicants for employment about the rights and remedies that are available to them under the Federal antidiscrimination laws and whistleblower protection laws. This notice fulfills DOE's notification obligations under the Notification and Federal Employees Antidiscrimination and Retaliation Act (No FEAR Act), as implemented by Office of Personnel Management (OPM) regulations.

FOR FURTHER INFORMATION CONTACT: Neil Schuldenfrei, Attorney-Advisor, Office of Civil Rights and Diversity, U.S. Department of Energy, Room 5B–168, 1000 Independence Ave., SW., Washington, DC 20585, telephone (202) 586–5687 (this is not a toll-free number). Hearing-impaired or speechimpaired individuals may access this number through TTY by calling the toll-free Federal Relay Service at (800) 877–8339.

SUPPLEMENTARY INFORMATION: On May 15, 2002, Congress enacted the "Notification and Federal Employee Antidiscrimination and Retaliation Act of 2002," which is now known as the No FEAR Act. One purpose of the Act is to "require that Federal agencies be accountable for violations of antidiscrimination and whistleblower protection laws." Public Law 107–174, Summary. In support of this purpose, Congress found that "agencies cannot be run effectively if those agencies practice or tolerate discrimination." Public Law 107-174, Title I, General Provisions, section 101(1).

The Act also requires this agency to provide this notice to Federal employees, former Federal employees and applicants for Federal employment to inform you of the rights and protections available to you under Federal antidiscrimination and whistleblower protection laws.

Antidiscrimination Laws

A Federal agency cannot discriminate against an employee or applicant with respect to the terms, conditions or privileges of employment on the basis of race, color, religion, sex, national origin, age, disability, marital status or political affiliation. Discrimination on these bases is prohibited by one or more of the following statutes: 5 U.S.C. 2302(b)(1), 29 U.S.C. 206(d), 29 U.S.C. 631, 29 U.S.C. 633a, 29 U.S.C. 791 and 42 U.S.C. 2000e-16. In addition, Department of Energy policy prohibits discrimination on the basis of sexual orientation. DOE Order 311.1B, Section (4)(d).

If you believe that you have been the victim of unlawful discrimination on the basis of race, color, religion, sex, sexual orientation, national origin or disability, you must contact an Equal Employment Opportunity (EEO) counselor within 45 calendar days of the alleged discriminatory action, or, in the case of a personnel action, within 45 calendar days of the effective date of the action, before you can file a formal complaint of discrimination with your agency. See, e.g. 29 CFR Part 1614. If you believe that you have been the victim of unlawful discrimination on the basis of age, you must either contact an EEO counselor as noted above or give notice of intent to sue to the Equal **Employment Opportunity Commission** (EEOC) within 180 calendar days of the alleged discriminatory action. If you are alleging discrimination based on marital status or political affiliation, you may file a written complaint with the U.S. Office of Special Counsel (OSC) (see contact information below). In the alternative (or in some cases, in addition), you may pursue a discrimination complaint by filing a grievance through your agency's administrative or negotiated grievance procedures, if such procedures apply and are available.

Whistleblower Protection Laws

A Federal employee with authority to take, direct others to take, recommend or approve any personnel action must not use that authority to take or fail to take, or threaten to take or fail to take, a personnel action against an employee or applicant because of disclosure of information by that individual that is reasonably believed to evidence violations of law, rule or regulation; gross mismanagement; gross waste of funds; an abuse of authority; or a substantial and specific danger to public health or safety, unless disclosure of such information is specifically prohibited by law and such information is specifically required by Executive

Order to be kept secret in the interest of national defense or the conduct of foreign affairs.

Retaliation against an employee or applicant for making a protected disclosure is prohibited by 5 U.S.C. Section 2302(b)(8). If you believe that you have been the victim of whistleblower retaliation, you may file a written complaint (Form OSC–11) with the U.S. Office of Special Counsel at 1730 M Street NW., Suite 218, Washington, DC 20036–4505 or online through the OSC Web site—http://www.osc.gov.

Retaliation for Engaging in Protected Activity

A Federal agency cannot retaliate against an employee or applicant because that individual exercises his or her rights under any of the Federal antidiscrimination or whistleblower protection laws listed above. If you believe that you are the victim of retaliation for engaging in protected activity, you must follow, as appropriate, the procedures described in the Antidiscrimination Laws and Whistleblower Protection Laws sections or, if applicable, the administrative or negotiated grievance procedures in order to pursue any legal remedy.

Disciplinary Actions

Under the existing laws, each agency retains the right, where appropriate, to discipline a Federal employee for conduct that is inconsistent with Federal Antidiscrimination and Whistleblower Protection Laws up to and including removal. If OSC has initiated an investigation under 5 U.S.C. 1214, however, according to 5 U.S.C. 1214(f), agencies must seek approval from the Special Counsel to discipline employees for, among other activities, engaging in prohibited retaliation. Nothing in the No FEAR Act alters existing laws or permits an agency to take unfounded disciplinary action against a Federal employee or to violate the procedural rights of a Federal employee who has been accused of discrimination

Additional Information

For further information regarding the No FEAR Act regulations, refer to 5 CFR Part 724, as well as the appropriate offices within your agency (e.g., EEO/civil rights office, human resources office or legal office). At the Department of Energy, please contact your local EEO/diversity office, call the Headquarters Office of Civil Rights and Diversity at (202) 586–2218, or visit http://civilrights.doe.gov. Additional information regarding Federal

antidiscrimination, whistleblower protection and retaliation laws can be found at the EEOC Web site—http://www.eeoc.gov and the OSC Web site—http://www.osc.gov.

Existing Rights Unchanged

Pursuant to section 205 of the No FEAR Act, neither the Act nor this notice creates, expands or reduces any rights otherwise available to any employee, former employee or applicant under the laws of the United States, including the provisions of law specified in 5 U.S.C. 2302(d).

Issued in Washington, DC on October 4, 2006.

Poli A. Marmolejos,

Director, Office of Civil Rights and Diversity. [FR Doc. E6–16748 Filed 10–10–06; 8:45 am] BILLING CODE 6450–01–P

DEPARTMENT OF ENERGY

Federal Energy Regulatory Commission

[Docket No. RP00-445-015]

Alliance Pipeline L.P.; Notice of Negotiated Rates

October 3, 2006.

Take notice that on September 29, 2006, Alliance Pipeline L.P. (Alliance) tendered for filing to become part of its FERC Gas Tariff, Original Volume No. 1, Tenth Revised Sheet No. 11, to become effective October 1, 2006.

Any person desiring to intervene or to protest this filing must file in accordance with Rules 211 and 214 of the Commission's Rules of Practice and Procedure (18 CFR 385.211 and 385.214). Protests will be considered by the Commission in determining the appropriate action to be taken but will not serve to make protestants parties to the proceeding. Any person wishing to become a party must file a notice of intervention or motion to intervene, as appropriate. Such notices, motions, or protests must be filed in accordance with the provisions of § 154.210 of the Commission's regulations (18 CFR 154.210). Anyone filing an intervention or protest must serve a copy of that document on the Applicant. Anyone filing an intervention or protest on or before the intervention or protest date need not serve motions to intervene or protests on persons other than the Applicant.

The Commission encourages electronic submission of protests and interventions in lieu of paper using the "eFiling" link at http://www.ferc.gov. Persons unable to file electronically

should submit an original and 14 copies of the protest or intervention to the Federal Energy Regulatory Commission, 888 First Street, NE., Washington, DC 20426.

This filing is accessible on-line at http://www.ferc.gov, using the "eLibrary" link and is available for review in the Commission's Public Reference Room in Washington, DC. There is an "eSubscription" link on the Web site that enables subscribers to receive e-mail notification when a document is added to a subscribed docket(s). For assistance with any FERC Online service, please e-mail FERCOnlineSupport@ferc.gov, or call (866) 208–3676 (toll free). For TTY, call (202) 502–8659.

Magalie R. Salas,

Secretary.

[FR Doc. E6–16765 Filed 10–10–06; 8:45 am] BILLING CODE 6717–01–P

DEPARTMENT OF ENERGY

Federal Energy Regulatory Commission

[Docket No. RP99-301-146]

ANR Pipeline Company; Notice of Negotiated Rate Filing

October 3, 2006.

Take notice that on September 29, 2006, ANR Pipeline Company (ANR), tendered notice of the termination of a negotiated rate/lease dedication arrangement. ANR also tendered for filing as part of its FERC Gas Tariff, Second Revised Volume No. 1, Eleventh Revised Sheet No. 190A, to be effective November 1, 2006.

ANR states that a copy of this filing has been served upon ANR's customers and interested state regulatory commissions.

Any person desiring to intervene or to protest this filing must file in accordance with Rules 211 and 214 of the Commission's Rules of Practice and Procedure (18 CFR 385.211 and 385.214). Protests will be considered by the Commission in determining the appropriate action to be taken but will not serve to make protestants parties to the proceeding. Any person wishing to become a party must file a notice of intervention or motion to intervene, as appropriate. Such notices, motions, or protests must be filed in accordance with the provisions of Section 154.210 of the Commission's regulations (18 CFR 154.210). Anyone filing an intervention or protest must serve a copy of that document on the Applicant. Anyone filing an intervention or protest on or

before the intervention or protest date need not serve motions to intervene or protests on persons other than the Applicant.

The Commission encourages electronic submission of protests and interventions in lieu of paper using the "eFiling" link at http://www.ferc.gov. Persons unable to file electronically should submit an original and 14 copies of the protest or intervention to the Federal Energy Regulatory Commission, 888 First Street, NE., Washington, DC 20426.

This filing is accessible on-line at http://www.ferc.gov, using the "eLibrary" link and is available for review in the Commission's Public Reference Room in Washington, DC. There is an "eSubscription" link on the Web site that enables subscribers to receive e-mail notification when a document is added to a subscribed docket(s). For assistance with any FERC Online service, please e-mail FERCOnlineSupport@ferc.gov, or call (866) 208–3676 (toll free). For TTY, call (202) 502–8659.

Magalie R. Salas,

Secretary.

[FR Doc. E6–16759 Filed 10–10–06; 8:45 am] BILLING CODE 6717–01–P

DEPARTMENT OF ENERGY

Federal Energy Regulatory Commission

[Docket No. CP06-464-000]

ANR Pipeline Company; Notice of Application

October 3, 2006.

Take notice that on September 21, 2006, ANR Pipeline Company (ANR) Pipeline), 1001 Louisiana, Houston, Texas 77002, filed in docket CP06-464-000 an application pursuant to section 7 of the Natural Gas Act (NGA), as amended, for authority to develop, construct, and operate the Storage Enhancement Project—2008, consisting of the acquisition and conversion of the depleted Cold Springs 1 natural gas reservoir located in Kalkaska County, Michigan, all as more fully set forth in the application which is on file with the Commission and open to public inspection. This filing may also be viewed on the Commission's Web site at http://www.ferc.gov using the "eLibrary" link. Enter the docket number, excluding the last three digits, in the docket number field to access the document. For assistance, call (202) 502-8659 or TTY, (202) 208-3676.

Any questions regarding this application should be directed to Dawn McGuire, Attorney, ANR Pipeline Company, 1001 Louisiana, Houston, Texas 77002, or call (713) 420–5503 or fax (713) 420–1601.

There are two ways to become involved in the Commission's review of this project. First, any person wishing to obtain legal status by becoming a party to the proceedings for this project should, on or before the comment date stated below, file with the Federal Energy Regulatory Commission, 888 First Street, NE., Washington, DC 20426, a motion to intervene in accordance with the requirements of the Commission's Rules of Practice and Procedure (18 CFR 385.214 or 385.211) and the Regulations under the NGA (18 CFR 157.10). A person obtaining party status will be placed on the service list maintained by the Secretary of the Commission and will receive copies of all documents filed by the applicant and by all other parties. A party must submit 14 copies of filings made with the Commission and must mail a copy to the applicant and to every other party in the proceeding. Only parties to the proceeding can ask for court review of Commission orders in the proceeding.

However, a person does not have to intervene in order to have comments considered. The second way to participate is by filing with the Secretary of the Commission, as soon as possible, an original and two copies of comments in support of or in opposition to this project. The Commission will consider these comments in determining the appropriate action to be taken, but the filing of a comment alone will not serve to make the filer a party to the proceeding. The Commission's rules require that persons filing comments in opposition to the project provide copies of their protests only to the party or parties directly involved in the protest.

Persons who wish to comment only on the environmental review of this project should submit an original and two copies of their comments to the Secretary of the Commission. Environmental commentors will be placed on the Commission's environmental mailing list, will receive copies of the environmental documents, and will be notified of meetings associated with the Commission's environmental review process. Environmental commentors will not be required to serve copies of filed documents on all other parties. However, the non-party commentors will not receive copies of all documents filed by other parties or issued by the Commission (except for the mailing of

environmental documents issued by the Commission) and will not have the right to seek court review of the Commission's final order.

The Commission strongly encourages electronic filings of comments, protests and interventions via the Internet in lieu of paper. See 18 CFR 385.2001(a)(1)(iii) and the instructions on the Commission's Web site (http://www.ferc.gov) under the "e-Filing" link. Comment Date: October 24, 2006.

Magalie R. Salas,

Secretary.

[FR Doc. E6–16761 Filed 10–10–06; 8:45 am] BILLING CODE 6717–01–P

DEPARTMENT OF ENERGY

Federal Energy Regulatory Commission

[Docket No. RP06-613-000]

ANR Pipeline Company; Notice of Tariff Filing

October 3, 2006.

Take notice that on September 29, 2006, ANR Pipeline Company (ANR) tendered for filing as part of its FERC Gas Tariff, Second Revised Volume No. 1, the tariff sheets listed on Appendix A to the filing, with an effective date of November 1, 2006.

Any person desiring to intervene or to protest this filing must file in accordance with Rules 211 and 214 of the Commission's Rules of Practice and Procedure (18 CFR 385.211 and 385.214). Protests will be considered by the Commission in determining the appropriate action to be taken, but will not serve to make protestants parties to the proceeding. Any person wishing to become a party must file a notice of intervention or motion to intervene, as appropriate. Such notices, motions, or protests must be filed in accordance with the provisions of § 154.210 of the Commission's regulations (18 CFR 154.210). Anyone filing an intervention or protest must serve a copy of that document on the Applicant. Anyone filing an intervention or protest on or before the intervention or protest date need not serve motions to intervene or protests on persons other than the Applicant.

The Commission encourages electronic submission of protests and interventions in lieu of paper using the "eFiling" link at http://www.ferc.gov. Persons unable to file electronically should submit an original and 14 copies of the protest or intervention to the Federal Energy Regulatory Commission,

888 First Street, NE., Washington, DC 20426.

This filing is accessible on-line at http://www.ferc.gov, using the "eLibrary" link and is available for review in the Commission's Public Reference Room in Washington, DC. There is an "eSubscription" link on the Web site that enables subscribers to receive e-mail notification when a document is added to a subscribed docket(s). For assistance with any FERC Online service, please e-mail FERCOnlineSupport@ferc.gov, or call (866) 208–3676 (toll free). For TTY, call (202) 502–8659.

Magalie R. Salas,

Secretary.

[FR Doc. E6–16770 Filed 10–10–06; 8:45 am] BILLING CODE 6717–01–P

DEPARTMENT OF ENERGY

Federal Energy Regulatory Commission

[Docket No. RP06-433-001]

CenterPoint Energy Gas Transmission Company; Notice of Compliance Filing

October 3, 2006.

Take notice that on September 28, 2006, CenterPoint Energy Gas
Transmission Company (CEGT)
tendered for filing as part of its FERC
Gas Tariff, Sixth Revised Volume No. 1, tariff sheets listed below to be effective
September 1, 2006. CEGT states that the purpose of this filing is to make certain corrections to tariff sheets submitted on July 12, 2006 to the following tariff sheets:

Substitute Original Sheet No. 729A Substitute First Revised Sheet No. 734 Substitute First Revised Sheet No. 742 Substitute First Revised Sheet No. 743 Sheet Nos. 765–769 Substitute Original Sheet No. 787A Sheet Nos. 791–798

Any person desiring to protest this filing must file in accordance with Rule 211 of the Commission's Rules of Practice and Procedure (18 CFR 385.211). Protests to this filing will be considered by the Commission in determining the appropriate action to be taken, but will not serve to make protestants parties to the proceeding. Such protests must be filed in accordance with the provisions of section 154.210 of the Commission's regulations (18 CFR 154.210). Anyone filing a protest must serve a copy of that document on all the parties to the proceeding.

The Commission encourages electronic submission of protests in lieu

of paper using the "eFiling" link at http://www.ferc.gov. Persons unable to file electronically should submit an original and 14 copies of the protest to the Federal Energy Regulatory Commission, 888 First Street, NE., Washington, DC 20426.

This filing is accessible on-line at http://www.ferc.gov, using the "eLibrary" link and is available for review in the Commission's Public Reference Room in Washington, DC. There is an "eSubscription" link on the Web site that enables subscribers to receive e-mail notification when a document is added to a subscribed docket(s). For assistance with any FERC Online service, please e-mail FERCOnlineSupport@ferc.gov, or call (866) 208–3676 (toll free). For TTY, call (202) 502–8659.

Magalie R. Salas,

Secretary.

[FR Doc. E6–16768 Filed 10–10–06; 8:45 am] BILLING CODE 6717–01–P

DEPARTMENT OF ENERGY

Federal Energy Regulatory Commission

[Docket No. RP05-672-004]

East Tennessee Natural Gas, LLC; Notice of Compliance Filing

October 3, 2006.

Take notice that on September 29, 2006, East Tennessee Natural Gas, LLC (East Tennessee) submitted a compliance filing pursuant to the letter orders issued on May 4, 2006 and August 31, 2006.

East Tennessee states that copies of the filing were served on parties on the official service list.

Any person desiring to protest this filing must file in accordance with Rule 211 of the Commission's Rules of Practice and Procedure (18 CFR 385.211). Protests to this filing will be considered by the Commission in determining the appropriate action to be taken, but will not serve to make protestants parties to the proceeding. Such protests must be filed in accordance with the provisions of Section 154.210 of the Commission's regulations (18 CFR 154.210). Anyone filing a protest must serve a copy of that document on all the parties to the proceeding.

The Commission encourages electronic submission of protests in lieu of paper using the "eFiling" link at http://www.ferc.gov. Persons unable to file electronically should submit an original and 14 copies of the protest to

the Federal Energy Regulatory Commission, 888 First Street, NE., Washington, DC 20426.

This filing is accessible on-line at http://www.ferc.gov, using the "eLibrary" link and is available for review in the Commission's Public Reference Room in Washington, DC. There is an "eSubscription" link on the Web site that enables subscribers to receive e-mail notification when a document is added to a subscribed docket(s). For assistance with any FERC Online service, please e-mail FERCOnlineSupport@ferc.gov, or call (866) 208–3676 (toll free). For TTY, call (202) 502–8659.

Magalie R. Salas,

Secretary.

[FR Doc. E6–16766 Filed 10–10–06; 8:45 am]

DEPARTMENT OF ENERGY

Federal Energy Regulatory Commission

[Docket No. RP06-615-000]

El Paso Natural Gas Company; Notice of Proposed Changes in FERC Gas Tariff

October 3, 2006.

Take notice that on September 29, 2006, El Paso Natural Gas Company (El Paso) tendered for filing as part of its FERC Gas Tariff, Second Revised Volume No. 1–A, Thirty-First Revised Sheet No. 1 and Twelfth Revised Sheet No. 2 to become effective November 1, 2006, and three firm transportation service agreements (TSAs) with Public Service Company of New Mexico.

Any person desiring to intervene or to protest this filing must file in accordance with Rules 211 and 214 of the Commission's Rules of Practice and Procedure (18 CFR 385.211 and 385.214). Protests will be considered by the Commission in determining the appropriate action to be taken, but will not serve to make protestants parties to the proceeding. Any person wishing to become a party must file a notice of intervention or motion to intervene, as appropriate. Such notices, motions, or protests must be filed in accordance with the provisions of section 154.210 of the Commission's regulations (18 CFR 154.210). Anyone filing an intervention or protest must serve a copy of that document on the Applicant. Anyone filing an intervention or protest on or before the intervention or protest date need not serve motions to intervene or protests on persons other than the Applicant.

The Commission encourages electronic submission of protests and interventions in lieu of paper using the "eFiling" link at http://www.ferc.gov. Persons unable to file electronically should submit an original and 14 copies of the protest or intervention to the Federal Energy Regulatory Commission, 888 First Street, NE., Washington, DC 20426.

This filing is accessible on-line at http://www.ferc.gov, using the "eLibrary" link and is available for review in the Commission's Public Reference Room in Washington, DC. There is an "eSubscription" link on the Web site that enables subscribers to receive e-mail notification when a document is added to a subscribed docket(s). For assistance with any FERC Online service, please e-mail FERCOnlineSupport@ferc.gov, or call (866) 208–3676 (toll free). For TTY, call (202) 502–8659.

Magalie R. Salas,

Secretary.

[FR Doc. E6–16772 Filed 10–10–06; 8:45 am]

DEPARTMENT OF ENERGY

Federal Energy Regulatory Commission

[Docket No. RP06-623-000]

Enbridge Pipelines (KPC); Notice of Proposed Changes in FERC Gas Tariff

October 3, 2006.

Take notice that on September 29, 2006, Enbridge Pipelines (KPC) tendered for filing as part of its FERC Gas Tariff, First Revised Volume No. 1, the following tariff sheets, to become effective November 1, 2006:

Eighth Revised Sheet No. 15. Second Revised Sheet No. 16A. Third Revised Sheet No. 17. First Revised Sheet No. 17A. Eighth Revised Sheet No. 21. Eighth Revised Sheet No. 26. Eighth Revised Sheet No. 28. Eighth Revised Sheet No. 30.

Any person desiring to intervene or to protest this filing must file in accordance with Rules 211 and 214 of the Commission's Rules of Practice and Procedure (18 CFR 385.211 and 385.214). Protests will be considered by the Commission in determining the appropriate action to be taken, but will not serve to make protestants parties to the proceeding. Any person wishing to become a party must file a notice of intervention or motion to intervene, as appropriate. Such notices, motions, or protests must be filed in accordance

with the provisions of section 154.210 of the Commission's regulations (18 CFR 154.210). Anyone filing an intervention or protest must serve a copy of that document on the Applicant. Anyone filing an intervention or protest on or before the intervention or protest date need not serve motions to intervene or protests on persons other than the Applicant.

The Commission encourages electronic submission of protests and interventions in lieu of paper using the "eFiling" link at http://www.ferc.gov. Persons unable to file electronically should submit an original and 14 copies of the protest or intervention to the Federal Energy Regulatory Commission, 888 First Street, NE., Washington, DC 20426.

This filing is accessible on-line at http://www.ferc.gov, using the "eLibrary" link and is available for review in the Commission's Public Reference Room in Washington, DC. There is an "eSubscription" link on the Web site that enables subscribers to receive e-mail notification when a document is added to a subscribed docket(s). For assistance with any FERC Online service, please e-mail FERCOnlineSupport@ferc.gov, or call (866) 208–3676 (toll free). For TTY, call (202) 502–8659.

Magalie R. Salas,

Secretary.

[FR Doc. E6–16780 Filed 10–10–06; 8:45 am] BILLING CODE 6717–01–P

DEPARTMENT OF ENERGY

Federal Energy Regulatory Commission

[Docket No. RP06-625-000]

Gas Transmission Northwest Corporation; Notice of Proposed Changes in FERC Gas Tariff

October 4, 2006.

Take notice that on September 29, 2006, Gas Transmission Northwest Corporation (GTN) tendered for filing as part of its FERC Gas Tariff, Third Revised Volume No. 1–A, Second Revised Eighth Revised Sheet No. 4, to become effective November 1, 2006.

GTN states that it is revising this tariff sheet to modify the rate for service under Rate Schedule FTS–1(E–2)(WWP) in accordance with the negotiated rate formula for that service as specified in GTN's tariff. The proposed changes would increase revenues associated with Rate Schedule FTS–1(E–2)(WWP) by approximately 4.282%.

GTN further states that a copy of this filing has been served on GTN's jurisdictional customers and interested state regulatory agencies.

Any person desiring to intervene or to protest this filing must file in accordance with Rules 211 and 214 of the Commission's Rules of Practice and Procedure (18 CFR 385.211 and 385.214). Protests will be considered by the Commission in determining the appropriate action to be taken, but will not serve to make protestants parties to the proceeding. Any person wishing to become a party must file a notice of intervention or motion to intervene, as appropriate. Such notices, motions, or protests must be filed in accordance with the provisions of section 154.210 of the Commission's regulations (18 CFR 154.210). Anyone filing an intervention or protest must serve a copy of that document on the Applicant. Anyone filing an intervention or protest on or before the intervention or protest date need not serve motions to intervene or protests on persons other than the Applicant.

The Commission encourages electronic submission of protests and interventions in lieu of paper using the "eFiling" link at http://www.ferc.gov.
Persons unable to file electronically should submit an original and 14 copies of the protest or intervention to the Federal Energy Regulatory Commission, 888 First Street, NE., Washington, DC 20426

This filing is accessible on-line at http://www.ferc.gov, using the "eLibrary" link and is available for review in the Commission's Public Reference Room in Washington, DC. There is an "eSubscription" link on the Web site that enables subscribers to receive e-mail notification when a document is added to a subscribed docket(s). For assistance with any FERC Online service, please e-mail FERCOnlineSupport@ferc.gov, or call (866) 208–3676 (toll free). For TTY, call (202) 502–8659.

Magalie R. Salas,

Secretary.

[FR Doc. E6–16796 Filed 10–10–06; 8:45 am] BILLING CODE 6717–01–P

DEPARTMENT OF ENERGY

Federal Energy Regulatory Commission

[Docket No. RP06-624-000]

Great Lakes Gas Transmission Limited Partnership; Notice of Proposed Changes in FERC Gas Tariff

October 3, 2006.

Take notice that on September 29, 2006, Great Lakes Gas Transmission Limited Partnership (Great Lakes) tendered for filing as part of its FERC Gas Tariff the following tariff sheets, to become effective November 1, 2006:

Eleventh Revised Sheet No. 10 Ninth Revised Sheet No. 10A Original Sheet No. 10B Eighth Revised Sheet No. 11 Seventh Revised Sheet No. 16 Seventh Revised Sheet No. 16A Tenth Revised Sheet No. 45 Fourth Revised Sheet No. 50B Sixth Revised Sheet No. 64 Fourth Revised Sheet No. 66

Any person desiring to intervene or to protest this filing must file in accordance with Rules 211 and 214 of the Commission's Rules of Practice and Procedure (18 CFR 385.211 and 385.214). Protests will be considered by the Commission in determining the appropriate action to be taken, but will not serve to make protestants parties to the proceeding. Any person wishing to become a party must file a notice of intervention or motion to intervene, as appropriate. Such notices, motions, or protests must be filed in accordance with the provisions of § 154.210 of the Commission's regulations (18 CFR 154.210). Anyone filing an intervention or protest must serve a copy of that document on the Applicant. Anyone filing an intervention or protest on or before the intervention or protest date need not serve motions to intervene or protests on persons other than the Applicant.

The Commission encourages electronic submission of protests and interventions in lieu of paper using the "eFiling" link at http://www.ferc.gov. Persons unable to file electronically should submit an original and 14 copies of the protest or intervention to the Federal Energy Regulatory Commission, 888 First Street, NE., Washington, DC 20426.

This filing is accessible online at http://www.ferc.gov, using the "eLibrary" link and is available for review in the Commission's Public Reference Room in Washington, DC. There is an "eSubscription" link on the Web site that enables subscribers to receive e-mail notification when a

document is added to a subscribed docket(s). For assistance with any FERC Online service, please e-mail *FERCOnlineSupport@ferc.gov*, or call (866) 208–3676 (toll free). For TTY, call (202) 502–8659.

Magalie R. Salas,

Secretary.

[FR Doc. E6–16781 Filed 10–10–06; 8:45 am] BILLING CODE 6717–01–P

DEPARTMENT OF ENERGY

Federal Energy Regulatory Commission

[Docket No. CP05-13-001]

Ingleside Energy Center LLC; Notice of Application To Amend Authorization

October 4, 2006.

Take notice that on September 26, 2006, Ingleside Energy Center LLC (IEC), 5 Greenway Plaza, Suite 1600, Houston, Texas 77046, filed in Docket No. CP05-13–001, an abbreviated application pursuant to section 3 of the Natural Gas Act (NGA) and parts 153 and 380 of the Commission's Regulations, for an amendment to its authorizations granted in Docket No. CP05-13-000 on July 22, 2005. Specifically, IEC is seeking approval for: (i) Full containment LNG storage tank structures rather than double containment tank structures; and (ii) related and conforming changes associated with the change in tank configuration approved in the July 22 Order. IEC also seeks approval for the incorporation of an off-loading dock to be used during construction. This filing is available for review at the Commission in the Public Reference Room or may be viewed on the web at http://www.ferc.gov using the "eLibrary" link. Enter the docket number excluding the last three digits in the docket number field to access the document. For assistance, contact FERC at FERCOnlineSupport@gerc.gov or call toll-free, (886) 208-3676 or TYY, (202) 502-8659.

Any questions regarding this application should be directed to Lawrence G. Acker, LeBoeuf, Lamb, Greene & MacRae, L.L.P., 1875 Connecticut Avenue, NW., Suite 1200 Washington, DC 20009–5728, or call (202) 986–8000 or fax (202) 986–8102.

There are two ways to become involved in the Commission's review of this project. First, any person wishing to obtain legal status by becoming a party to the proceedings for this project should, on or before the comment date stated below, file with the Federal Energy Regulatory Commission, 888

First Street, NE., Washington, DC 20426, a motion to intervene in accordance with the requirements of the Commission's Rules of Practice and Procedure (18 CFR 385.214 or 385.211) and the Regulations under the NGA (18 CFR 157.10). A person obtaining party status will be placed on the service list maintained by the Secretary of the Commission and will receive copies of all documents filed by the applicant and by all other parties. A party must submit 14 copies of filings made with the Commission and must mail a copy to the applicant and to every other party in the proceeding. Only parties to the proceeding can ask for court review of Commission orders in the proceeding.

However, a person does not have to intervene in order to have comments considered. The second way to participate is by filing with the Secretary of the Commission, as soon as possible, an original and two copies of comments in support of or in opposition to this project. The Commission will consider these comments in determining the appropriate action to be taken, but the filing of a comment alone will not serve to make the filer a party to the proceeding. The Commission's rules require that persons filing comments in opposition to the project provide copies of their protests only to the party or parties directly involved in the protest.

Persons who wish to comment only on the environmental review of this project should submit an original and two copies of their comments to the Secretary of the Commission. Environmental commentors will be placed on the Commission's environmental mailing list, will receive copies of the environmental documents, and will be notified of meetings associated with the Commission's environmental review process. Environmental commentors will not be required to serve copies of filed documents on all other parties. However, the non-party commentors will not receive copies of all documents filed by other parties or issued by the Commission (except for the mailing of environmental documents issued by the Commission) and will not have the right to seek court review of the Commission's final order.

The Commission strongly encourages electronic filings of comments protests and interventions via the Internet in lieu of paper. See 18 CFR 385.2001(a) (1)(iii) and the instructions on the Commission's Web (http://www.ferc.gov) site under the "e-Filing" link.

Comment Date: 5 p.m. eastern time on October 25, 2006.

Magalie R. Salas,

Secretary.

[FR Doc. E6–16802 Filed 10–10–06; 8:45 am] BILLING CODE 6717–01–P

DEPARTMENT OF ENERGY

Federal Energy Regulatory Commission

[Docket No. RP98-18-022]

Iroquois Gas Transmission System, L.P.; Notice of Negotiated Rate

October 3, 2006.

Take notice that on September 29, 2006, Iroquois Gas Transmission System, L.P. (Iroquois) tendered for filing the following revised sheets to its FERC Gas Tariff, First Revised Volume No. 1, to be effective on October 1, 2006:

Third Revised Sheet No. 7 Original Sheet No. 7C

Iroquois states that copies of its filing were served on all jurisdictional customers and interested state regulatory agencies and all parties to the proceeding.

Any person desiring to intervene or to protest this filing must file in accordance with Rules 211 and 214 of the Commission's Rules of Practice and Procedure (18 CFR 385.211 and 385.214). Protests will be considered by the Commission in determining the appropriate action to be taken, but will not serve to make protestants parties to the proceeding. Any person wishing to become a party must file a notice of intervention or motion to intervene, as appropriate. Such notices, motions, or protests must be filed in accordance with the provisions of § 154.210 of the Commission's regulations (18 CFR 154.210). Anyone filing an intervention or protest must serve a copy of that document on the Applicant. Anyone filing an intervention or protest on or before the intervention or protest date need not serve motions to intervene or protests on persons other than the Applicant.

The Commission encourages electronic submission of protests and interventions in lieu of paper using the "eFiling" link at http://www.ferc.gov. Persons unable to file electronically should submit an original and 14 copies of the protest or intervention to the Federal Energy Regulatory Commission, 888 First Street, NE., Washington, DC 20426

This filing is accessible on-line at http://www.ferc.gov, using the "eLibrary" link and is available for

review in the Commission's Public Reference Room in Washington, DC. There is an "eSubscription" link on the Web site that enables subscribers to receive e-mail notification when a document is added to a subscribed docket(s). For assistance with any FERC Online service, please e-mail FERCOnlineSupport@ferc.gov, or call (866) 208–3676 (toll free). For TTY, call (202) 502–8659.

Magalie R. Salas,

Secretary.

[FR Doc. E6–16783 Filed 10–10–06; 8:45 am] $\tt BILLING\ CODE\ 6717-01-P$

DEPARTMENT OF ENERGY

Federal Energy Regulatory Commission

[Docket No. RP06-629-000]

Maritimes & Northeast Pipeline, L.L.C.; Notice of Proposed Changes in FERC Gas Tariff

October 4, 2006.

Take notice that on September 29, 2006, Maritimes & Northeast Pipeline, L.L.C. (Maritimes) tendered for filing as part of its FERC Gas Tariff, First Revised Volume No. 1, Tenth Revised Sheet No. 11, to become effective on November 1, 2006.

Maritimes states that it is making this Fuel Retainage Quantity (FRQ) filing pursuant to section 20 of the General Terms and Conditions (GT&C) of its FERC Gas Tariff. For deliveries north of the Richmond, ME Compressor Station Maritimes is proposing a decrease of 0.02% to the Fuel Retainage Percentage ("FRP") for the Winter Period and a decrease of 0.01% for the Non-Winter Period. The projected FRP for deliveries north of the Richmond, ME Compressor Station for the Winter Period is 1.00% and for the Non-Winter Period the FRP is 0.88%. For deliveries south of the Richmond, ME Compressor Station Maritimes is proposing a decrease of 0.06% to the Fuel Retainage Percentage (FRP) for the Winter Period and a decrease of 0.04% for the Non-Winter Period. The projected FRP for deliveries south of the Richmond, ME Compressor Station for the Winter Period is 1.04% and for the Non-Winter Period the FRP is 0.91%.

Maritimes also states that it is submitting the calculation of the FRQ Deferred Account amount, pursuant to Section 20 of the GT&C, which provides that Maritimes will calculate surcharges or refunds designed to amortize the net monetary value of the balance in the FRQ Deferred Account at the end of the previous accumulation period.

Maritimes states that for the period August 1, 2005 through July 31, 2006, the FRQ Deferred Account resulted in a net credit balance of \$1,641,748.73, inclusive of carrying charges, that will be refunded to Maritimes' customers.

Maritimes states that copies of this filing were mailed to all affected customers of Maritimes and interested state commissions.

Any person desiring to intervene or to protest this filing must file in accordance with Rules 211 and 214 of the Commission's Rules of Practice and Procedure (18 CFR 385.211 and 385.214). Protests will be considered by the Commission in determining the appropriate action to be taken, but will not serve to make protestants parties to the proceeding. Any person wishing to become a party must file a notice of intervention or motion to intervene, as appropriate. Such notices, motions, or protests must be filed in accordance with the provisions of Section 154.210 of the Commission's regulations (18 CFR 154.210). Anyone filing an intervention or protest must serve a copy of that document on the Applicant. Anyone filing an intervention or protest on or before the intervention or protest date need not serve motions to intervene or protests on persons other than the Applicant.

The Commission encourages electronic submission of protests and interventions in lieu of paper using the "eFiling" link at http://www.ferc.gov. Persons unable to file electronically should submit an original and 14 copies of the protest or intervention to the Federal Energy Regulatory Commission, 888 First Street, NE., Washington, DC 20426.

This filing is accessible on-line at http://www.ferc.gov, using the "eLibrary" link and is available for review in the Commission's Public Reference Room in Washington, DC. There is an "eSubscription" link on the Web site that enables subscribers to receive e-mail notification when a document is added to a subscribed docket(s). For assistance with any FERC Online service, please e-mail FERCOnlineSupport@ferc.gov, or call (866) 208–3676 (toll free). For TTY, call (202) 502–8659.

Magalie R. Salas,

Secretary.

[FR Doc. E6–16800 Filed 10–10–06; 8:45 am] BILLING CODE 6717–01–P

DEPARTMENT OF ENERGY

Federal Energy Regulatory Commission

[Docket No. RP99-176-118]

Natural Gas Pipeline Company of America; Notice of Negotiated Rates

October 3, 2006.

Take notice that on September 29, 2006, Natural Gas Pipeline Company of America (Natural) tendered for filing as part of its FERC Gas Tariff, Sixth Revised Volume No. 1, the following tariff sheets, to become effective November 1, 2006, and a Rate Schedule FTS Service Agreement with a Negotiated Rate Agreement.

Second Revised Sheet No. 26D.02 First Revised Sheet No. 26D.03 Second Revised Sheet No. 414A.01

Natural states that copies of the filing are being mailed to all parties set out on the Commission's official service list.

Any person desiring to intervene or to protest this filing must file in accordance with Rules 211 and 214 of the Commission's Rules of Practice and Procedure (18 CFR 385.211 and 385.214). Protests will be considered by the Commission in determining the appropriate action to be taken, but will not serve to make protestants parties to the proceeding. Any person wishing to become a party must file a notice of intervention or motion to intervene, as appropriate. Such notices, motions, or protests must be filed in accordance with the provisions of section 154.210 of the Commission's regulations (18 CFR 154.210). Anyone filing an intervention or protest must serve a copy of that document on the Applicant. Anyone filing an intervention or protest on or before the intervention or protest date need not serve motions to intervene or protests on persons other than the Applicant.

The Commission encourages electronic submission of protests and interventions in lieu of paper using the "eFiling" link at http://www.ferc.gov. Persons unable to file electronically should submit an original and 14 copies of the protest or intervention to the Federal Energy Regulatory Commission, 888 First Street, NE., Washington, DC 20426

This filing is accessible on-line at http://www.ferc.gov, using the "eLibrary" link and is available for review in the Commission's Public Reference Room in Washington, DC. There is an "eSubscription" link on the Web site that enables subscribers to receive e-mail notification when a document is added to a subscribed

docket(s). For assistance with any FERC Online service, please e-mail *FERCOnlineSupport@ferc.gov*, or call (866) 208–3676 (toll free). For TTY, call (202) 502–8659.

Magalie R. Salas,

Secretary.

[FR Doc. E6–16784 Filed 10–10–06; 8:45 am] $\tt BILLING\ CODE\ 6717–01-P$

DEPARTMENT OF ENERGY

Federal Energy Regulatory Commission

[Project Number 11858-002]

Nevada Hydro Company, Inc. and Elsinore Valley Municipal Water District; Notice of Modified Transmission Alignment Proposal and Staff NEPA Alternatives for the Lake Elsinore Advanced Pumped Storage Project

October 3, 2006.

On February 2, 2004, the Elsinore Valley Municipal Water District and Nevada Hydro Company, Inc. (coapplicants) filed an application for the Lake Elsinore Advanced Pumped Storage Project (LEAPS Project).

The proposed LEAPS project would consist of: (1) A new upper reservoir (Morrell Canyon) having a 180-foot-high main dam and a gross storage volume of 5,750 feet, at a normal reservoir surface elevation of 2,880 feet above mean sea level; (2) a powerhouse with two reversible pump-turbine units with a total installed capacity of 500 megawatts; (3) the existing Lake Elsinore as a lower reservoir; (4) about 30 miles of 500-kV transmission line connecting the project to an existing transmission line owned by Southern California Edison, located north of the proposed project, and to an existing San Diego Gas & Électric Company transmission line located to the south.

This notice is being sent to landowners of property crossed by or near either the proposed or alternative routes for the transmission line and other interested parties to the proceeding. The maps attached to this notice show two transmission alignments: (1) The applicant's current proposal, modified in response to staff's draft EIS and filed with the Commission on June 12, 2006; and (2) the staff alternative alignment being considered for the final EIS.

The February 17, 2006, draft EIS for the proposed LEAPS Project shows both the co-applicant's proposed transmission line (figure 2 of the draft EIS) and the Commission and U.S. Forest Service staff alternative alignment (figure 5 of the draft EIS). In response to public comments on the draft EIS, the co-applicants' revised their original transmission alignment and now propose to place part of the line underground (see the attached coapplicant's modified alignment). After considering the co-applicants' modified proposal, as well as the comments filed on the draft EIS, Commission and U.S. Forest Service staff are proposing to revise their draft EIS alternative transmission alignment and consider a revised alignment in the final EIS. The staff alternative alignment also includes an underground segment along South Main Divide Road as shown by the blue dotted line on the staff alternative alignment and the same underground segment from the transmission line to the powerhouse as shown by the red dotted line on the co-applicants' modified transmission alignment. The final EIS will include a response to the comments received on the draft EIS and those on this notice and will be used by the Commission in making a decision on the proposal.

Please provide any comments in response to this public notice within 30 days of the date of this notice. All

documents (original and eight copies) should be filed with: Magalie R. Salas, Secretary, Federal Energy Regulatory Commission, 888 First Street, NE., Washington, DC 20426, and should have the docket number P–11858–002 in the reference heading. Comments may be filed electronically via the Internet in lieu of paper. The Commission strongly encourages electronic filings. See 18 CFR 385.2001(a)(1)(iii) and the instructions on the Commission's Web site at http://www.ferc.gov under the eLibrary link.

The licensing schedule for the project will be revised as follows:

Milestone	Tentative date
Notice of the availability of the final EIS	December 2006. May 2007.

For further information, contact Jim Fargo at (202) 502–6095, james.fargo@ferc.gov.

Magalie R. Salas,

Secretary.

[FR Doc. E6–16764 Filed 10–10–06; 8:45 am] BILLING CODE 6717–01–P

DEPARTMENT OF ENERGY

Federal Energy Regulatory Commission

[Docket No. CP06-461-000]

Northern Natural Gas Company; Notice of Application

October 3, 2006.

Take notice that on September 20, 2006, Northern Natural Gas Company (Northern), 1111 South 103rd Street, Omaha, Nebraska 68124, filed in Docket No. CP06-461-000, an application pursuant to section 7 of the Natural Gas Act (NGA) to increase the certificated storage capacity of the Redfield Storage Field located in Dallas County, Iowa by 2.102 Bcf to 124.102 Bcf, all as more fully set forth in the application which is on file with the Commission and open to public inspection. This filing may be also viewed on the Web at http:// www.ferc.gov using the "eLibrary" link. Enter the docket number excluding the last three digits in the docket number field to access the document. For assistance, call (866) 208-3676 or TTY, $(202)\ 502-8659.$

Any questions regarding this application may be directed to Michael T. Loeffler, Director of Certificates for Northern, 1111 South 103rd Street, Omaha, Nebraska 68124, (402) 3987103 or Bret Fritch, Senior Regulatory Analyst, at (402) 398–7140.

There are two ways to become involved in the Commission's review of this project. First, any person wishing to obtain legal status by becoming a party to the proceedings for this project should, before the comment date of this notice, file with the Federal Energy Regulatory Commission, 888 First Street, NE., Washington, DC 20426, a motion to intervene in accordance with the requirements of the Commission's Rules of Practice and Procedure (18 CFR 385.214 or 385.211) and the Regulations under the NGA (18 CFR 157.10). A person obtaining party status will be placed on the service list maintained by the Secretary of the Commission and will receive copies of all documents filed by the applicant and by all other parties. A party must submit 14 copies of filings made with the Commission and must mail a copy to the applicant and to every other party in the proceeding. Only parties to the proceeding can ask for court review of Commission orders in the proceeding.

However, a person does not have to intervene in order to have comments considered. The second way to participate is by filing with the Secretary of the Commission, as soon as possible, an original and two copies of comments in support of or in opposition to this project. The Commission will consider these comments in determining the appropriate action to be taken, but the filing of a comment alone will not serve to make the filer a party to the proceeding. The Commission's rules require that persons filing comments in opposition to the project provide copies of their protests only to

the party or parties directly involved in the protest.

Comments, protests and interventions may be filed electronically via the Internet in lieu of paper. See, 18 CFR 385.2001(a)(1)(iii) and the instructions on the Commission's Web site under the "e-Filing" link.

Comment Date: October 24, 2006.

Magalie R. Salas,

Secretary.

[FR Doc. E6–16760 Filed 10–10–06; 8:45 am] BILLING CODE 6717–01–P

DEPARTMENT OF ENERGY

Federal Energy Regulatory Commission

[Docket No. RP06-456-001]

Northern Natural Gas Company; Notice of Compliance Filing

October 3, 2006.

Take notice that on September 28, 2006, Northern Natural Gas Company (Northern) tendered for filing its information filing in compliance with the Commission's August 31, 2006 Order in the above referenced docket.

Northern further states that copies of the filing have been provided to each of its customers and interested state commissions.

Any person desiring to protest this filing must file in accordance with Rule 211 of the Commission's Rules of Practice and Procedure (18 CFR 385.211). Protests to this filing will be considered by the Commission in determining the appropriate action to be taken, but will not serve to make protestants parties to the proceeding. Such protests must be filed in

accordance with the provisions of Section 154.210 of the Commission's regulations (18 CFR 154.210). Anyone filing a protest must serve a copy of that document on all the parties to the proceeding.

The Commission encourages electronic submission of protests in lieu of paper using the "eFiling" link at http://www.ferc.gov. Persons unable to file electronically should submit an original and 14 copies of the protest to the Federal Energy Regulatory Commission, 888 First Street, NE., Washington, DC 20426.

This filing is accessible on-line at http://www.ferc.gov, using the "eLibrary" link and is available for review in the Commission's Public Reference Room in Washington, DC. There is an "eSubscription" link on the Web site that enables subscribers to receive e-mail notification when a document is added to a subscribed docket(s). For assistance with any FERC Online service, please e-mail FERCOnlineSupport@ferc.gov, or call (866) 208–3676 (toll free). For TTY, call (202) 502–8659.

Magalie R. Salas,

Secretary.

[FR Doc. E6–16769 Filed 10–10–06; 8:45 am] BILLING CODE 6717–01–P

DEPARTMENT OF ENERGY

Federal Energy Regulatory Commission

[Docket No. RP06-616-000]

Northern Natural Gas Company; Notice of Proposed Changes in FERC Gas Tariff

October 3, 2006.

Take notice that on September 29, 2006, Northern Natural Gas Company (Northern) tendered for filing in its FERC Gas Tariff, Fifth Revised Volume No. 1, the following tariff sheets, with an effective date of November 1, 2006:

Thirteenth Revised Sheet No. 66C Fifth Revised Sheet No. 66D

Northern further states that copies of the filing have been mailed to each of its customers and interested state commissions.

Any person desiring to intervene or to protest this filing must file in accordance with Rules 211 and 214 of the Commission's Rules of Practice and Procedure (18 CFR 385.211 and 385.214). Protests will be considered by the Commission in determining the appropriate action to be taken, but will not serve to make protestants parties to the proceeding. Any person wishing to

become a party must file a notice of intervention or motion to intervene, as appropriate. Such notices, motions, or protests must be filed in accordance with the provisions of section 154.210 of the Commission's regulations (18 CFR 154.210). Anyone filing an intervention or protest must serve a copy of that document on the Applicant. Anyone filing an intervention or protest on or before the intervention or protest date need not serve motions to intervene or protests on persons other than the Applicant.

The Commission encourages electronic submission of protests and interventions in lieu of paper using the "eFiling" link at http://www.ferc.gov. Persons unable to file electronically should submit an original and 14 copies of the protest or intervention to the Federal Energy Regulatory Commission, 888 First Street, NE., Washington, DC 20426.

This filing is accessible on-line at http://www.ferc.gov, using the "eLibrary" link and is available for review in the Commission's Public Reference Room in Washington, DC. There is an "eSubscription" link on the Web site that enables subscribers to receive e-mail notification when a document is added to a subscribed docket(s). For assistance with any FERC Online service, please e-mail FERCOnlineSupport@ferc.gov, or call (866) 208–3676 (toll free). For TTY, call (202) 502–8659.

Magalie R. Salas,

Secretary.

[FR Doc. E6–16773 Filed 10–10–06; 8:45 am] BILLING CODE 6717–01–P

DEPARTMENT OF ENERGY

Federal Energy Regulatory Commission

[Docket No. RP06-620-000]

Northern Natural Gas Company; Notice of Proposed Changes in FERC Gas Tariff

October 3, 2006.

Take notice that on September 29, 2006 Northern Natural Gas Company (Northern) tendered for filing to become part of its FERC Gas Tariff, Fifth Revised Volume No. 1, the following tariff sheets proposed to be effective on November 1, 2006:

74 Revised Sheet No. 50 75 Revised Sheet No. 51 38 Revised Sheet No. 52 74 Revised Sheet No. 53 12 Revised Sheet No. 55 30

Revised Sheet No. 59 14

Revised Sheet No. 59A 33 Revised Sheet No. 60 13 Revised Sheet No. 60A

Northern states that copies of the filing have been mailed to each of its customers and interested state commissions.

Any person desiring to intervene or to protest this filing must file in accordance with Rules 211 and 214 of the Commission's Rules of Practice and Procedure (18 CFR 385.211 and 385.214). Protests will be considered by the Commission in determining the appropriate action to be taken, but will not serve to make protestants parties to the proceeding. Any person wishing to become a party must file a notice of intervention or motion to intervene, as appropriate. Such notices, motions, or protests must be filed in accordance with the provisions of section 154.210 of the Commission's regulations (18 CFR 154.210). Anyone filing an intervention or protest must serve a copy of that document on the Applicant. Anyone filing an intervention or protest on or before the intervention or protest date need not serve motions to intervene or protests on persons other than the Applicant.

The Commission encourages electronic submission of protests and interventions in lieu of paper using the "eFiling" link at http://www.ferc.gov. Persons unable to file electronically should submit an original and 14 copies of the protest or intervention to the Federal Energy Regulatory Commission, 888 First Street, NE., Washington, DC 20426.

This filing is accessible on-line at http://www.ferc.gov, using the "eLibrary" link and is available for review in the Commission's Public Reference Room in Washington, DC. There is an "eSubscription" link on the Web site that enables subscribers to receive e-mail notification when a document is added to a subscribed docket(s). For assistance with any FERC Online service, please e-mail FERCOnlineSupport@ferc.gov, or call (866) 208–3676 (toll free). For TTY, call (202) 502–8659.

Magalie R. Salas,

Secretary.

[FR Doc. E6–16777 Filed 10–10–06; 8:45 am] BILLING CODE 6717–01–P

DEPARTMENT OF ENERGY

Federal Energy Regulatory Commission

[Docket No. RP06-617-000]

Panhandle Eastern Pipe Line Company, LP; Notice of Proposed Changes in FERC Gas Tariff

October 3, 2006.

Take notice that on September 29, 2006, Panhandle Eastern Pipe Line Company, LP (Panhandle) tendered for filing as part of its FERC Gas Tariff, Third Revised Volume No. 1, the revised tariff sheets listed on Appendix A attached to the filing, to become effective November 1, 2006.

Any person desiring to intervene or to protest this filing must file in accordance with Rules 211 and 214 of the Commission's Rules of Practice and Procedure (18 CFR 385.211 and 385.214). Protests will be considered by the Commission in determining the appropriate action to be taken, but will not serve to make protestants parties to the proceeding. Any person wishing to become a party must file a notice of intervention or motion to intervene, as appropriate. Such notices, motions, or protests must be filed in accordance with the provisions of section 154.210 of the Commission's regulations (18 CFR 154.210). Anyone filing an intervention or protest must serve a copy of that document on the Applicant. Anyone filing an intervention or protest on or before the intervention or protest date need not serve motions to intervene or protests on persons other than the Applicant.

The Commission encourages electronic submission of protests and interventions in lieu of paper using the "eFiling" link at http://www.ferc.gov. Persons unable to file electronically should submit an original and 14 copies of the protest or intervention to the Federal Energy Regulatory Commission, 888 First Street, NE., Washington, DC 20426.

This filing is accessible on-line at http://www.ferc.gov, using the "eLibrary" link and is available for review in the Commission's Public Reference Room in Washington, DC. There is an "eSubscription" link on the Web site that enables subscribers to receive e-mail notification when a document is added to a subscribed docket(s). For assistance with any FERC Online service, please e-mail FERCOnlineSupport@ferc.gov, or call

(866) 208–3676 (toll free). For TTY, call (202) 502–8659.

Magalie R. Salas,

Secretary.

[FR Doc. E6–16774 Filed 10–10–06; 8:45 am]

DEPARTMENT OF ENERGY

Federal Energy Regulatory Commission

[Docket No. RP06-200-013]

Rockies Express Pipeline LLC; Notice of Negotiated Rate

October 3, 2006.

Take notice that on September 29, 2006, Rockies Express Pipeline LLC (REX) tendered for filing to become part of its FERC Gas Tariff, First Revised Volume No. 1, the following tariff sheets, with an effective date of October 1, 2006:

Ninth Revised Sheet No. 22 Third Revised Sheet Mp/24

REX stated that a copy of this filing has been served upon all parties to this proceeding, REX's customers, the Colorado Public Utilities Commission and the Wyoming Public Service Commission.

Any person desiring to intervene or to protest this filing must file in accordance with Rules 211 and 214 of the Commission's Rules of Practice and Procedure (18 CFR 385.211 and 385.214). Protests will be considered by the Commission in determining the appropriate action to be taken, but will not serve to make protestants parties to the proceeding. Any person wishing to become a party must file a notice of intervention or motion to intervene, as appropriate. Such notices, motions, or protests must be filed in accordance with the provisions of section 154.210 of the Commission's regulations (18 CFR 154.210). Anyone filing an intervention or protest must serve a copy of that document on the Applicant. Anyone filing an intervention or protest on or before the intervention or protest date need not serve motions to intervene or protests on persons other than the Applicant.

The Commission encourages electronic submission of protests and interventions in lieu of paper using the "eFiling" link at http://www.ferc.gov. Persons unable to file electronically should submit an original and 14 copies of the protest or intervention to the Federal Energy Regulatory Commission, 888 First Street, NE., Washington, DC 20426.

This filing is accessible on-line at http://www.ferc.gov, using the "eLibrary" link and is available for review in the Commission's Public Reference Room in Washington, DC. There is an "eSubscription" link on the Web site that enables subscribers to receive e-mail notification when a document is added to a subscribed docket(s). For assistance with any FERC Online service, please e-mail FERCOnlineSupport@ferc.gov, or call (866) 208–3676 (toll free). For TTY, call (202) 502–8659.

Magalie R. Salas,

Secretary.

[FR Doc. E6–16767 Filed 10–10–06; 8:45 am] $\tt BILLING$ CODE 6717–01–P

DEPARTMENT OF ENERGY

Federal Energy Regulatory Commission

[Docket No. RP06-631-000]

SCG Pipeline, Inc.; Notice of Filing

October 4, 2006.

Take notice that on September 29, 2006, under General Terms and Conditions (GT&C) sections 12.8, 22, 25 and 26 of its FERC Gas Tariff, Original Volume No. 1 and Part 154 of the Commission's regulations, 18 CFR part 154 (2006), SCG Pipeline, Inc. (SCG) submitted work papers calculating the anticipated balances as of October 31, 2006 in each of the following three accounts and the estimated amounts either owed to shippers by SCG or owed to SCG by shippers in order to clear each account: (1) The Fuel Retainage Quantity (FRQ) Deferred Account; (2) the System Balancing Cost Reconciliation Mechanism (SBCRM) Deferred Account; and (3) the interruptible transportation (IT) revenue account.

SCG requests that the Commission approve its calculations and its treatment of balances to clear SCG's FRQ, SBCRM and IT revenue accounts in connection with SCG's closing of operations and the cancellation of its FERC Gas Tariff. SCG states that the affected SCG customers have agreed to this filing.

SCG states that a copy of this filing has been served upon all of its customers and interested state commissions.

Any person desiring to intervene or to protest this filing must file in accordance with Rules 211 and 214 of the Commission's Rules of Practice and Procedure (18 CFR 385.211 and 385.214). Protests will be considered by

the Commission in determining the appropriate action to be taken, but will not serve to make protestants parties to the proceeding. Any person wishing to become a party must file a notice of intervention or motion to intervene, as appropriate. Such notices, motions, or protests must be filed in accordance with the provisions of section 154.210 of the Commission's regulations (18 CFR 154.210). Anyone filing an intervention or protest must serve a copy of that document on the Applicant. Anyone filing an intervention or protest on or before the intervention or protest date need not serve motions to intervene or protests on persons other than the Applicant.

The Commission encourages electronic submission of protests and interventions in lieu of paper using the "eFiling" link at http://www.ferc.gov. Persons unable to file electronically should submit an original and 14 copies of the protest or intervention to the Federal Energy Regulatory Commission, 888 First Street, NE., Washington, DC 20426

This filing is accessible on-line at http://www.ferc.gov, using the "eLibrary" link and is available for review in the Commission's Public Reference Room in Washington, DC. There is an "eSubscription" link on the Web site that enables subscribers to receive e-mail notification when a document is added to a subscribed docket(s). For assistance with any FERC Online service, please e-mail FERCOnlineSupport@ferc.gov, or call (866) 208–3676 (toll free). For TTY, call (202) 502–8659.

Magalie R. Salas,

Secretary.

[FR Doc. E6–16801 Filed 10–10–06; 8:45 am] BILLING CODE 6717–01–P

DEPARTMENT OF ENERGY

Federal Energy Regulatory Commission

[Docket No. RP06-626-000]

Southwest Gas Storage Company; Notice of Proposed Changes in FERC Gas Tariff

October 4, 2006.

Take notice that on September 29, 2006, Southwest Gas Storage Company (Southwest) tendered for filing as part of its FERC Gas Tariff, First Revised Volume No. 1, Eighteenth Revised Sheet No. 5, to become effective November 1, 2006.

Southwest states that the purpose of this filing, made in accordance with

Section 16 (Fuel Reimbursement Adjustment) of the General Terms and Conditions in Southwest's FERC Gas Tariff, First Revised Volume No. 1, is to update the fuel reimbursement percentages proposed to be effective November 1, 2006.

Any person desiring to intervene or to protest this filing must file in accordance with Rules 211 and 214 of the Commission's Rules of Practice and Procedure (18 CFR 385.211 and 385.214). Protests will be considered by the Commission in determining the appropriate action to be taken, but will not serve to make protestants parties to the proceeding. Any person wishing to become a party must file a notice of intervention or motion to intervene, as appropriate. Such notices, motions, or protests must be filed in accordance with the provisions of section 154.210 of the Commission's regulations (18 CFR 154.210). Anyone filing an intervention or protest must serve a copy of that document on the Applicant. Anyone filing an intervention or protest on or before the intervention or protest date need not serve motions to intervene or protests on persons other than the Applicant.

The Commission encourages electronic submission of protests and interventions in lieu of paper using the "eFiling" link at http://www.ferc.gov. Persons unable to file electronically should submit an original and 14 copies of the protest or intervention to the Federal Energy Regulatory Commission, 888 First Street, NE., Washington, DC 20426

This filing is accessible on-line at http://www.ferc.gov, using the "eLibrary" link and is available for review in the Commission's Public Reference Room in Washington, DC. There is an "eSubscription" link on the Web site that enables subscribers to receive e-mail notification when a document is added to a subscribed docket(s). For assistance with any FERC Online service, please e-mail FERCOnlineSupport@ferc.gov, or call (866) 208–3676 (toll free). For TTY, call (202) 502–8659.

Magalie R. Salas,

Secretary.

[FR Doc. E6–16797 Filed 10–10–06; 8:45 am] BILLING CODE 6717–01–P

DEPARTMENT OF ENERGY

Federal Energy Regulatory Commission

[Docket No. RP06-630-000]

Stingray Pipeline Company, L.L.C.; Notice of Petition for Waiver of Tariff Provisions and Request for Expedited Action

October 3, 2006.

Take notice that on September 29, 2006, Stingray Pipeline Company (Stingray) filed a Petition for Temporary Waiver of Tariff Provisions and Request for Expedited Action. The purpose of this filing is to seek waiver of the tiered imbalance cash-out procedures set forth in section 11.3 and 11.4 of the General Terms & Conditions of Stingray's FERC Gas Tariff to enable the cash-out of imbalances at the average monthly index price for the month of September 2006. Stingray requests a Commission decision on its petition by October 10, 2006.

Stingray states that copies were mailed to its customers and to interested state commissions.

Any person desiring to intervene or to protest this filing must file in accordance with Rules 211 and 214 of the Commission's Rules of Practice and Procedure (18 CFR 385.211 and 385.214). Protests will be considered by the Commission in determining the appropriate action to be taken, but will not serve to make protestants parties to the proceeding. Any person wishing to become a party must file a notice of intervention or motion to intervene, as appropriate. Such notices, motions, or protests must be filed in accordance with the provisions of § 154.210 of the Commission's regulations (18 CFR 154.210). Anyone filing an intervention or protest must serve a copy of that document on the Applicant. Anyone filing an intervention or protest on or before the intervention or protest date need not serve motions to intervene or protests on persons other than the Applicant.

The Commission encourages electronic submission of protests and interventions in lieu of paper using the "eFiling" link at http://www.ferc.gov. Persons unable to file electronically should submit an original and 14 copies of the protest or intervention to the Federal Energy Regulatory Commission, 888 First Street, NE., Washington, DC 20426.

This filing is accessible on-line at http://www.ferc.gov, using the "eLibrary" link and is available for review in the Commission's Public Reference Room in Washington, DC.

There is an "eSubscription" link on the Web site that enables subscribers to receive e-mail notification when a document is added to a subscribed docket(s). For assistance with any FERC Online service, please e-mail *FERCOnlineSupport@ferc.gov*, or call (866) 208–3676 (toll free). For TTY, call (202) 502–8659.

Comment, Intervention, and Protest Date: October 4, 2006.

Magalie R. Salas,

Secretary.

[FR Doc. E6–16782 Filed 10–10–06; 8:45 am]

DEPARTMENT OF ENERGY

Federal Energy Regulatory Commission

[Docket No. RP06-619-000]

Transcontinental Gas Pipe Line Corporation; Notice of Proposed Changes in FERC Gas Tariff

October 3, 2006.

Take notice that on September 29, 2006, Transcontinental Gas Pipe Line Corporation (Transco) tendered for filing as part of its FERC Gas Tariff, Third Revised Volume No. 1, Ninth Revised Sheet No. 30, and Second Revised Sheet No. 30A to be effective November 1, 2006.

Any person desiring to intervene or to protest this filing must file in accordance with Rules 211 and 214 of the Commission's Rules of Practice and Procedure (18 CFR 385.211 and 385.214). Protests will be considered by the Commission in determining the appropriate action to be taken, but will not serve to make protestants parties to the proceeding. Any person wishing to become a party must file a notice of intervention or motion to intervene, as appropriate. Such notices, motions, or protests must be filed in accordance with the provisions of section 154.210 of the Commission's regulations (18 CFR 154.210). Anyone filing an intervention or protest must serve a copy of that document on the Applicant. Anyone filing an intervention or protest on or before the intervention or protest date need not serve motions to intervene or protests on persons other than the Applicant.

The Commission encourages electronic submission of protests and interventions in lieu of paper using the "eFiling" link at http://www.ferc.gov. Persons unable to file electronically should submit an original and 14 copies of the protest or intervention to the Federal Energy Regulatory Commission,

888 First Street, NE., Washington, DC 20426.

This filing is accessible on-line at http://www.ferc.gov, using the "eLibrary" link and is available for review in the Commission's Public Reference Room in Washington, DC. There is an "eSubscription" link on the Web site that enables subscribers to receive e-mail notification when a document is added to a subscribed docket(s). For assistance with any FERC Online service, please e-mail FERCOnlineSupport@ferc.gov, or call (866) 208–3676 (toll free). For TTY, call (202) 502–8659.

Magalie R. Salas,

Secretary.

[FR Doc. E6–16776 Filed 10–10–06; 8:45 am] BILLING CODE 6717–01–P

DEPARTMENT OF ENERGY

Federal Energy Regulatory Commission

[Docket No. RP06-621-000]

Transcontinental Gas Pipe Line Corporation; Notice of Proposed Changes in FERC Gas Tariff

October 3, 2006.

Take notice that on September 29, 2006, Transcontinental Gas Pipe Line Corporation (Transco) tendered for filing as part of its FERC Gas Tariff, Third Revised Volume No. 1, Sixth Revised Sheet No. 282, Fourth Revised Sheet No. 293, and Original Sheet No. 293A to become effective November 1, 2006.

Any person desiring to intervene or to protest this filing must file in accordance with Rules 211 and 214 of the Commission's Rules of Practice and Procedure (18 CFR 385.211 and 385,214). Protests will be considered by the Commission in determining the appropriate action to be taken, but will not serve to make protestants parties to the proceeding. Any person wishing to become a party must file a notice of intervention or motion to intervene, as appropriate. Such notices, motions, or protests must be filed in accordance with the provisions of § 154.210 of the Commission's regulations (18 CFR 154.210). Anyone filing an intervention or protest must serve a copy of that document on the Applicant. Anyone filing an intervention or protest on or before the intervention or protest date need not serve motions to intervene or protests on persons other than the Applicant.

The Commission encourages electronic submission of protests and

interventions in lieu of paper using the "eFiling" link at http://www.ferc.gov. Persons unable to file electronically should submit an original and 14 copies of the protest or intervention to the Federal Energy Regulatory Commission, 888 First Street, NE., Washington, DC 20426.

This filing is accessible online at http://www.ferc.gov, using the "eLibrary" link and is available for review in the Commission's Public Reference Room in Washington, DC. There is an "eSubscription" link on the Web site that enables subscribers to receive e-mail notification when a document is added to a subscribed docket(s). For assistance with any FERC Online service, please e-mail FERCOnlineSupport@ferc.gov, or call (866) 208–3676 (toll free). For TTY, call (202) 502–8659.

Magalie R. Salas,

Secretary.

[FR Doc. E6–16778 Filed 10–10–06; 8:45 am]

DEPARTMENT OF ENERGY

Federal Energy Regulatory Commission

[Docket No. RP06-627-000]

Transcontinental Gas Pipe Line Corporation; Notice of Proposed Changes in FERC Gas Tariff

October 4, 2006.

Take notice that on September 29, 2006, Transcontinental Gas Pipe Line Corporation (Transco) tendered for filing as part of its FERC Gas Tariff, Third Revised Volume No. 1, Twenty-Fifth Revised Sheet No. 29, to become effective November 1, 2006.

Transco states that the purpose of the instant filing is to reflect an increase in the fuel retention percentage for Rate Schedules LG-A, LNG and LG-S from 14.57% to 16.04%. The filing is submitted pursuant to Section 38 of the General Terms and Conditions of Transco's FERC Gas Tariff which provides that Transco will file a redetermination of its fuel retention percentage applicable to Rate Schedules LG-A, LNG and LG-S to be effective each November 1. The derivation of the revised fuel retention percentage included therein is based on Transco's actual gas required for operations (GRO) for the period September 2003 through August 2006 plus the balance accumulated in the Deferred GRO Account at August 31, 2006. Appendix A contains work papers supporting the

derivation of the revised fuel retention percentage.

Transco states that copies of the filing are being mailed to affected customers and interested State Commissions.

Any person desiring to intervene or to protest this filing must file in accordance with Rules 211 and 214 of the Commission's Rules of Practice and Procedure (18 CFR 385.211 and 385.214). Protests will be considered by the Commission in determining the appropriate action to be taken, but will not serve to make protestants parties to the proceeding. Any person wishing to become a party must file a notice of intervention or motion to intervene, as appropriate. Such notices, motions, or protests must be filed in accordance with the provisions of § 154.210 of the Commission's regulations (18 CFR 154.210). Anyone filing an intervention or protest must serve a copy of that document on the Applicant. Anyone filing an intervention or protest on or before the intervention or protest date need not serve motions to intervene or protests on persons other than the Applicant.

The Commission encourages electronic submission of protests and interventions in lieu of paper using the "eFiling" link at http://www.ferc.gov. Persons unable to file electronically should submit an original and 14 copies of the protest or intervention to the Federal Energy Regulatory Commission, 888 First Street, NE., Washington, DC 20426.

This filing is accessible online at http://www.ferc.gov, using the "eLibrary" link and is available for review in the Commission's Public Reference Room in Washington, DC. There is an "eSubscription" link on the Web site that enables subscribers to receive e-mail notification when a document is added to a subscribed docket(s). For assistance with any FERC Online service, please e-mail FERCOnlineSupport@ferc.gov, or call (866) 208–3676 (toll free). For TTY, call (202) 502–8659.

Magalie R. Salas,

Secretary.

[FR Doc. E6–16798 Filed 10–10–06; 8:45 am] BILLING CODE 6717–01–P

DEPARTMENT OF ENERGY

Federal Energy Regulatory Commission

[Docket No. RP06-614-000]

Transwestern Pipeline Company, LLC; Notice of Proposed Changes in FERC Gas Tariff

October 3, 2006.

Take notice that on September 29, 2006, Transwestern Pipeline Company, LLC, (Transwestern) tendered for filing as part of its FERC Gas Tariff, Third Revised Volume No. 1, the tariff sheets listed in Appendices A and B, attached to the filing, to become effective November 1, 2006.

Any person desiring to intervene or to protest this filing must file in accordance with Rules 211 and 214 of the Commission's Rules of Practice and Procedure (18 CFR 385.211 and 385.214). Protests will be considered by the Commission in determining the appropriate action to be taken, but will not serve to make protestants parties to the proceeding. Any person wishing to become a party must file a notice of intervention or motion to intervene, as appropriate. Such notices, motions, or protests must be filed in accordance with the provisions of § 154.210 of the Commission's regulations (18 CFR 154.210). Anyone filing an intervention or protest must serve a copy of that document on the Applicant. Anyone filing an intervention or protest on or before the intervention or protest date need not serve motions to intervene or protests on persons other than the Applicant.

The Commission encourages electronic submission of protests and interventions in lieu of paper using the "eFiling" link at http://www.ferc.gov. Persons unable to file electronically should submit an original and 14 copies of the protest or intervention to the Federal Energy Regulatory Commission, 888 First Street, NE., Washington, DC 20426.

This filing is accessible on-line at http://www.ferc.gov, using the "eLibrary" link and is available for review in the Commission's Public Reference Room in Washington, DC. There is an "eSubscription" link on the Web site that enables subscribers to receive e-mail notification when a document is added to a subscribed docket(s). For assistance with any FERC Online service, please e-mail FERCOnlineSupport@ferc.gov, or call

(866) 208–3676 (toll free). For TTY, call (202) 502–8659.

Magalie R. Salas,

Secretary.

[FR Doc. E6–16771 Filed 10–10–06; 8:45 am] BILLING CODE 6717–01–P

DEPARTMENT OF ENERGY

Federal Energy Regulatory Commission

[Docket No. RP06-618-000]

Trunkline Gas Company, LLC; Notice of Proposed Changes in FERC Gas Tariff

October 3, 2006.

Take notice that on September 29, 2006, Trunkline Gas Company, LLC (Trunkline) tendered for filing as part of its FERC Gas Tariff, Third Revised Volume No. 1, the following tariff sheets to become effective November 1, 2006:

Twelfth Revised Sheet No. 10 Twelfth Revised Sheet No. 11 Twelfth Revised Sheet No. 12 Twelfth Revised Sheet No. 13 Twelfth Revised Sheet No. 15 Twelfth Revised Sheet No. 15 Twelfth Revised Sheet No. 16 Twelfth Revised Sheet No. 17

Any person desiring to intervene or to protest this filing must file in accordance with Rules 211 and 214 of the Commission's Rules of Practice and Procedure (18 CFR 385.211 and 385.214). Protests will be considered by the Commission in determining the appropriate action to be taken, but will not serve to make protestants parties to the proceeding. Any person wishing to become a party must file a notice of intervention or motion to intervene, as appropriate. Such notices, motions, or protests must be filed in accordance with the provisions of section 154.210 of the Commission's regulations (18 CFR 154.210). Anyone filing an intervention or protest must serve a copy of that document on the Applicant. Anyone filing an intervention or protest on or before the intervention or protest date need not serve motions to intervene or protests on persons other than the Applicant.

The Commission encourages electronic submission of protests and interventions in lieu of paper using the "eFiling" link at http://www.ferc.gov. Persons unable to file electronically should submit an original and 14 copies of the protest or intervention to the Federal Energy Regulatory Commission, 888 First Street, NE., Washington, DC 20426.

This filing is accessible on-line at http://www.ferc.gov, using the "eLibrary" link and is available for review in the Commission's Public Reference Room in Washington, DC. There is an "eSubscription" link on the Web site that enables subscribers to receive e-mail notification when a document is added to a subscribed docket(s). For assistance with any FERC Online service, please e-mail FERCOnlineSupport@ferc.gov, or call (866) 208–3676 (toll free). For TTY, call (202) 502–8659.

Magalie R. Salas,

Secretary.

[FR Doc. E6–16775 Filed 10–10–06; 8:45 am]

BILLING CODE 6717-01-P

DEPARTMENT OF ENERGY

Federal Energy Regulatory Commission

[Docket No. EG06-70-000]

White Creek Wind I, LLC; Tolling Notice

October 3, 2006.

White Creek Wind I, LLC (White Creek Wind) filed a notice of selfcertification of exempt wholesale generator (EWG) status in this proceeding on August 4, 2006. The Commission has determined that additional information is required to process the notice of self-certification and therefore cannot process the selfcertification within 60 days from the date of filing, i.e., by October 3, 2006. Accordingly, the Commission hereby tolls the initial 60-day review period to allow additional time for submission of the information within 7 days from the date of this notice. White Creek Wind has temporary EWG status pursuant to the Commission's regulations. See 18 CFR 366.7(a) (2006). If the Commission takes no further action within 30 days from the date of this notice, then the self-certification shall be deemed to have been granted.

Magalie R. Salas,

Secretary.

[FR Doc. E6–16762 Filed 10–10–06; 8:45 am] BILLING CODE 6717–01–P

DEPARTMENT OF ENERGY

Federal Energy Regulatory Commission

[Docket No. RP06-622-000]

Williston Basin Interstate Pipeline Company; Notice of Tariff Filing

October 3, 2006.

Take notice that on September 29, 2006, Williston Basin Interstate Pipeline Company (Williston Basin) tendered for filing as part of its FERC Gas Tariff, Second Revised Volume No. 1, the following tariff sheets, to become effective October 29, 2006:

Second Revised Volume No. 1 Sixth Revised Sheet No. 232B First Revised Sheet No. 232B.01

Any person desiring to intervene or to protest this filing must file in accordance with Rules 211 and 214 of the Commission's Rules of Practice and Procedure (18 CFR 385.211 and 385.214). Protests will be considered by the Commission in determining the appropriate action to be taken, but will not serve to make protestants parties to the proceeding. Any person wishing to become a party must file a notice of intervention or motion to intervene, as appropriate. Such notices, motions, or protests must be filed in accordance with the provisions of Section 154.210 of the Commission's regulations (18 CFR 154.210). Anyone filing an intervention or protest must serve a copy of that document on the Applicant. Anyone filing an intervention or protest on or before the intervention or protest date need not serve motions to intervene or protests on persons other than the Applicant.

The Commission encourages electronic submission of protests and interventions in lieu of paper using the "eFiling" link at http://www.ferc.gov. Persons unable to file electronically should submit an original and 14 copies of the protest or intervention to the Federal Energy Regulatory Commission, 888 First Street, NE., Washington, DC 20426.

This filing is accessible on-line at http://www.ferc.gov, using the "eLibrary" link and is available for review in the Commission's Public Reference Room in Washington, DC. There is an "eSubscription" link on the Web site that enables subscribers to receive e-mail notification when a document is added to a subscribed docket(s). For assistance with any FERC Online service, please e-mail FERCOnlineSupport@ferc.gov, or call

(866) 208–3676 (toll free). For TTY, call (202) 502–8659.

Magalie R. Salas,

Secretary.

[FR Doc. E6–16779 Filed 10–10–06; 8:45 am]

DEPARTMENT OF ENERGY

Federal Energy Regulatory Commission

[Docket No. RP06-628-000]

Williston Basin Interstate Pipeline Company; Notice of Proposed Changes in FERC Gas Tariff

October 4, 2006.

Take notice that on September 29, 2006, Williston Basin Interstate Pipeline Company (Williston Basin) tendered for filing as part of its FERC Gas Tariff, Second Revised Volume No. 1, Seventh Revised Sheet No. 358I, to become effective September 29, 2006.

Williston Basin states that as of July 31, 2006 it had a zero balance in FERC Account No. 191. As a result, Williston Basin states that it will neither refund nor bill its former sales customers for any amounts under the conditions of Subsection No. 39.3.1 of its Tariff.

Any person desiring to intervene or to protest this filing must file in accordance with Rules 211 and 214 of the Commission's Rules of Practice and Procedure (18 CFR 385.211 and 385.214). Protests will be considered by the Commission in determining the appropriate action to be taken, but will not serve to make protestants parties to the proceeding. Any person wishing to become a party must file a notice of intervention or motion to intervene, as appropriate. Such notices, motions, or protests must be filed in accordance with the provisions of Section 154.210 of the Commission's regulations (18 CFR 154.210). Anyone filing an intervention or protest must serve a copy of that document on the Applicant. Anyone filing an intervention or protest on or before the intervention or protest date need not serve motions to intervene or protests on persons other than the Applicant.

The Commission encourages electronic submission of protests and interventions in lieu of paper using the "eFiling" link at http://www.ferc.gov. Persons unable to file electronically should submit an original and 14 copies of the protest or intervention to the Federal Energy Regulatory Commission, 888 First Street, NE., Washington, DC 20426.

This filing is accessible online at http://www.ferc.gov, using the "eLibrary" link and is available for review in the Commission's Public Reference Room in Washington, DC. There is an "eSubscription" link on the Web site that enables subscribers to receive e-mail notification when a document is added to a subscribed docket(s). For assistance with any FERC Online service, please e-mail FERCOnlineSupport@ferc.gov, or call (866) 208–3676 (toll free). For TTY, call (202) 502–8659.

Magalie R. Salas,

Secretary.

[FR Doc. E6–16799 Filed 10–10–06; 8:45 am] BILLING CODE 6717–01–P

DEPARTMENT OF ENERGY

Federal Energy Regulatory Commission

[Docket No. RP06-634-000]

Young Gas Storage Company, Ltd; Notice of Operational Purchases/Sales Annual Report

October 4, 2006.

Take notice that on September 29, 2006, Young Gas Storage Company, Ltd tendered for filing its annual report of operational purchases and sales in accordance with Section 29.3 of the General Terms and Conditions of its FERC Gas Tariff, Original Volume No. 1.

Any person desiring to intervene or to protest this filing must file in accordance with Rules 211 and 214 of the Commission's Rules of Practice and Procedure (18 CFR 385.211 and 385.214). Protests will be considered by the Commission in determining the appropriate action to be taken, but will not serve to make protestants parties to the proceeding. Any person wishing to become a party must file a notice of intervention or motion to intervene, as appropriate. Such notices, motions, or protests must be filed on or before the date as indicated below. Anyone filing an intervention or protest must serve a copy of that document on the Applicant. Anyone filing an intervention or protest on or before the intervention or protest date need not serve motions to intervene or protests on persons other than the Applicant.

The Commission encourages electronic submission of protests and interventions in lieu of paper using the "eFiling" link at http://www.ferc.gov. Persons unable to file electronically should submit an original and 14 copies of the protest or intervention to the Federal Energy Regulatory Commission,

888 First Street, NE., Washington, DC 20426.

This filing is accessible on-line at http://www.ferc.gov, using the "eLibrary" link and is available for review in the Commission's Public Reference Room in Washington, DC. There is an "eSubscription" link on the Web site that enables subscribers to receive e-mail notification when a document is added to a subscribed docket(s). For assistance with any FERC Online service, please e-mail FERCOnlineSupport@ferc.gov, or call (866) 208–3676 (toll free). For TTY, call (202) 502–8659.

Intervention and Protest Date: 5 p.m. Eastern Time October 11, 2006.

Magalie R. Salas,

Secretary.

[FR Doc. E6–16788 Filed 10–10–06; 8:45 am] $\tt BILLING\ CODE\ 6717–01-P$

DEPARTMENT OF ENERGY

Federal Energy Regulatory Commission

Combined Notice of Filings # 1

October 4, 2006.

Take notice that the Commission received the following electric corporate filings:

Docket Numbers: EC06–46–001.
Applicants: Aquila, Inc.; Mid-Kansas
Electric Company, LLC.

Description: Aquila, Inc. and Mid-Kansas Electric Co., LLC submit a supplement to their 12/19/05 application to reflect the final negotiated terms.

Filed Date: 8/31/2006. Accession Number: 20060906–0145. Comment Date: 5 p.m. Eastern Time

Comment Date: 5 p.m. Eastern Time on Monday, October 16, 2006.

Docket Numbers: EC06–167–000.

Applicants: MACH Gen, LLC; Millennium Power Partners, L.P.; New Athens Generating Company, LLC; New Covert Generating Company, LLC; New Harquahala Generating Company, LLC; Lehman Commercial Paper Inc.; Merrill Lynch Credit Products, LLC.

Description: MACH Gen LLC et al submit an application for order requesting that FERC authorize an indirect disposition of jurisdictional facilities resulting from proposed transfers of ownership and/or control of equity interests in MACH Gen.

Filed Date: 9/28/2006. Accession Number: 20061003–0134. Comment Date: 5 p.m. Eastern Time on Thursday, October 19, 2006.

Take notice that the Commission received the following electric rate filings:

Docket Numbers: ER05–644–000.
Applicants: PSEG Fossil LLC.
Description: PSEG Energy Resources &
Trade LLC submits an informational
filing of a list of planned Project
Investments and projected Project
Investment costs for calendar year 2007
for Sewaren 1–4 and Hudson 1.
Filed Date: 9/29/2006.

Accession Number: 20060929–5066. Comment Date: 5 p.m. Eastern Time on Friday, October 20, 2006.

Docket Numbers: ER05–1482–002.
Applicants: Electric Energy Inc.
Description: Electric Energy Inc.
submits a notice of a potential change in status pursuant to the Commission's Order 652.

Filed Date: 9/29/2006.

Accession Number: 20061003–0160. Comment Date: 5 p.m. Eastern Time on Friday, October 20, 2006.

Docket Numbers: ER06–199–003; ER06–499–004.

Applicants: PJM Interconnection, LLC.

Description: PJM Interconnection, LLC submits revisions to its OATT, Substitute Original Sheet 224.04b to correct its 8/7/06 filing.

Filed Date: 9/25/2006.

Accession Number: 20061003–0125. Comment Date: 5 p.m. Eastern Time on Monday, October 16, 2006.

Docket Numbers: ER06–787–003.
Applicants: Idaho Power Company.
Description: Idaho Power Company submits a compliance filing providing revisions to its OATT, pursuant to the Commission's Order issued on 5/31/06.
Filed Date: 9/28/2006.

Accession Number: 20061002–0195. Comment Date: 5 p.m. Eastern Time on Thursday, October 19, 2006.

Docket Numbers: ER06–1134–001. Applicants: Central Vermont Public Service Corp.

Description: Central Vermont Public Service Corp. submits a revised cancellation, reflecting the actual 9/1/06 closing date of the purchase and sale contemplated in the Purchase and Sale Agreement w/Rochester Electric Light & Power Co.

Filed Date: 9/28/2006. Accession Number: 20061003–0096. Comment Date: 5 p.m. Eastern Time on Thursday, October 19, 2006.

Docket Numbers: ER06–1266–001. Applicants: Niagara Mohawk Power Corporation.

Description: Niagara Mohawk submits its amended Exit Agreement and notifies the Commission of its effective date, pursuant to Order No. 614.

Filed Date: 9/29/2006.

Accession Number: 20061003–0169. Comment Date: 5 p.m. Eastern Time on Friday, October 20, 2006. Docket Numbers: ER06–1279–001. Applicants: Louisville Gas & Electric Company.

Description: E.ON. U.S., LLC on behalf of Louisville Gas and Electric Co. and Kentucky Utilities Co. submits an agreement with TVA Distributor Group and Kentucky Municipals.

Filed Date: 9/27/2006.

Accession Number: 20061003–0128. Comment Date: 5 p.m. Eastern Time on Wednesday, October 18, 2006.

Docket Numbers: ER06–1430–001. Applicants: SP Newsprint Co. Description: SP Newsprint Co. submits its revised FERC Electric Tariff, Original Volume No. 1, Original Sheet

No. 1 and Rate Schedule.

Filed Date: 9/29/2006. Accession Number: 20061003–0170. Comment Date: 5 p.m. Eastern Time

on Tuesday, October 10, 2006.

Docket Numbers: ER06–1539–000. Applicants: PSEG Energy Resources & Trade LLC.

Description: PSEG Energy Resources & Trade LLC submits a Notice of Cancellation of its FERC Rate Schedule FERC 3, effective 11/1/06.

Filed Date: 9/28/2006.

Accession Number: 20060929–0205. Comment Date: 5 p.m. Eastern Time on Thursday, October 19, 2006.

Docket Numbers: ER06–1545–000. Applicants: North American Electric Reliability Council.

Description: North American Electric Reliability Council submits revisions to the Transmission Loading Relief Procedure use in the Eastern Interconnection.

Filed Date: 9/29/2006.

Accession Number: 20061003–0098. Comment Date: 5 p.m. Eastern Time on Friday, October 20, 2006.

Docket Numbers: ER06–1546–000. Applicants: Florida Power Corporation.

Description: Florida Power Corporation dba Progress Energy Florida, Inc submits amendments to its cost-based wholesale power sales tariff CR-1.

Filed Date: 9/29/2006.

Accession Number: 20061003–0126. Comment Date: 5 p.m. Eastern Time on Friday, October 20, 2006.

Docket Numbers: ER06–1548–000. Applicants: Chehalis Power Generating, L.P.

Description: Chehalis Power
Generating, LP submits a compliance
filing pursuant to Settlement
Agreement, revised Reactive Supply and
Voltage Control from Generation
Sources Service Rate Schedule No. 2.
Filed Date: 9/29/2006.

Accession Number: 20061003-0152.

Comment Date: 5 p.m. Eastern Time on Friday, October 20, 2006.

Docket Numbers: ER06–1550–000. Applicants: PJM Interconnection,

Description: PJM Interconnection, LLC submits revisions to the Chart in Schedule 2 of the PJM OATT to incorporate the updated revenue requirements of Virginia Electric and Power Co etc.

Filed Date: 9/29/2006.

Accession Number: 20061003–0174. Comment Date: 5 p.m. Eastern Time on Friday, October 20, 2006.

Docket Numbers: ER06–1551–000.
Applicants: Avista Corporation.
Description: Avista Corporation
submits its Second Revised Sheet 8 et al
to First Revised FERC Rate Schedule
184, Exchange Agreement w/ the
Washington Water Power Co and
Bonneville Power Administration.
Filed Date: 9/29/2006.

Accession Number: 20061003–0173. Comment Date: 5 p.m. Eastern Time on Friday, October 20, 2006.

Docket Numbers: ER06–1552–000.
Applicants: Midwest Independent
Transmission System Operator, Inc.
Description: Midwest Independent
Transmission System Operator, Inc.

Transmission System Operator,, Inc. submits proposed revisions to its Midwest ISO's Open Access Transmission and Energy Markets Tariff, FERC Electric Tariff, Volume No.

Filed Date: 9/29/2006.

Accession Number: 20061003–0172. Comment Date: 5 p.m. Eastern Time on Friday, October 20, 2006.

Docket Numbers: ER06–1553–000. Applicants: Duke Energy Shared Services, Inc.

Description: The Cincinnati Gas & Electric Co and Ohio Valley Electric Corp submits an amendment to the Third Supplemental Agreement to Facility Agreement.

Filed Date: 9/29/2006.

Accession Number: 20061003–0171. Comment Date: 5 p.m. Eastern Time on Friday, October 20, 2006.

Docket Numbers: ER06–1554–000.
Applicants: Midwest Independent
Transmission System Operator, Inc.
Description: Midwest Independent
Transmission System Operator, Inc.
submits proposed revisions to the
Midwest ISO OAT&EMT, FERC Electric
Tariff Third Revised Volume 1.

Filed Date: 9/29/2006. Accession Number: 20061003–0133. Comment Date: 5 p.m. Eastern Time on Friday, October 20, 2006.

Docket Numbers: ER06–1555–000. Applicants: Entergy Services Inc; Entergy Operating Companies. Description: Entergy Operating Companies submits an executed Network Integration Transmission Service Agreement & a notice of cancellation of Entergy Louisiana LLC's Rate Schedule 11.

Filed Date: 9/29/2006. Accession Number: 20061003–0132. Comment Date: 5 p.m. Eastern Time on Friday, October 20, 2006.

Docket Numbers: ER06–1556–000. Applicants: Midwest Independent Transmission System Operator, Inc. Description: Midwest Independent

Transmission System Operator, Inc. submits proposed revisions to the Midwest ISO OAT&EMT, FERC Electric Third Revised Volume 1.

Filed Date: 9/29/2006.

Accession Number: 20061003–0131. Comment Date: 5 p.m. Eastern Time on Friday, October 20, 2006.

Docket Numbers: ER06–1557–000. Applicants: New England Power Pool Participants Committee.

Description: The New England Power Pool Participants Committee submits counterpart signature pages of their Agreement dated 9/1/71 to expand NEPOOL membership to include BG Dighton Power, LLC et al.

Filed Date: 9/29/2006. Accession Number: 20061003–0130. Comment Date: 5 p.m. Eastern Time on Friday, October 20, 2006.

Docket Numbers: ER06–1558–000. Applicants: American Electric Power Service Corp.

Description: Ohio Power Company and Columbus Southern Power Company submit their Sixth Revised Interconnection and Local Delivery Service Agreement with Buckeye Power, Inc.

Filed Date: 9/28/2006. Accession Number: 20061003–0129. Comment Date: 5 p.m. Eastern Time on Thursday, October 19, 2006.

Docket Numbers: ER06–1559–000. Applicants: Tampa Electric Company. Description: Tampa Electric Co submits its First Revised Sheet Nos. 1 and 27 to First Revised Rate Schedule FERC 62.

Filed Date: 9/29/2006. Accession Number: 20061003–0127. Comment Date: 5 p.m. Eastern Time on Friday, October 20, 2006.

Docket Numbers: ER06–1561–000. Applicants: Central Maine Power Company.

Description: Central Maine Power Co submits an Executed Large Generator Interconnection Agreement with CMP Androscoggin LLC.

Filed Date: 9/29/2006.

Accession Number: 20061003–0153. Comment Date: 5 p.m. Eastern Time on Friday, October 20, 2006. Docket Numbers: ER06-1562-000. Applicants: American Electric Power

Service Corporation.

Description: Indiana Michigan Power Co submits a third revision to its Interconnection and Local Delivery Service Agreement 1262 between Wabash Valley Power Association and

Filed Date: 9/29/2006.

Accession Number: 20061003-0154. Comment Date: 5 p.m. Eastern Time on Friday, October 20, 2006.

Docket Numbers: ER06-1563-000. Applicants: American Electric Power Company.

Description: American Electric Power submits a revision to its Repair and Maintenance Agreement between Indiana Michigan Power Co and Wabash Valley Power Association.

Filed Date: 9/29/2006. Accession Number: 20061003-0155. Comment Date: 5 p.m. Eastern Time on Friday, October 20, 2006.

Any person desiring to intervene or to protest in any of the above proceedings must file in accordance with Rules 211 and 214 of the Commission's Rules of Practice and Procedure (18 CFR 385.211 and 385.214) on or before 5 p.m. Eastern time on the specified comment date. It is not necessary to separately intervene again in a subdocket related to a compliance filing if you have previously intervened in the same docket. Protests will be considered by the Commission in determining the appropriate action to be taken, but will not serve to make protestants parties to the proceeding. Anyone filing a motion to intervene or protest must serve a copy of that document on the Applicant. In reference to filings initiating a new proceeding, interventions or protests submitted on or before the comment deadline need not be served on persons other than the Applicant.

The Commission encourages electronic submission of protests and interventions in lieu of paper, using the FERC Online links at http:// www.ferc.gov. To facilitate electronic service, persons with Internet access who will eFile a document and/or be listed as a contact for an intervenor must create and validate an eRegistration account using the eRegistration link. Select the eFiling link to log on and submit the intervention or protests.

Persons unable to file electronically should submit an original and 14 copies of the intervention or protest to the Federal Energy Regulatory Commission, 888 First St. NE., Washington, DC 20426.

The filings in the above proceedings are accessible in the Commission's

eLibrary system by clicking on the appropriate link in the above list. They are also available for review in the Commission's Public Reference Room in Washington, DC. There is an eSubscription link on the Web site that enables subscribers to receive e-mail notification when a document is added to a subscribed dockets(s). For assistance with any FERC Online service, please e-mail FERCOnlineSupport@ferc.gov or call (866) 208-3676 (toll free). For TTY, call (202) 502-8659.

Magalie R. Salas,

Secretary.

[FR Doc. E6-16803 Filed 10-10-06; 8:45 am] BILLING CODE 6717-01-P

DEPARTMENT OF ENERGY

Federal Energy Regulatory Commission

[Docket No. AD07-1-000]

Billing Procedures for Annual Charges for the Costs for Administering Part I of the Federal Power Act; Notice **Reporting Increase in Municipal Costs** for FY 2005 Actual and FY 2006 **Estimated Hydropower Administrative Annual Charges**

October 3, 2006.

1. Municipal licensees have expressed concerns regarding the substantial increases they have observed in their Statement of Annual Charges issued on August 4, 2006. Specifically, licensees are concerned with the amounts assessed for the current year's Administrative Charge and the prior year's Adjustment of FERC Administrative Charge. The increase in these charges is primarily attributable to a substantial increase in the proportion of direct labor hours staff charged to municipal projects in FY 2005. The purpose of this notice is to provide licensees with information regarding the Commission's process for assessing these charges and how this increase in direct labor applicable to municipal projects resulted in the increases observed on the August 4, 2004 billing statements.

Components of Administrative Annual Charges

2. The Federal Power Act requires the Federal Energy Regulatory Commission to assess annual charges against licensees to reimburse the United States for the costs of administration of the Commission's hydropower regulatory

program.1 The Omnibus Budget Reconciliation Act of 1986 provided FERC with the authority to "assess and collect fees and annual charges in any fiscal year in amounts equal to all of the costs incurred by the Commission in that fiscal year." 2 Each fiscal year the Commission estimates the total costs of its operations for the current year. These estimates are the basis for the current year's Administrative Charge which is reflected on the annual billing statements as such. In addition, the Commission determines the actual operating costs for the prior fiscal year, and the prior year's Administrative Charge is adjusted either upward or downward for the difference between the prior year's actual costs and the prior year's estimates. These adjustments to the prior year's costs are then reflected as the Adjustment to FERC Administrative Charge on the annual billing statements.

Allocation Methodology for **Hydropower Projects**

3. The total costs for the hydropower regulatory program consist of both direct and indirect costs. Once the Commission calculates estimated and actual program costs, it allocates these costs based on direct time charged by Commission staff to designated time and labor codes for municipal and nonmunicipal projects.³ Annually the Commission allocates current year estimated costs and prior year actual costs based on the direct labor proportions of staff time recorded against municipal and non-municipal projects in the prior fiscal year. Applying this methodology allows the Commission to utilize credible historical information for the allocation of current year estimated costs and provides the relevant data needed to appropriately affect the prior year downward or upward adjustment when allocating the prior year's actual costs.

4. With regard to the August 4, 2006 statements, the Commission allocated the cost bases for the current year's Administrative Charge and the prior year's Adjustment to FERC

¹ 16 U.S.C 794-823b.

² Pub. L. 99-509 § 3401, 100 Stat. 1874, 1890-91 (1986) (codified at 42 U.S.C. 7178).

³ The Commission has implemented within its time and attendance system designated codes which segregate staff hours spent on municipal projects from staff hours spent on non-municipal projects. In calculating direct labor proportions, the Commission aggregates the hours recorded against municipal and non-municipal time codes. The number of hours charged to municipal codes is divided by this aggregate total to derive the municipal proportion used to allocate hydropower program costs. The number of hours charged to non-municipal projects is treated similarly to derive the non-municipal proportion.

Administrative Charge using FY 2005 direct labor proportions. In FY 2005, Commission staff spent 25% of the total hours charged to licensing of hydropower projects on municipal projects. Conversely, 75% of the total hours charged to project licensing were attributable to work on non-municipal projects.

Impact of FY 2005 Direct Labor Allocation

5. The significant increase in municipal project costs for the FY 2006 Administrative Charge and the FY 2005 Adjustment to FERC Administrative Charge was the result of more direct time charged to hydropower municipal time and labor codes in FY 2005 then in FY 2004. Since the Commission used the FY 2005 municipal allocation of 25% to allocate its FY 2006 Administrative Annual Charges, licensees will likely notice an increase to their current year Administrative Charge when compared to previous years. Additionally, since the Commission used the FY 2004 municipal allocation of 11% to allocate its FY 2005 Administrative Charge, the FY 2005 Adjustment to FERC Administrative Charge reflects both a significant adjustment resulting from a 14% increase in the proportion of direct labor allocated and a minor upward adjustment related to the difference in actual and estimated costs previously assessed in FY 2005.

Review of Hydropower Program Costs

6. After calculating the annual charges, the Commission reviewed the total FY 2005 and FY 2006 hydropower costs and the applicable time and labor categories for the hydropower program which clearly differentiates between municipal and non-municipal activities. Overall, total costs for the hydropower program were found to have only small increases between the fiscal years. There were no new programs added in the hydropower area in FY 2005 or FY 2006 that would have contributed to this increase, thus the small increase in total hydropower program costs. However, since there was more direct time charged to municipal time and labor codes in FY 2005 than in FY 2004, municipal licensees received a larger proportion of the total hydropower program costs.

7. The Commission's hydropower program workload depends on how many hydropower applications or inspections are pending before the Commission in any given year. The Commission can not predict with exact certainty which licensees will file each year. In addition, the complexity of the

projects under review and the length of time it takes to process a hydropower application could impact the workload proportions. hydropower program workload is cyclical, so in some years there may be more municipal projects pending versus non-municipal projects. While this increase does represent a large swing between municipal and non-municipal direct-labor hours, our review did show a history of cyclical fluctuations in this split.

8. For questions concerning this notice or any other annual charges issues, please direct inquiries via e-mail to annualcharges@ferc.gov or call Troy Cole at (202) 502-6161.

Magalie R. Salas,

Secretary.

[FR Doc. E6-16785 Filed 10-10-06; 8:45 am] BILLING CODE 6717-01-P

DEPARTMENT OF ENERGY

Federal Energy Regulatory Commission

[Docket No. CP06-442-000]

UGI LNG, Inc.; Notice of Intent To **Prepare an Environmental Assessment** for the Proposed Temple LNG Plant and Request for Comments on **Environmental Issues**

October 4, 2006.

The staff of the Federal Energy Regulatory Commission (FERC or Commission) will prepare an environmental assessment (EA) that will discuss the environmental impacts of the operation of facilities for the Temple LNG Plant involving operation of facilities by UGI LNG, Inc (UGI LNG) in Berks County, Pennsylvania. This EA will be used by the Commission in its decision-making process to determine whether the project is in the public convenience and necessity.

A fact sheet prepared by the FERC entitled "An Interstate Natural Gas Facility On My Land? What Do I Need To Know?" was attached to the project notice UGI LNG provided to landowners. This fact sheet addresses a number of typically asked questions, including how to participate in the Commission's proceedings. It is available for viewing on the FERC Internet Web site (http://www.ferc.gov).

Summary of the Proposed Project

UGI LNG seeks authorization to acquire and operate in interstate commerce an existing liquefied natural gas (LNG) peak-shaving facility in Berks County, Pennsylvania, and certain appurtenant pipeline facilities interconnecting with the interstate facilities of Texas Eastern Transmission L.P. The Temple LNG Plant is presently owned by UGI Energy Services, Inc. (UGIES). The existing Temple LNG Plant consists of:

- 250,000 Mcf (73,000 Bbl) storage tank,
- A vaporization system designed to deliver up to 50,000 Dth/d and a liquefier designed to deliver 4,000 Dth/ d, and
- Approximately 5,000 feet of 8-inchdiameter pipeline.

No additional land is required since UGI LNG does not propose any new facilities or any modifications to existing facilities. The general location of the project facilities is shown in Appendix 1.2

Land Requirements for Construction

The existing Temple LNG Plant consists of about 71.59 acres of land. No new facilities would be constructed as part of UGI LNG's application.

The EA Process

The National Environmental Policy Act (NEPA) requires the Commission to take into account the environmental impacts that could result from an action whenever it considers the issuance of a Certificate of Public Convenience and Necessity. NEPA also requires us to discover and address concerns the public may have about proposals. This process is referred to as "scoping". The main goal of the scoping process is to focus the analysis in the EA on the important environmental issues. By this Notice of Intent, the Commission staff requests public comments on the scope of the issues to address in the EA. All comments received are considered during the preparation of the EA. State and local government representatives are encouraged to notify their constituents of this proposed action and encourage them to comment on their areas of concern.

Because the Temple LNG Plant is an existing facility and no new additions or modifications are proposed, the EA will focus on the operation of the proposed project, the cryogenic design aspects of the plant, and public safety.

¹ UGI LNG's application was filed with the Commission under section 7 of the Natural Gas Act and Part 157 of the Commission's regulations.

² The appendices referenced in this notice are not being printed in the Federal Register. Copies of all appendices, other than Appendix 1 (maps), are available on the Commission's Web site at the "eLibrary" link or from the Commission's Public Reference Room, 888 First Street, NE., Washington, DC 20426, or call (202) 502-8371. For instructions on connecting to eLibrary refer to the last page of this notice. Copies of the appendices were sent to all those receiving this notice in the mail.

In the EA we ³ will discuss impacts that could occur as a result of the operation of the project under these general headings:

- Geology and soils.
- Land use.
- Air quality and noise.
- Public safety.

We will not discuss impacts to the following resource areas since they are not present in the project area, or would not be affected by the operation of the facilities

- Water resources.
- Fisheries.
- · Wetlands.
- Wildlife.

Our independent analysis of the issues will be in the EA. Depending on the comments received during the scoping process, the EA may be published and mailed to Federal, State, and local agencies, public interest groups, interested individuals, affected landowners, newspapers, libraries, and the Commission's official service list for this proceeding. A comment period will be allotted for review if the EA is published. We will consider all comments on the EA before we make our recommendations to the Commission.

To ensure your comments are considered, please carefully follow the instructions in the public participation section below.

Currently Identified Environmental Issues

We have already identified several issues that we think deserve attention based on a preliminary review of the proposed facilities and the environmental information provided by UGI LNG.

- Air and Noise.
- Safety.
- Geology.

Public Participation

You can make a difference by providing us with your specific comments or concerns about the project. By becoming a commentor, your concerns will be addressed in the EA and considered by the Commission. You should focus on the potential environmental effects of the proposal, alternatives to the proposal, and measures to avoid or lessen environmental impact. The more specific your comments, the more useful they will be. Please carefully follow these instructions to ensure that your comments are received in time and properly recorded:

- Send an original and two copies of your letter to: Magalie R. Salas, Secretary, Federal Energy Regulatory Commission, 888 First St., NE., Room 1A, Washington, DC 20426.
- Label one copy of the comments for the attention of Gas Branch 3.
- Reference Docket No. CP06–442–
- Mail your comments so that they will be received in Washington, DC on or before November 6, 2006.

Please note that we are continuing to experience delays in mail deliveries from the U.S. Postal Service. As a result, we will include all comments that we receive within a reasonable time frame in our environmental analysis of this project. However, the Commission strongly encourages electronic filing of any comments or interventions or protests to this proceeding. See 18 CFR 385.2001(a)(1)(iii) and the instructions on the Commission's Web site at http://www.ferc.gov under the "e-Filing" link and the link to the User's Guide. Before you can file comments you will need to create a free account which can be created online.

If you do not want to send comments at this time but still want to remain on our mailing list, please return the Information Request (Appendix 3). If you do not return the Information Request, you will be taken off the mailing list.

Becoming an Intervenor

In addition to involvement in the EA scoping process, you may want to become an official party to the proceeding, or "intervenor". To become an intervenor you must file a motion to intervene according to Rule 214 of the Commission's Rules of Practice and Procedure (18 CFR 385.214). Intervenors have the right to seek rehearing of the Commission's decision. Motions to Intervene should be electronically submitted using the Commission's eFiling system at http://www.ferc.gov. Persons without Internet access should send an original and 14 copies of their motion to the Secretary of the Commission at the address indicated previously. Persons filing Motions to Intervene on or before the comment deadline indicated above must send a copy of the motion to the Applicant. All filings, including late interventions, submitted after the comment deadline must be served on the Applicant and all other intervenors identified on the Commission's service list for this proceeding. Persons on the service list with e-mail addresses may be served electronically; others must be served a hard copy of the filing.

Affected landowners and parties with environmental concerns may be granted intervenor status upon showing good cause by stating that they have a clear and direct interest in this proceeding which would not be adequately represented by any other parties. You do not need intervenor status to have your environmental comments considered.

Environmental Mailing List

An effort is being made to send this notice to all individuals, organizations, and government entities interested in and/or potentially affected by the project. This includes all landowners who are right-of-way grantors or who own homes within distances defined in the Commission's regulations of certain aboveground facilities.

Additional Information

Additional information about the project is available from the Commission's Office of External Affairs. at 1-866-208-FERC or on the FERC Internet Web site (http://www.ferc.gov) using the eLibrary link. Click on the eLibrary link, click on "General Search" and enter the docket number excluding the last three digits in the Docket Number field. Be sure you have selected an appropriate date range. For assistance, please contact FERC Online Support at FercOnlineSupport@ferc.gov or toll free at 1-866-208-3676, or for TTY, contact (202) 502-8659. The eLibrary link also provides access to the texts of formal documents issued by the Commission, such as orders, notices, and rulemakings.

In addition, the Commission now offers a free service called eSubscription which allows you to keep track of all formal issuances and submittals in specific dockets. This can reduce the amount of time you spend researching proceedings by automatically providing you with notification of these filings, document summaries and direct links to the documents. Go to https://www.ferc.gov/esubscribenow.htm.

Finally, public meetings or site visits will be posted on the Commission's calendar located at http://www.ferc.gov/EventCalendar/EventsList.aspx along with other related information.

Magalie R. Salas,

Secretary.

[FR Doc. E6–16789 Filed 10–10–06; 8:45 am]

³ "We", "us", and "our" refer to the environmental staff of the Office of Energy Projects (OEP)

DEPARTMENT OF ENERGY

Federal Energy Regulatory Commission

Notice of Application for Transfer of License and Soliciting Comments, Motions To Intervene, and Protests

October 3, 2006.

Take notice that the following hydroelectric application has been filed with the Commission and is available for public inspection:

a. Application Type: Transfer of License.

b. Project No: 11685-007.

c. Date Filed: May 5, 2006.

- d. Applicants: Stockport Mill Country Inn, Inc. (Transferor) and Stockport Mill Inn, LLC (Transferee).
- e. Name and Location of Project: The Stockport Project is located at the Muskingum Lock and Dam No. 6 on the Muskingum River, in Morgan County, Ohio.
- f. Filed Pursuant to: Federal Power Act, 16 U.S.C. 791(a)-825(r).
- g. Applicant Contact: For Transferee: Dottie J. Singer, Stockport Mill Inn, LLC, 1995 Broadway Avenue, P.O. Box 478, Stockport, OH 45787.
- h. FERC Contact: Etta L. Foster (202) 502-8769.
- i. Deadline for filing comments, protests, and motions to intervene: October 27, 2006.

All documents (original and eight copies) should be filed with Magalie R. Salas, Secretary, Federal Energy Regulatory Commission, 888 First Street, NE., Washington, DC 20426. Comments, protests, and interventions may be filed electronically via the Internet in lieu of paper, see 18 CFR 385.2001 (a) (1) (iii) and the instructions on the Commission's Web site under the "e-Filing" link. The Commission strongly encourages electronic filings. Please include the project number (P-11685–007) on any comments, protests, or motions filed. The Commission's Rules of Practice and Procedure require all intervenors filing a document with the Commission to serve a copy of that document on each person in the official service list for the project. Further, if an intervenor files comments or documents with the Commission relating to the merits of an issue that may affect the responsibilities of a particular resource agency, they must also serve a copy of the documents on that resource agency.

j. Description of Application: Applicants request approval, under Section 8 of the Federal Power Act, of a transfer of license for the Stockport Project No. 11685 from the Stockport Mill Country Inn, Inc. to the Stockport Mill Inn, LLC.

k. This filing is available for review at the Commission in the Public Reference Room or may be viewed on the Commission's Web site at http:// www.ferc.gov using the "eLibrary" link. Enter the project number excluding the last three digits (P-11685) in the docket number field to access the document. For online assistance, contact FERCOnlineSupport@ferc.gov or call toll-free (866) 208-3676, for TTY, call (202) 502-8659. A copy is also available for inspection and reproduction at the addresses in item g.

l. Individuals desiring to be included on the Commission's mailing list should so indicate by writing to the Secretary of the Commission.

m. Comments, Protests, or Motions to Intervene: Anyone may submit comments, a protest, or a motion to intervene in accordance with the requirements of Rules of Practice and Procedure, 18 CFR 385.210, 385.211, 385.214. In determining the appropriate action to take, the Commission will consider all protests or other comments filed, but only those who file a motion to intervene in accordance with the Commission's Rules may become a party to the proceeding. Any comments, protests, or motions to intervene must be received on or before the specified comment date for the particular application.

n. Filing and Service of Responsive Documents: Any filings must bear in all capital letters the title "COMMENTS", "PROTESTS", OR "MOTION TO INTERVENE", as applicable, and the Project Number of the particular application to which the filing refers. Any of the above-named documents must be filed by providing the original and the number of copies provided by the Commission's regulations to: The Secretary, Federal Energy Regulatory Commission, 888 First Street, NE., Washington, DC 20426. A copy of any motion to intervene must also be served upon each representative of the Applicant specified in the particular application.

o. Agency Comments: Federal, state, and local agencies are invited to file comments on the described application. A copy of the application may be obtained by agencies directly from the Applicant. If an agency does not file comments within the time specified for filling comments, it will be assumed to have no comments. One copy of an agency's comments must also be sent to the Applicant's representatives.

Magalie R. Salas,

Secretary.

[FR Doc. E6-16763 Filed 10-10-06; 8:45 am] BILLING CODE 6717-01-P

DEPARTMENT OF ENERGY

Federal Energy Regulatory Commission

Notice of Application Accepted for Filing and Soliciting Motions To Intervene, Protests, and Comments

October 4, 2006.

Take notice that the following hydroelectric application has been filed with the Commission and is available for public inspection:

a. Type of Application: Preliminary Permit.

- b. Project No.: 12694-000.
- c. Date filed: June 15, 2006.
- d. Applicant: Alaska Tidal Energy Company.
- e. Name of Project: Kachemak Bay Tidal Energy Hydroelectric Project.
- f. Location: The project would be located in Kachemak Bay, between Anchor Point and Point Pogibshi, in a section of the southern part of Cook Inlet, in Kenai Peninsula Borough, Alaska.
- g. Filed Pursuant to: Federal Power Act, 16 U.S.C. 791(a)-825(r).
- h. Applicant Contacts: Joseph A. Cannon, Pillsbury Winthrop Shaw Pittman LLP, 2300 N Street, NW., Washington, DC 20037, phone: (202)-663-8000, and Charles B. Cooper, TRC Environmental, Boott Mills South, 116 John St., Lowell, MA 01852, phone: (978)-656-3567.
- i. FERC Contact: Chris Yeakel, (202) 502-8132
- j. Deadline for filing comments, protests, and motions to intervene: 60 days from the issuance date of this notice.

The Commission's Rules of Practice and Procedure require all intervenors filing documents with the Commission to serve a copy of that document on each person in the official service list for the project. Further, if an intervenor files comments or documents with the Commission relating to the merits of an issue that may affect the responsibilities of a particular resource agency, they must also serve a copy of the document on that resource agency.

k. Description of Project: The proposed project would consist of: (1) 50 to 200 Tidal In Stream Energy Conversion (TISEC) devices consisting of, (2) rotating propeller blades, (3) integrated generators with a capacity of 0.5 to 2.0 MW, (4) anchoring systems, (5) mooring lines, and (6) interconnection transmission lines. The project is estimated to have an annual generation of 8.76 gigawatt-hours perunit per-year, which would be sold to a local utility.

- l. Locations of Applications: A copy of served on the applicant(s) named in this the application is available for inspection and reproduction at the Commission in the Public Reference Room, located at 888 First Street NE., Room 2A, Washington DC 20426, or by calling (202) 502-8371. This filing may also be viewed on the Commission's Web site at http://www.ferc.gov using the "eLibrary" link. Enter the docket number excluding the last three digits in the docket number field to access the document. For assistance, call toll-free 1-866-208-3676 or e-mail FERCOnlineSupport@ferc.gov. For TTY, call (202) 502-8659. A copy is also available for inspection and reproduction at the address in item h above.
- m. Individuals desiring to be included on the Commission's mailing list should so indicate by writing to the Secretary of the Commission.
- n. Competing Preliminary Permit: Anyone desiring to file a competing application for preliminary permit for a proposed project must submit the competing application itself, or a notice of intent to file such an application, to the Commission on or before the specified comment date for the particular application (see 18 CFR 4.36). Submission of a timely notice of intent allows an interested person to file the competing preliminary permit application no later than 30 days after the specified comment date for the particular application. A competing preliminary permit application must conform with 18 CFR 4.30(b) and 4.36.
- o. Competing Development Application: Any qualified development applicant desiring to file a competing development application must submit to the Commission, on or before a specified comment date for the particular application, either a competing development application or a notice of intent to file such an application. Submission of a timely notice of intent to file a development application allows an interested person to file the competing application no later than 120 days after the specified comment date for the particular application. A competing license application must conform with 18 CFR 4.30(b) and 4.36.
- p. Notice of Intent: A notice of intent must specify the exact name, business address, and telephone number of the prospective applicant, and must include an unequivocal statement of intent to submit, if such an application may be filed, either a preliminary permit application or a development application (specify which type of application). A notice of intent must be

public notice.

- q. Proposed Scope of Studies under Permit: A preliminary permit, if issued, does not authorize construction. The term of the proposed preliminary permit would be 36 months. The work proposed under the preliminary permit would include economic analysis, preparation of preliminary engineering plans, and a study of environmental impacts. Based on the results of these studies, the Applicant would decide whether to proceed with the preparation of a development application to construct and operate the project.
- r. Comments, Protests, or Motions to Intervene: Anyone may submit comments, a protest, or a motion to intervene in accordance with the requirements of Rules of Practice and Procedure, 18 CFR 385.210, 385.211, 385.214. In determining the appropriate action to take, the Commission will consider all protests or other comments filed, but only those who file a motion to intervene in accordance with the Commission's Rules may become a party to the proceeding. Any comments, protests, or motions to intervene must be received on or before the specified comment date for the particular application.

Comments, protests and interventions may be filed electronically via the Internet in lieu of paper; See 18 CFR 385.2001 (a)(1)(iii) and the instructions on the Commission's Web site under "efiling" link. The Commission strongly encourages electronic filing.

s. Filing and Service of Responsive Documents: Any filings must bear in all capital letters the title "COMMENTS" "RECOMMENDATIONS FOR TERMS AND CONDITIONS", "PROTEST", "COMPETING APPLICATION" OR "MOTION TO INTERVENE", as applicable, and the Project Number of the particular application to which the filing refers. Any of the above-named documents must be filed by providing the original and the number of copies provided by the Commission's regulations to: The Secretary, Federal Energy Regulatory Commission, 888 First Street, NE., Washington, DC 20426. A copy of any motion to intervene must also be served upon each representative of the Applicant specified in the particular application.

t. Agency Comments: Federal, state, and local agencies are invited to file comments on the described application. A copy of the application may be obtained by agencies directly from the Applicant. If an agency does not file comments within the time specified for filing comments, it will be presumed to have no comments. One copy of an

agency's comments must also be sent to the Applicant's representatives.

Magalie R. Salas,

Secretary.

[FR Doc. E6-16790 Filed 10-10-06; 8:45 am] BILLING CODE 6717-01-P

DEPARTMENT OF ENERGY

Federal Energy Regulatory Commission

Notice of Application Accepted for Filing and Soliciting Motions To Intervene, Protests, and Comments

October 4, 2006.

Take notice that the following hydroelectric application has been filed with the Commission and is available for public inspection:

a. Type of Application: Preliminary

Permit.

- b. Project No: 12695-000.
- c. *Date filed:* June 15, 2006.
- d. Applicant: Alaska Tidal Energy Company.
- e. Name of Project: Icy Passage Tidal Energy Hydroelectric Project.
- f. *Location:* The project would be located in Icy Passage and Icy Strait, between Lemesurier Island and Pleasant Island, in Skagway-Hoonah-Angoon Borough, Alaska.
- g. Filed Pursuant to: Federal Power Act, 16 U.S.C. 791(a)—825(r).
- h. Applicant Contacts: Joseph A. Cannon, Pillsbury Winthrop Shaw Pittman LLP, 2300 N Street, NW., Washington, DC 20037, phone: (202)-663-8000, and Charles B. Cooper, TRC Environmental, Boott Mills South, 116 John St., Lowell, MA 01852, phone: (978)-656-3567.
- i. FERC Contact: Chris Yeakel, (202) 502-8132
- j. Deadline for filing comments, protests, and motions to intervene: 60 days from the issuance date of this notice.

The Commission's Rules of Practice and Procedure require all intervenors filing documents with the Commission to serve a copy of that document on each person in the official service list for the project. Further, if an intervenor files comments or documents with the Commission relating to the merits of an issue that may affect the responsibilities of a particular resource agency, they must also serve a copy of the document on that resource agency.

k. Description of Project: The proposed project would consist of: (1) 25 to 50 Tidal In Stream Energy Conversion (TISEC) devices consisting of, (2) rotating propeller blades, (3) integrated generators with a capacity of 0.5 to 2.0 MW, (4) anchoring systems, (5) mooring lines, and (6) interconnection transmission lines. The project is estimated to have an annual generation of 8.76 gigawatt-hours perunit per-year, which would be sold to a local utility.

l. Locations of Applications: A copy of the application is available for inspection and reproduction at the Commission in the Public Reference Room, located at 888 First Street NE., Room 2A, Washington DC 20426, or by calling (202) 502–8371. This filing may also be viewed on the Commission's Web site at http://www.ferc.gov using the "eLibrary" link. Enter the docket number excluding the last three digits in the docket number field to access the document. For assistance, call toll-free 1-866-208-3676 or e-mail FERCOnlineSupport@ferc.gov. For TTY, call (202) 502-8659. A copy is also available for inspection and reproduction at the address in item h

m. Individuals desiring to be included on the Commission's mailing list should so indicate by writing to the Secretary of the Commission.

- n. Competing Preliminary Permit: Anyone desiring to file a competing application for preliminary permit for a proposed project must submit the competing application itself, or a notice of intent to file such an application, to the Commission on or before the specified comment date for the particular application (see 18 CFR 4.36). Submission of a timely notice of intent allows an interested person to file the competing preliminary permit application no later than 30 days after the specified comment date for the particular application. A competing preliminary permit application must conform with 18 CFR 4.30(b) and 4.36.
- o. Competing Development Application: Any qualified development applicant desiring to file a competing development application must submit to the Commission, on or before a specified comment date for the particular application, either a competing development application or a notice of intent to file such an application. Submission of a timely notice of intent to file a development application allows an interested person to file the competing application no later than 120 days after the specified comment date for the particular application. A competing license application must conform with 18 CFR 4.30(b) and 4.36.
- p. *Notice of Intent:* A notice of intent must specify the exact name, business address, and telephone number of the prospective applicant, and must include

an unequivocal statement of intent to submit, if such an application may be filed, either a preliminary permit application or a development application (specify which type of application). A notice of intent must be served on the applicant(s) named in this public notice.

q. Proposed Scope of Studies under Permit: A preliminary permit, if issued, does not authorize construction. The term of the proposed preliminary permit would be 36 months. The work proposed under the preliminary permit would include economic analysis, preparation of preliminary engineering plans, and a study of environmental impacts. Based on the results of these studies, the Applicant would decide whether to proceed with the preparation of a development application to construct and operate the project.

r. Comments, Protests, or Motions to Intervene: Anyone may submit comments, a protest, or a motion to intervene in accordance with the requirements of Rules of Practice and Procedure, 18 CFR 385.210, 385.211, 385.214. In determining the appropriate action to take, the Commission will consider all protests or other comments filed, but only those who file a motion to intervene in accordance with the Commission's Rules may become a party to the proceeding. Any comments, protests, or motions to intervene must be received on or before the specified comment date for the particular application.

Comments, protests and interventions may be filed electronically via the Internet in lieu of paper; See 18 CFR 385.2001 (a)(1)(iii) and the instructions on the Commission's Web site under "efiling" link. The Commission strongly encourages electronic filing.

s. Filing and Service of Responsive Documents: Any filings must bear in all capital letters the title "COMMENTS" "RECOMMENDATIONS FOR TERMS AND CONDITIONS", "PROTEST" "COMPETING APPLICATION" OR "MOTION TO INTERVENE", as applicable, and the Project Number of the particular application to which the filing refers. Any of the above-named documents must be filed by providing the original and the number of copies provided by the Commission's regulations to: The Secretary, Federal Energy Regulatory Commission, 888 First Street, NE., Washington, DC 20426. A copy of any motion to intervene must also be served upon each representative of the Applicant specified in the particular application.

t. Agency Comments: Federal, State, and local agencies are invited to file comments on the described application.

A copy of the application may be obtained by agencies directly from the Applicant. If an agency does not file comments within the time specified for filing comments, it will be presumed to have no comments. One copy of an agency's comments must also be sent to the Applicant's representatives.

Magalie R. Salas,

Secretary.

[FR Doc. E6–16791 Filed 10–10–06; 8:45 am] BILLING CODE 6717–01–P

DEPARTMENT OF ENERGY

Federal Energy Regulatory Commission

Notice of Application Accepted for Filing and Soliciting Motions To Intervene, Protests, and Comments

October 4, 2006.

Take notice that the following hydroelectric application has been filed with the Commission and is available for public inspection:

- a. *Type of Application:* Preliminary Permit.
 - b. Project No: 12696-000.
 - c. *Date filed:* June 15, 2006.
- d. *Applicant:* Alaska Tidal Energy Company.
- e. *Name of Project:* Gastineau Channel Tidal Energy Hydroelectric Project.
- f. Location: The project would be located in Gastineau Channel, between Douglas Island and the Alaskan mainland near the city of Juneau, in Juneau Borough, Alaska.
- g. *Filed Pursuant to:* Federal Power Act, 16 U.S.C. 791(a)—825(r).
- h. Applicant Contacts: Joseph A. Cannon, Pillsbury Winthrop Shaw Pittman LLP, 2300 N Street, NW., Washington, DC 20037, phone: (202)–663–8000, and Charles B. Cooper, TRC Environmental, Boott Mills South, 116 John St., Lowell, MA 01852, phone: (978)–656–3567.
- i. FERC Contact: Chris Yeakel, (202) 502–8132.
- j. Deadline for filing comments, protests, and motions to intervene: 60 days from the issuance date of this notice.

The Commission's Rules of Practice and Procedure require all intervenors filing documents with the Commission to serve a copy of that document on each person in the official service list for the project. Further, if an intervenor files comments or documents with the Commission relating to the merits of an issue that may affect the responsibilities of a particular resource agency, they must also serve a copy of the document on that resource agency.

k. Description of Project: The proposed project would consist of: (1) 50 to 200 Tidal In Stream Energy Conversion (TISEC) devices consisting of, (2) rotating propeller blades, (3) integrated generators with a capacity of 0.5 to 2.0 MW, (4) anchoring systems, (5) mooring lines, and (6) interconnection transmission lines. The project is estimated to have an annual generation of 8.76 gigawatt-hours perunit per-year, which would be sold to a local utility.

l. Locations of Applications: A copy of the application is available for inspection and reproduction at the Commission in the Public Reference Room, located at 888 First Street NE., Room 2A, Washington DC 20426, or by calling (202) 502–8371. This filing may also be viewed on the Commission's Web site at http://www.ferc.gov using the "eLibrary" link. Enter the docket number excluding the last three digits in the docket number field to access the document. For assistance, call toll-free 1-866-208-3676 or e-mail FERCOnlineSupport@ferc.gov. For TTY, call (202) 502-8659. A copy is also available for inspection and reproduction at the address in item h above.

m. Individuals desiring to be included on the Commission's mailing list should so indicate by writing to the Secretary of the Commission.

- n. Competing Preliminary Permit: Anyone desiring to file a competing application for preliminary permit for a proposed project must submit the competing application itself, or a notice of intent to file such an application, to the Commission on or before the specified comment date for the particular application (see 18 CFR 4.36). Submission of a timely notice of intent allows an interested person to file the competing preliminary permit application no later than 30 days after the specified comment date for the particular application. A competing preliminary permit application must conform with 18 CFR 4.30(b) and 4.36.
- o. Competing Development Application: Any qualified development applicant desiring to file a competing development application must submit to the Commission, on or before a specified comment date for the particular application, either a competing development application or a notice of intent to file such an application. Submission of a timely notice of intent to file a development application allows an interested person to file the competing application no later than 120 days after the specified comment date for the particular application. A competing license

application must conform with 18 CFR 4.30(b) and 4.36.

- p. Notice of Intent: A notice of intent must specify the exact name, business address, and telephone number of the prospective applicant, and must include an unequivocal statement of intent to submit, if such an application may be filed, either a preliminary permit application or a development application (specify which type of application). A notice of intent must be served on the applicant(s) named in this public notice.
- q. Proposed Scope of Studies under Permit: A preliminary permit, if issued, does not authorize construction. The term of the proposed preliminary permit would be 36 months. The work proposed under the preliminary permit would include economic analysis, preparation of preliminary engineering plans, and a study of environmental impacts. Based on the results of these studies, the Applicant would decide whether to proceed with the preparation of a development application to construct and operate the project.
- r. Comments, Protests, or Motions to Intervene: Anyone may submit comments, a protest, or a motion to intervene in accordance with the requirements of Rules of Practice and Procedure, 18 CFR 385.210, 385.211, 385.214. In determining the appropriate action to take, the Commission will consider all protests or other comments filed, but only those who file a motion to intervene in accordance with the Commission's Rules may become a party to the proceeding. Any comments, protests, or motions to intervene must be received on or before the specified comment date for the particular application.

Comments, protests and interventions may be filed electronically via the Internet in lieu of paper; See 18 CFR 385.2001 (a)(1)(iii) and the instructions on the Commission's Web site under "efiling" link. The Commission strongly encourages electronic filing.

s. Filing and Service of Responsive Documents: Any filings must bear in all capital letters the title "COMMENTS" "RECOMMENDATIONS FOR TERMS AND CONDITIONS", "PROTEST", "COMPETING APPLICATION" OR "MOTION TO INTERVENE", as applicable, and the Project Number of the particular application to which the filing refers. Any of the above-named documents must be filed by providing the original and the number of copies provided by the Commission's regulations to: The Secretary, Federal Energy Regulatory Commission, 888 First Street, NE., Washington, DC 20426. A copy of any motion to intervene must

also be served upon each representative of the Applicant specified in the particular application.

t. Agency Comments: Federal, state, and local agencies are invited to file comments on the described application. A copy of the application may be obtained by agencies directly from the Applicant. If an agency does not file comments within the time specified for filing comments, it will be presumed to have no comments. One copy of an agency's comments must also be sent to the Applicant's representatives.

Magalie R. Salas,

Secretary.

[FR Doc. E6–16792 Filed 10–10–06; 8:45 am]

DEPARTMENT OF ENERGY

Federal Energy Regulatory Commission

Notice of Application Accepted for Filing and Soliciting Motions to Intervene, Protests, and Comments

October 4, 2006.

Take notice that the following hydroelectric application has been filed with the Commission and is available for public inspection:

- a. Type of Application: Preliminary Permit.
 - b. Project No.: 12697-000.
 - c. Date filed: June 15, 2006.
- d. *Applicant:* Alaska Tidal Energy Company.
- e. *Name of Project:* Wrangell Narrows Tidal Energy Hydroelectric Project
- f. Location: The project would be located in Wrangell Narrows, between Mitkof Island and the Lindenberg Peninsula and Woewodski Island, in Wrangell-Petersburg Borough, Alaska.
- g. *Filed Pursuant to:* Federal Power Act, 16 U.S.C. 791(a)–825(r).
- h. Applicant Contacts: Joseph A. Cannon, Pillsbury Winthrop Shaw Pittman LLP, 2300 N Street, NW., Washington, DC 20037, phone: (202) 663–8000, and Charles B. Cooper, TRC Environmental, Boott Mills South, 116 John St., Lowell, MA 01852, phone: (978) 656–3567.
- i. FERC Contact: Chris Yeakel, (202) 502–8132.
- j. Deadline for filing comments, protests, and motions to intervene: 60 days from the issuance date of this notice.

The Commission's Rules of Practice and Procedure require all intervenors filing documents with the Commission to serve a copy of that document on each person in the official service list for the project. Further, if an intervenor files comments or documents with the Commission relating to the merits of an issue that may affect the responsibilities of a particular resource agency, they must also serve a copy of the document

on that resource agency.

k. Description of Project: The proposed project would consist of: (1) 25 to 50 Tidal In Stream Energy Conversion (TISEC) devices consisting of, (2) rotating propeller blades, (3) integrated generators with a capacity of 0.5 to 2.0 MW, (4) anchoring systems, (5) mooring lines, and (6) interconnection transmission lines. The project is estimated to have an annual generation of 8.76 gigawatt-hours perunit per-year, which would be sold to a local utility.

- l. Locations of Applications: A copy of the application is available for inspection and reproduction at the Commission in the Public Reference Room, located at 888 First Street NE., Room 2A, Washington, DC 20426, or by calling (202) 502-8371. This filing may also be viewed on the Commission's Web site at http://www.ferc.gov using the "eLibrary" link. Enter the docket number excluding the last three digits in the docket number field to access the document. For assistance, call toll-free 1-866-208-3676 or e-mail FERCOnlineSupport@ferc.gov. For TTY, call (202) 502-8659. A copy is also available for inspection and reproduction at the address in item h above.
- m. Individuals desiring to be included on the Commission's mailing list should so indicate by writing to the Secretary of the Commission.
- n. Competing Preliminary Permit: Anyone desiring to file a competing application for preliminary permit for a proposed project must submit the competing application itself, or a notice of intent to file such an application, to the Commission on or before the specified comment date for the particular application (see 18 CFR 4.36). Submission of a timely notice of intent allows an interested person to file the competing preliminary permit application no later than 30 days after the specified comment date for the particular application. A competing preliminary permit application must conform with 18 CFR $\overline{4}$.30(b) and 4.36.
- o. Competing Development
 Application: Any qualified development
 applicant desiring to file a competing
 development application must submit to
 the Commission, on or before a
 specified comment date for the
 particular application, either a
 competing development application or a
 notice of intent to file such an
 application. Submission of a timely

- notice of intent to file a development application allows an interested person to file the competing application no later than 120 days after the specified comment date for the particular application. A competing license application must conform with 18 CFR 4.30(b) and 4.36.
- p. Notice of Intent: A notice of intent must specify the exact name, business address, and telephone number of the prospective applicant, and must include an unequivocal statement of intent to submit, if such an application may be filed, either a preliminary permit application or a development application (specify which type of application). A notice of intent must be served on the applicant(s) named in this public notice.
- q. Proposed Scope of Studies under Permit: A preliminary permit, if issued, does not authorize construction. The term of the proposed preliminary permit would be 36 months. The work proposed under the preliminary permit would include economic analysis, preparation of preliminary engineering plans, and a study of environmental impacts. Based on the results of these studies, the Applicant would decide whether to proceed with the preparation of a development application to construct and operate the project.
- r. Comments, Protests, or Motions to Intervene: Anyone may submit comments, a protest, or a motion to intervene in accordance with the requirements of Rules of Practice and Procedure, 18 CFR 385.210, 385.211, 385.214. In determining the appropriate action to take, the Commission will consider all protests or other comments filed, but only those who file a motion to intervene in accordance with the Commission's Rules may become a party to the proceeding. Any comments, protests, or motions to intervene must be received on or before the specified comment date for the particular application.

Comments, protests and interventions may be filed electronically via the Internet in lieu of paper; See 18 CFR 385.2001 (a)(1)(iii) and the instructions on the Commission's Web site under "efiling" link. The Commission strongly encourages electronic filing.

s. Filing and Service of Responsive Documents: Any filings must bear in all capital letters the title "COMMENTS", "RECOMMENDATIONS FOR TERMS AND CONDITIONS", "PROTEST", "COMPETING APPLICATION" OR "MOTION TO INTERVENE", as applicable, and the Project Number of the particular application to which the filing refers. Any of the above-named documents must be filed by providing

the original and the number of copies provided by the Commission's regulations to: The Secretary, Federal Energy Regulatory Commission, 888 First Street, NE., Washington, DC 20426. A copy of any motion to intervene must also be served upon each representative of the Applicant specified in the particular application.

t. Agency Comments: Federal, state, and local agencies are invited to file comments on the described application. A copy of the application may be obtained by agencies directly from the Applicant. If an agency does not file comments within the time specified for filing comments, it will be presumed to have no comments. One copy of an agency's comments must also be sent to the Applicant's representatives.

Magalie R. Salas,

Secretary.

[FR Doc. E6–16793 Filed 10–10–06; 8:45 am] BILLING CODE 6717–01–P

DEPARTMENT OF ENERGY

Federal Energy Regulatory Commission

Notice of Application Accepted for Filing and Soliciting Motions To Intervene, Protests, and Comments

October 4, 2006.

Take notice that the following hydroelectric application has been filed with the Commission and is available for public inspection:

- a. *Type of Application:* Preliminary Permit.
 - b. *Project No:* 12705–000.
 - c. Date filed: June 28, 2006.
- d. *Applicant:* Alaska Tidal Energy Company.
- e. *Name of Project:* Central Cook Inlet Tidal Energy Hydroelectric Project.
- f. Location: The project would be located in Cook Inlet, between West Foreland and East Foreland townships, in Kenai Peninsula Borough, Alaska.
- g. *Filed Pursuant to:* Federal Power Act, 16 U.S.C. 791(a)—825(r).
- h. Applicant Contacts: Joseph A. Cannon, Pillsbury Winthrop Shaw Pittman LLP, 2300 N Street, NW., Washington, DC 20037, phone: (202) 663–8000, and Charles B. Cooper, TRC Environmental, Boott Mills South, 116 John St., Lowell, MA 01852, phone: (978) 656–3567.
- i. FERC Contact: Chris Yeakel, (202) 502–8132.
- j. Deadline for filing comments, protests, and motions to intervene: 60 days from the issuance date of this notice.

The Commission's Rules of Practice and Procedure require all intervenors filing documents with the Commission to serve a copy of that document on each person in the official service list for the project. Further, if an intervenor files comments or documents with the Commission relating to the merits of an issue that may affect the responsibilities of a particular resource agency, they must also serve a copy of the document on that resource agency.

k. Description of Project: The proposed project would consist of: (1) 100 to 500 Tidal In Stream Energy Conversion (TISEC) devices consisting of, (2) rotating propeller blades, (3) integrated generators with a capacity of 0.5 to 2.0 MW, (4) anchoring systems, (5) mooring lines, and (6) interconnection transmission lines. The project is estimated to have an annual generation of 8.76 gigawatt-hours perunit per-year, which would be sold to a local utility.

1. Locations of Applications: A copy of the application is available for inspection and reproduction at the Commission in the Public Reference Room, located at 888 First Street NE., Room 2A, Washington DC 20426, or by calling (202) 502-8371. This filing may also be viewed on the Commission's Web site at http://www.ferc.gov using the "eLibrary" link. Enter the docket number excluding the last three digits in the docket number field to access the document. For assistance, call toll-free 1-866-208-3676 or e-mail FERCOnlineSupport@ferc.gov. For TTY, call (202) 502-8659. A copy is also available for inspection and reproduction at the address in item h

m. Individuals desiring to be included on the Commission's mailing list should so indicate by writing to the Secretary of the Commission.

n. Competing Preliminary Permit: Anyone desiring to file a competing application for preliminary permit for a proposed project must submit the competing application itself, or a notice of intent to file such an application, to the Commission on or before the specified comment date for the particular application (see 18 CFR 4.36). Submission of a timely notice of intent allows an interested person to file the competing preliminary permit application no later than 30 days after the specified comment date for the particular application. A competing preliminary permit application must conform with 18 CFR 4.30(b) and 4.36.

o. Competing Development Application: Any qualified development applicant desiring to file a competing development application must submit to

the Commission, on or before a specified comment date for the particular application, either a competing development application or a notice of intent to file such an application. Submission of a timely notice of intent to file a development application allows an interested person to file the competing application no later than 120 days after the specified comment date for the particular application. A competing license application must conform with 18 CFR 4.30(b) and 4.36.

p. Notice of Intent: A notice of intent must specify the exact name, business address, and telephone number of the prospective applicant, and must include an unequivocal statement of intent to submit, if such an application may be filed, either a preliminary permit application or a development application (specify which type of application). A notice of intent must be served on the applicant(s) named in this public notice.

q. Proposed Scope of Studies under Permit: A preliminary permit, if issued, does not authorize construction. The term of the proposed preliminary permit would be 36 months. The work proposed under the preliminary permit would include economic analysis, preparation of preliminary engineering plans, and a study of environmental impacts. Based on the results of these studies, the Applicant would decide whether to proceed with the preparation of a development application to construct and operate the project.

r. Comments, Protests, or Motions to Intervene: Anyone may submit comments, a protest, or a motion to intervene in accordance with the requirements of Rules of Practice and Procedure, 18 CFR 385.210, .211, .214. In determining the appropriate action to take, the Commission will consider all protests or other comments filed, but only those who file a motion to intervene in accordance with the Commission's Rules may become a party to the proceeding. Any comments, protests, or motions to intervene must be received on or before the specified comment date for the particular application.

Comments, protests and interventions may be filed electronically via the Internet in lieu of paper; See 18 CFR 385.2001 (a)(1)(iii) and the instructions on the Commission's web site under "efiling" link. The Commission strongly encourages electronic filing.

s. Filing and Service of Responsive Documents: Any filings must bear in all capital letters the title "COMMENTS", "RECOMMENDATIONS FOR TERMS AND CONDITIONS", "PROTEST",

"COMPETING APPLICATION" OR "MOTION TO INTERVENE", as applicable, and the Project Number of the particular application to which the filing refers. Any of the above-named documents must be filed by providing the original and the number of copies provided by the Commission's regulations to: The Secretary, Federal Energy Regulatory Commission, 888 First Street, NE., Washington, DC 20426. A copy of any motion to intervene must also be served upon each representative of the Applicant specified in the particular application.

t. Agency Comments: Federal, state, and local agencies are invited to file comments on the described application. A copy of the application may be obtained by agencies directly from the Applicant. If an agency does not file comments within the time specified for filing comments, it will be presumed to have no comments. One copy of an agency's comments must also be sent to the Applicant's representatives.

Magalie R. Salas,

Secretary.

[FR Doc. E6-16794 Filed 10-10-06; 8:45 am] BILLING CODE 6717-01-P

DEPARTMENT OF ENERGY

Federal Energy Regulatory Commission

Notice of Application Accepted for Filing and Soliciting Comments, Motions To Intervene, and Protests

October 4, 2006.

Take notice that the following hydroelectric application has been filed with the Commission and is available for public inspection:

a. Type of Application: Competing Preliminary Permit.

b. Project No: 12742-000.

c. Date Filed: September 20, 2006.

d. Applicant: City of Port Townsend, Washington.

e. Name of Project: Admiralty Inlet Tidal Energy Project.

f. Location: The project would be located under water in a section of Admiralty Inlet in the Puget Sound in Island, Jefferson and Kitsap Counties, Washington. Admiralty Inlet lies between the Olympic Peninsula on the mainland of the State of Washington and Whidbey Island in the Puget Sound.

g. Filed Pursuant to: Federal Power

Act, 16 U.S.C. 791(a)-825(r).

h. Applicant Contacts: Mr. David Timmons, City Manager, City of Port Townsend, 250 Madison Street, Port Townsend, WA 98368. Phone: (360)-379-5047.

- i. *FERC Contact*: Mr. Chris Yeakel, (202)–502–8132.
- j. Deadline for filing motions to intervene, protests and comments: 30 days from the issuance date of this notice.

All documents (original and eight copies) should be filed with: Magalie R. Salas, Secretary, Federal Energy Regulatory Commission, 888 First Street, NE., Washington, DC 20426. Comments, protests, and interventions may be filed electronically via the Internet in lieu of paper; see 18 CFR 385.2001(a)(1)(iii) and the instructions on the Commission's Web site under the "e-Filing" link. The Commission strongly encourages electronic filings. Please include the project number (P–12742–000) on any comments or motions filed.

The Commission's Rules of Practice and Procedure require all intervenors filing documents with the Commission to serve a copy of that document on each person in the official service list for the project. Further, if an intervenor files comments or documents with the Commission relating to the merits of an issue that may affect the responsibilities of a particular resource agency, they must also serve a copy of the document on that resource agency.

k. Competing Application: Project No. 12690–000, Date Filed: June 15, 2006, Notice Issued: June 22, 2006, Due Date: August 22, 2006.

l. Description of Project: The proposed project would consist of: (1) 450 Tidal In Stream Energy Conversion (TISEC) devices consisting of, (2) rotating propeller blades 20 meters in diameter, (3) integrated generators with a capacity of 50 kW, (4) anchoring systems, (5) mooring lines, and (6) interconnection transmission lines. The project is estimated to have an annual generation of 146.2 gigawatt-hours per-year, which would be used within city limits or service area limits.

m. Locations of Applications: A copy of the application is available for inspection and reproduction at the Commission in the Public Reference Room, located at 888 First Street NE., Room 2A, Washington DC 20426, or by calling (202) 502-8371. This filing may also be viewed on the Commission's Web site at http://www.ferc.gov using the "eLibrary" link. Enter the docket number excluding the last three digits in the docket number field to access the document. For assistance, call toll-free 1-866-208-3676 or e-mail FERCOnlineSupport@ferc.gov. For TTY, call (202) 502-8659. A copy is also available for inspection and reproduction at the address in item h above.

n. Individuals desiring to be included on the Commission's mailing list should so indicate by writing to the Secretary of the Commission.

o. Proposed Scope of Studies under Permit: A preliminary permit, if issued, does not authorize construction. The term of the proposed preliminary permit would be 36 months. The work proposed under the preliminary permit would include economic analysis, preparation of preliminary engineering plans, and a study of environmental impacts. Based on the results of these studies, the Applicant would decide whether to proceed with the preparation of a development application to construct and operate the project.

p. Comments, Protests, or Motions to Intervene: Anyone may submit comments, a protest, or a motion to intervene in accordance with the requirements of Rules of Practice and Procedure, 18 CFR 385.210, .211, .214. In determining the appropriate action to take, the Commission will consider all protests or other comments filed, but only those who file a motion to intervene in accordance with the Commission's Rules may become a party to the proceeding. Any comments, protests, or motions to intervene must be received on or before the specified comment date for the particular application.

q. Filing and Service of Responsive Documents: Any filings must bear in all capital letters the title "COMMENTS", "PROTEST", or "MOTION TO INTERVENE", as applicable, and the Project Number of the particular application to which the filing refers. Any of the above-named documents must be filed by providing the original and the number of copies provided by the Commission's regulations to: The Secretary, Federal Energy Regulatory Commission, 888 First Street, NE., Washington, DC 20426. An additional copy must be sent to Director, Division of Hydropower Administration and Compliance, Federal Energy Regulatory Commission, at the above-mentioned address. A copy of any motion to intervene must also be served upon each representative of the Applicant specified in the particular application.

Comments, protests and interventions may be filed electronically via the Internet in lieu of paper; see 18 CFR 385.2001(a)(1)(iii) and the instructions on the Commission's web site under the "e-Filing" link. The Commission strongly encourages electronic filings

r. Agency Comments: Federal, State, and local agencies are invited to file comments on the described application. A copy of the application may be obtained by agencies directly from the

Applicant. If an agency does not file comments within the time specified for filing comments, it will be presumed to have no comments. One copy of an agency's comments must also be sent to the Applicant's representatives.

Magalie R. Salas,

Secretary.

[FR Doc. E6–16795 Filed 10–10–06; 8:45 am]

ENVIRONMENTAL PROTECTION AGENCY

[FRL-8229-9]

Science Advisory Board Staff Office; Notification of a Public Meeting of the Science Advisory Board Environmental Economics Advisory Committee

AGENCY: Environmental Protection

Agency (EPA). **ACTION:** Notice.

SUMMARY: The EPA's Science Advisory Board (SAB) Staff Office is announcing a public teleconference of the SAB Environmental Economics Advisory Committee (EEAC) to discuss the valuation of mortality risk reduction.

DATES: The teleconference will be held from 11 am—1 pm (EST) on October 30, 2006.

FOR FURTHER INFORMATION CONTACT: Any member of the public wishing further information regarding the public teleconference and call-in number may contact Dr. Holly Stallworth, Designated Federal Officer (DFO), U.S. EPA Science Advisory Board Staff Office by telephone/voice mail at (202) 343-9867, or via e-mail at stallworth.holly@epa.gov. The SAB mailing address is: U.S. EPA, Science Advisory Board (1400F), 1200 Pennsylvania Avenue, NW., Washington, DC 20460. General information about the SAB, as well as any updates concerning the meeting announced in this notice, may be found in the SAB Web site at: http:// www.epa.gov/sab. The technical contact for EPA's work on valuing mortality risk reduction is Dr. Chris Dockins who may be reached at (202) 566-2286 or dockins.chris@epa.gov.

SUPPLEMENTARY INFORMATION: Pursuant to the Federal Advisory Committee Act, Public Law 92–463, notice is hereby given that the SAB Environmental Economics Advisory Committee will hold a public teleconference to discuss appropriate methods for valuing mortality risks in the context of costbenefit analysis. The EEAC will be

augmented by economists from the chartered Science Advisory Board as well as the Advisory Council on Clean Air Compliance Analysis. The SAB was established by 42 U.S.C. 4365 to provide independent scientific and technical advice to the Administrator on the technical basis for Agency positions and regulations. The SAB is a Federal Advisory Committee chartered under the Federal Advisory Committee Act (FACA), as amended, 5 U.S.C., App. The SAB will comply with the provisions of FACA and all appropriate SAB Staff Office procedural policies.

Background: Background information on this advisory was published in 71 FR 48546 (August 21, 2006). This teleconference follows a face-to-face meeting of the EEAC on September 14–15, 2006. At this meeting, EEAC discussed two papers related to valuing mortality risk reduction. These papers are posted at http://yosemite.epa.gov/EE/epa/eerm.nsf/vwRepNumLookup/EE-0495?OpenDocument. On the October 30, 2006 teleconference. EEAC members

0495/OpenDocument. On the October 30, 2006 teleconference, EEAC members will discuss draft comments to be written in response to the Agency's charge (posted at http://www.epa.gov/sab/panels/

eeac_adv_val_mortal_rick_reduc.htm).
 Availability of Meeting Materials:
Materials in support of this meeting will
be placed on the SAB Web site at:
http://www.epa.gov/sab/ in advance of
this meeting.

Procedures for Providing Public Input: Interested members of the public may submit relevant written or oral information for the SAB to consider during the advisory process. Oral Statements: In general, individuals or groups requesting an oral presentation at a public teleconference will be limited to five minutes per speaker, with no more than a total of one hour for all speakers. Interested parties should contact Dr. Stallworth, DFO, at the contact information noted above, by October 17, 2006, to be placed on the public speaker list for the October 30, 2006 teleconference. Written Statements: Written statements should be received in the SAB Staff Office by October 17, 2006, so that the information may be made available to the SAB for their consideration prior to this teleconference. Written statements should be supplied to the DFO in the following formats: one hard copy with original signature, and one electronic copy via e-mail to stallworth.holly@epa.gov (acceptable file format: Adobe Acrobat PDF,

WordPerfect, MS Word, MS PowerPoint,

or Rich Text files in IBM-PC/Windows 98/2000/XP format).

Meeting Access: For information on access or services for individuals with disabilities, please contact Dr.
Stallworth at (202) 343–9867 or stallworth.holly@epa.gov. To request accommodation of a disability, please contact Dr. Stallworth, preferably at least 10 days prior to the meeting to give EPA as much time as possible to process your request.

Dated: October 2, 2006.

Anthony F. Maciorowski,

Associate Director of Science, EPA Science Advisory Board Staff Office.

[FR Doc. E6–16811 Filed 10–10–06; 8:45 am] BILLING CODE 6560–50–P

ENVIRONMENTAL PROTECTION AGENCY

[EPA-HQ-OPP-2005-0545; FRL-8097-5]

Notice of Filing of Pesticide Petitions for Establishment or Amendment to Regulations for Residues of Lambda-Cyhalothrin in or on Pistachio

AGENCY: Environmental Protection Agency (EPA).

ACTION: Notice.

SUMMARY: This notice announces the initial filing of pesticide petitions proposing the establishment or amendment of regulations for residues of pesticide chemicals in or on various commodities.

DATES: Comments must be received on or before November 13, 2006.

ADDRESSES: Submit your comments, identified by docket identification (ID) number EPA-HQ-OPP-2005-0545 and pesticide petition number (PP 6E7077), by one of the following methods:

- Federal eRulemaking Portal: http://www.regulations.gov. Follow the on-line instructions for submitting comments.
- *Mail*: Office of Pesticide Programs (OPP) Regulatory Public Docket (7502P), Environmental Protection Agency, 1200 Pennsylvania Ave., NW., Washington, DC 20460–0001.
- Delivery: OPP Regulatory Public Docket (7502P), Environmental Protection Agency, Rm. S–4400, One Potomac Yard (South Building), 2777 S. Crystal Drive, Arlington, VA. Deliveries are only accepted during the Docket's normal hours of operation (8:30 a.m. to 4 p.m., Monday through Friday, excluding legal holidays). Special arrangements should be made for deliveries of boxed information. The Docket telephone number is (703) 305–5805.

Instructions: Direct your comments to docket ID number EPA-HQ-OPP-2005-0545. EPA's policy is that all comments received will be included in the docket without change and may be made available on-line at http:// www.regulations.gov, including any personal information provided, unless the comment includes information claimed to be Confidential Business Information (CBI) or other information whose disclosure is restricted by statute. Do not submit information that you consider to be CBI or otherwise protected through regulations.gov or email. The Federal regulations.gov website is an "anonymous access" system, which means EPA will not know your identity or contact information unless you provide it in the body of your comment. If you send an e-mail comment directly to EPA without going through regulations.gov, your email address will be automatically captured and included as part of the comment that is placed in the docket and made available on the Internet. If you submit an electronic comment, EPA recommends that you include your name and other contact information in the body of your comment and with any disk or CD-ROM you submit. If EPA cannot read your comment due to technical difficulties and cannot contact you for clarification, EPA may not be able to consider your comment. Electronic files should avoid the use of special characters, any form of encryption, and be free of any defects or viruses.

Docket: All documents in the docket are listed in the docket index. Although listed in the index, some information is not publicly available, i.e., CBI or other information whose disclosure is restricted by statute. Certain other material, such as copyrighted material, is not placed on the Internet and will be publicly available only in hard copy form. Publicly available docket materials are available either in the electronic docket at http:// www.regulations.gov, or, if only available in hard copy, at the OPP Regulatory Public Docket in Rm. S-4400, One Potomac Yard (South Building), 2777 S. Crystal Drive, Arlington, VA. The hours of operation of this Docket Facility are from 8:30 a.m. to 4 p.m., Monday through Friday, excluding legal holidays. The Docket telephone number is (703) 305-5805.

FOR FURTHER INFORMATION CONTACT: Barbara Madden, Registration Division (7505P), Office of Pesticide Programs, Environmental Protection Agency, 1200 Pennsylvania Ave., NW., Washington, DC 20460; telephone number: (703)

305–6463; e-mail: madden.barbara@epa.gov.

SUPPLEMENTARY INFORMATION:

I. General Information

A. Does this Action Apply to Me?

You may be potentially affected by this action if you are an agricultural producer, food manufacturer, or pesticide manufacturer. Potentially affected entities may include, but are not limited to:

- Crop production (NAICS code 111).
- Animal production (NAICS code 112).
- Food manufacturing (NAICS code 311).
- Pesticide manufacturing (NAICS code 32532).

This listing is not intended to be exhaustive, but rather provides a guide for readers regarding entities likely to be affected by this action. Other types of entities not listed in this unit could also be affected. The North American Industrial Classification System (NAICS) codes have been provided to assist you and others in determining whether this action might apply to certain entities. If you have any questions regarding the applicability of this action to a particular entity, consult the person listed at the end of the pesticide petition summary of interest.

- B. What Should I Consider as I Prepare My Comments for EPA?
- 1. Submitting CBI. Do not submit this information to EPA through regulations.gov or e-mail. Clearly mark the part or all of the information that you claim to be CBI. For CBI information in a disk or CD ROM that you mail to EPA, mark the outside of the disk or CD ROM as CBI and then identify electronically within the disk or CD ROM the specific information that is claimed as CBI. In addition to one complete version of the comment that includes information claimed as CBI, a copy of the comment that does not contain the information claimed as CBI must be submitted for inclusion in the public docket. Information so marked will not be disclosed except in accordance with procedures set forth in 40 CFR part 2.
- 2. Tips for preparing your comments. When submitting comments, remember to:
- i. Identify the document by docket ID number and other identifying information (subject heading, **Federal Register** date and page number).
- ii. Follow directions. The Agency may ask you to respond to specific questions or organize comments by referencing a

Code of Federal Regulations (CFR) part or section number.

- iii. Explain why you agree or disagree; suggest alternatives and substitute language for your requested changes.
- iv. Describe any assumptions and provide any technical information and/ or data that you used.
- v. If you estimate potential costs or burdens, explain how you arrived at your estimate in sufficient detail to allow for it to be reproduced.
- vi. Provide specific examples to illustrate your concerns and suggest alternatives.
- vii. Explain your views as clearly as possible, avoiding the use of profanity or personal threats.
- viii. Make sure to submit your comments by the comment period deadline identified.

II. What Action is the Agency Taking?

EPA is printing a summary of a pesticide petition received under section 408 of the Federal Food, Drug, and Cosmetic Act (FFDCA), 21 U.S.C. 346a, proposing the establishment or amendment of regulations in 40 CFR part 180 for residues of pesticide chemicals in or on various food commodities. EPA has determined that this pesticide petition contains data or information regarding the elements set forth in FFDCA section 408(d)(2); however, EPA has not fully evaluated the sufficiency of the submitted data at this time or whether the data support granting of the pesticide petition. Additional data may be needed before EPA rules on this pesticide petition.

Pursuant to 40 CFR 180.7(f), a summary of the petition included in this notice, prepared by the petitioner along with a description of the analytical method available for the detection and measurement of the pesticide chemical residues is available on EPA's Electronic Docket at http://www.regulations.gov. To locate this information on the home page of EPA's Electronic Docket, select "Quick Search" and type the OPP docket ID number. Once the search has located the docket, clicking on the "Docket ID" will bring up a list of all documents in the docket for the pesticide including the petition summary.

New Tolerance

PP 6E7077. Interregional Research Project #4 (IR-4), Rutgers, The State University of New Jersey, 500 College Road East, Suite 201 W, Princeton, NJ 08540, proposes to establish a tolerance for residues of the insecticide lambdacyhalothrin, 1:1 mixture of (S)-α-cyano-3-phenoxybenzyl-(Z)-(1R,3R)-3-(2-chloro-3,3,3- trifluoroprop-1-enyl)-2,2-

dimethylcyclopropanecarboxylate and (R)-α-cyano-3-phenoxybenzyl-(Z)-(1S,3S)-3-(2-chloro-3,3,3- trifluoroprop-1-enyl)-2,2-

dimethylcyclopropanecarboxylate and its epimer expressed as epimer of lambda-cyhalothrin, a 1:1 mixture of (S)-α-cyano-3-phenoxybenzyl-(Z)-(1S,3S)-3-(2-chloro-3,3,3-trifluoroprop-1-enyl)-2,2-

dimethylcyclopropanecarboxylate and (R)-α-cyano-3- phenoxybenzyl-(Z)-(1R,3R)-3-(2-chloro-3,3,3- trifluoroprop-1-enyl)-2,2-

dimethylcyclopropanecarboxylate in or on food commodity pistachio at 0.05 parts per million (ppm). Gas liquid chromatography with a electron capture detector is used to measure and evaluate the chemical residue.

List of Subjects

Environmental protection, Agricultural commodities, Feed additives, Food additives, Pesticides and pests, Reporting and recordkeeping requirements.

Dated: September 29, 2006.

Lois Rossi,

Director, Registration Division, Office of Pesticide Programs.

[FR Doc. E6–16592 Filed 10–10–06; 8:45 am] BILLING CODE 6560–50–S

ENVIRONMENTAL PROTECTION AGENCY

[EPA-HQ-OPP-2006-0821; FRL-8098-1]

Notice of Filing of Pesticide Petitions for Establishment or Amendment to Regulations for Residues of Buprofezin in or on Various Commodities

AGENCY: Environmental Protection Agency (EPA).

ACTION: Notice.

SUMMARY: This notice announces the initial filing of pesticide petitions proposing the establishment or amendment of regulations for residues of pesticide chemicals in or on various commodities.

DATES: Comments must be received on or before November 13, 2006.

ADDRESSES: Submit your comments, identified by docket identification (ID) number EPA-HQ-OPP-2006-0821 and pesticide petition number (*PP 5E6979*, *PP 5E6980*, or *PP 5E6981*), by one of the following methods:

- Federal eRulemaking Portal: http://www.regulations.gov. Follow the on-line instructions for submitting comments.
- *Mail*: Office of Pesticide Programs (OPP) Public Regulatory Docket (7502P),

Environmental Protection Agency, 1200 Pennsylvania Ave., NW., Washington, DC 20460–0001.

• Delivery: OPP Public Regulatory Docket (7502P), Environmental Protection Agency, Rm. S–4400, One Potomac Yard (South Bldg.), 2777 S. Crystal Drive, Arlington, VA. Deliveries are only accepted during the Docket's normal hours of operation (8:30 a.m. to 4 p.m., Monday through Friday, excluding legal holidays). Special arrangements should be made for deliveries of boxed information. The Docket telephone number is (703) 305–5805.

Instructions: Direct your comments to docket ID number EPA-HQ-OPP-2006-0821. EPA's policy is that all comments received will be included in the docket without change and may be made available on-line at http:// www.regulations.gov, including any personal information provided, unless the comment includes information claimed to be Confidential Business Information (CBI) or other information whose disclosure is restricted by statute. Do not submit information that you consider to be CBI or otherwise protected through regulations.gov or email. The Federal regulations.gov website is an "anonymous access" system, which means EPA will not know your identity or contact information unless you provide it in the body of your comment. If you send an e-mail comment directly to EPA without going through regulations.gov, your email address will be automatically captured and included as part of the comment that is placed in the docket and made available on the Internet. If you submit an electronic comment, EPA recommends that you include your name and other contact information in the body of your comment and with any disk or CD-ROM you submit. If EPA cannot read your comment due to technical difficulties and cannot contact you for clarification, EPA may not be able to consider your comment. Electronic files should avoid the use of special characters, any form of encryption, and be free of any defects or

Docket: All documents in the docket are listed in the docket index. Although listed in the index, some information is not publicly available, e.g., CBI or other information whose disclosure is restricted by statute. Certain other material, such as copyrighted material, is not placed on the Internet and will be publicly available only in hard copy form. Publicly available docket materials are available either in the electronic docket at http://www.regulations.gov, or, if only

available in hard copy, at the OPP Public Regulatory Docket in Rm. S–4400, One Potomac Yard (South Bldg.), 2777 S. Crystal Drive, Arlington, VA. The hours of operation of this Docket Facility are from 8:30 a.m. to 4 p.m., Monday through Friday, excluding legal holidays. The Docket telephone number is (703) 305–5805.

FOR FURTHER INFORMATION CONTACT:

Barbara Madden, Registration Division (7505P), Office of Pesticide Programs, Environmental Protection Agency, 1200 Pennsylvania Ave., NW., Washington, DC 20460–0001; telephone number: (703) 305–6463; e-mail address: madden.barbara@epa.gov.

SUPPLEMENTARY INFORMATION:

I. General Information

A. Does this Action Apply to Me?

You may be potentially affected by this action if you are an agricultural producer, food manufacturer, or pesticide manufacturer. Potentially affected entities may include, but are not limited to:

- Crop production (NAICS code 111).
- Animal production (NAICS code 112).
- Food manufacturing (NAICS code 311).
- Pesticide manufacturing (NAICS code 32532).

This listing is not intended to be exhaustive, but rather provides a guide for readers regarding entities likely to be affected by this action. Other types of entities not listed in this unit could also be affected. The North American Industrial Classification System (NAICS) codes have been provided to assist you and others in determining whether this action might apply to certain entities. If you have any questions regarding the applicability of this action to a particular entity, consult the person listed under FOR FURTHER INFORMATION CONTACT.

B. What Should I Consider as I Prepare My Comments for EPA?

1. Submitting CBI. Do not submit this information to EPA through regulations.gov or e-mail. Clearly mark the part or all of the information that vou claim to be CBI. For CBI information in a disk or CD ROM that vou mail to EPA, mark the outside of the disk or CD ROM as CBI and then identify electronically within the disk or CD ROM the specific information that is claimed as CBI. In addition to one complete version of the comment that includes information claimed as CBI, a copy of the comment that does not contain the information claimed as CBI must be submitted for inclusion in the

public docket. Information so marked will not be disclosed except in accordance with procedures set forth in 40 CFR part 2.

2. Tips for preparing your comments. When submitting comments, remember to:

i. Identify the document by docket ID number and other identifying information (subject heading, **Federal Register** date and page number).

ii. Follow directions. The Agency may ask you to respond to specific questions or organize comments by referencing a Code of Federal Regulations (CFR) part or section number.

iii. Explain why you agree or disagree; suggest alternatives and substitute language for your requested changes.

iv. Describe any assumptions and provide any technical information and/ or data that you used.

v. If you estimate potential costs or burdens, explain how you arrived at your estimate in sufficient detail to allow for it to be reproduced.

vi. Provide specific examples to illustrate your concerns and suggest alternatives.

vii. Explain your views as clearly as possible, avoiding the use of profanity or personal threats.

viii. Make sure to submit your comments by the comment period deadline identified.

II. What Action is the Agency Taking?

EPA is printing a summary of each pesticide petition received under section 408 of the Federal Food, Drug, and Cosmetic Act (FFDCA), 21 U.S.C. 346a, proposing the establishment or amendment of regulations in 40 CFR part 180 for residues of pesticide chemicals in or on various food commodities. EPA has determined that this pesticide petition contains data or information regarding the elements set forth in FFDCA section 408(d)(2); however, EPA has not fully evaluated the sufficiency of the submitted data at this time or whether the data support granting of the pesticide petition. Additional data may be needed before EPA rules on this pesticide petition.

Pursuant to 40 CFR 180.7(f), a summary of the petition included in this notice, prepared by the petitioner along with a description of the analytical method available for the detection and measurement of the pesticide chemical residues is available on EPA's Electronic Docket at http://www.regulations.gov. To locate this information on the home page of EPA's Electronic Docket, select "Quick Search" and type the OPP docket ID number. Once the search has located the docket, clicking on the "Docket ID" will bring up a list of all

documents in the docket for the pesticide including the petition summary.

New Tolerances

- 1. *PP 5E6979*. Interregional Research Project #4 (IR-4), Rutgers, The State University of New Jersey,500 College Road East, Suite 201 W, Princeton, NJ 08540, proposes to establish a tolerance for residues of the insecticide buprofezin (2-[(1,1-dimethylethyl)imino]tetrahydro-3-(1-methylethyl)-5- phenyl-4H-1,3,5-thiadiazin-4-one) in or on food commodities fruit, stone, group 12 (except peaches and nectarines) at 2.0 parts per million (ppm).
- 2. PP 5E6980. Interregional Research Project #4 (IR-4), Rutgers, The State University of New Jersey, 500 College Road East, Suite 201 W, Princeton, NJ 08540, proposes to establish a tolerance for residues of the insecticide buprofezin (2-[(1,1-dimethylethyl)imino]tetrahydro-3-(1-methylethyl)-5- phenyl-4H-1,3,5-thiadiazin-4-one) in or on food commodities black sapote, canistel, mamey sapote, mango, papaya, sapodilla, and star apple, at 0.80 ppm.

Amendment to Existing Tolerances

PP 5E6981. Interregional Research Project #4 (IR-4), Rutgers, The State University of New Jersey, 500 College Road East, Suite 201 W, Princeton, NJ, proposes to amend the tolerances in 40 CFR 180.511 for residues of the insecticide buprofezin (2-[(1,1-dimethylethyl)imino]tetrahydro-3-(1-methylethyl)-5- phenyl-4H-1,3,5-thiadiazin-4-one) in or on the food commodities grapes at 0.80 ppm and grape, raisin at 1.2 ppm.

For all three petitions (PP 5E6979, 5E6980 and 5E6981) the analytical method of gas chromatography using nitrogen phosphorous detection is used to measure and evaluate the chemical residue(s).

List of Subjects

Environmental protection, Agricultural commodities, Feed additives, Food additives, Pesticides and pests, Reporting and recordkeeping requirements.

Dated: September 28, 2006.

Lois Rossi,

Director, Registration Division, Office of Pesticide Programs.

[FR Doc. E6–16690 Filed 10–10–06; 8:45 am] BILLING CODE 6560–50–S

ENVIRONMENTAL PROTECTION AGENCY

[EPA-HQ-OPP-2006-0524; FRL-8097-6]

Notice of Filing of a Pesticide Petition for Establishment or Amendment to Regulations for Residues of Oxytetracyline in or on Apples

AGENCY: Environmental Protection Agency (EPA).

ACTION: Notice.

SUMMARY: This notice announces the initial filing of a pesticide petition proposing the establishment or amendment of regulations for residues of the fungicide, oxytetracyline in or on apples.

DATES: Comments must be received on or before November 13, 2006.

ADDRESSES: Submit your comments, identified by docket identification (ID) number EPA-HQ-OPP-2006-0524 and pesticide petition number (PP) 7E4855, by one of the following methods:

- Federal eRulemaking Portal: http://www.regulations.gov. Follow the on-line instructions for submitting comments.
- *Mail*: Office of Pesticide Programs (OPP) Regulatory Public Docket (7502P), Environmental Protection Agency, 1200 Pennsylvania Ave., NW., Washington, DC 20460–0001.
- Delivery: OPP Regulatory Public Docket (7502P), Environmental Protection Agency, Rm. S–4400, One Potomac Yard (South Building), 2777 S. Crystal Drive, Arlington, VA. Deliveries are only accepted during the Docket's normal hours of operation (8:30 a.m. to 4 p.m., Monday through Friday, excluding legal holidays). Special arrangements should be made for deliveries of boxed information. The Docket telephone number is (703) 305-5805.

Instructions: Direct your comments to docket ID number EPA-HQ-OPP-2006-0524. EPA's policy is that all comments received will be included in the docket without change and may be made available on-line at http:// www.regulations.gov, including any personal information provided, unless the comment includes information claimed to be Confidential Business Information (CBI) or other information whose disclosure is restricted by statute. Do not submit information that you consider to be CBI or otherwise protected through regulations.gov or email. The Federal regulations.gov website is an "anonymous access" system, which means EPA will not know your identity or contact information unless you provide it in the body of your comment. If you send an

e-mail comment directly to EPA without going through regulations.gov, your email address will be automatically captured and included as part of the comment that is placed in the docket and made available on the Internet. If you submit an electronic comment, EPA recommends that you include your name and other contact information in the body of your comment and with any disk or CD-ROM you submit. If EPA cannot read your comment due to technical difficulties and cannot contact you for clarification, EPA may not be able to consider your comment. Electronic files should avoid the use of special characters, any form of encryption, and be free of any defects or viruses.

Docket: All documents in the docket are listed in the docket index. Although listed in the index, some information is not publicly available, e.g., CBI or other information whose disclosure is restricted by statute. Certain other material, such as copyrighted material, is not placed on the Internet and will be publicly available only in hard copy form. Publicly available docket materials are available either in the electronic docket at http:// www.regulations.gov, or, if only available in hard copy, at the OPP Regulatory Public Docket in Rm. S-4400, One Potomac Yard (South Building), 2777 S. Crystal Drive, Arlington, VA. The hours of operation of this Docket Facility are from 8:30 a.m. to 4 p.m., Monday through Friday, excluding legal holidays. The Docket telephone number is (703) 305-5805.

FOR FURTHER INFORMATION CONTACT:

Barbara Madden, Registration Division (7505P), Office of Pesticide Programs, Environmental Protection Agency, 1200 Pennsylvania Ave., NW., Washington, DC 20460–0001; telephone number (703) 305–6463; e-mail address: madden.barbara@epa.gov.

SUPPLEMENTARY INFORMATION:

I. General Information

A. Does this Action Apply to Me?

You may be potentially affected by this action if you are an agricultural producer, food manufacturer, or pesticide manufacturer. Potentially affected entities may include, but are not limited to:

- Crop production (NAICS code 111).
- Animal production (NAICS code 112).
- Food manufacturing (NAICS code 311).
- Pesticide manufacturing (NAICS code 32532).

This listing is not intended to be exhaustive, but rather provides a guide

for readers regarding entities likely to be affected by this action. Other types of entities not listed in this unit could also be affected. The North American Industrial Classification System (NAICS) codes have been provided to assist you and others in determining whether this action might apply to certain entities. If you have any questions regarding the applicability of this action to a particular entity, consult the person listed under FOR FURTHER INFORMATION CONTACT.

- B. What Should I Consider as I Prepare My Comments for EPA?
- 1. Submitting CBI. Do not submit this information to EPA through regulations.gov or e-mail. Clearly mark the part or all of the information that you claim to be CBI. For CBI information in a disk or CD ROM that you mail to EPA, mark the outside of the disk or CD ROM as CBI and then identify electronically within the disk or CD ROM the specific information that is claimed as CBI. In addition to one complete version of the comment that includes information claimed as CBI, a copy of the comment that does not contain the information claimed as CBI must be submitted for inclusion in the public docket. Information so marked will not be disclosed except in accordance with procedures set forth in 40 CFR part 2.
- 2. Tips for preparing your comments. When submitting comments, remember to:
- i. Identify the document by docket ID number and other identifying information (subject heading, **Federal Register** date and page number).
- ii. Follow directions. The Agency may ask you to respond to specific questions or organize comments by referencing a Code of Federal Regulations (CFR) part or section number.
- iii. Explain why you agree or disagree; suggest alternatives and substitute language for your requested changes.
- iv. Describe any assumptions and provide any technical information and/ or data that you used.
- v. If you estimate potential costs or burdens, explain how you arrived at your estimate in sufficient detail to allow for it to be reproduced.
- vi. Provide specific examples to illustrate your concerns and suggest alternatives.
- vii. Explain your views as clearly as possible, avoiding the use of profanity or personal threats.
- viii. Make sure to submit your comments by the comment period deadline identified.

II. What Action is the Agency Taking?

EPA is printing a summary of a pesticide petition received under section 408 of the Federal Food, Drug, and Cosmetic Act (FFDCA), 21 U.S.C. 346a, proposing the establishment or amendment of regulations in 40 CFR part 180 for residues of the fungicide, oxytetracyline in or on apples. EPA has determined that this pesticide petition contains data or information regarding the elements set forth in FFDCA section 408(d)(2); however, EPA has not fully evaluated the sufficiency of the submitted data at this time or whether the data support granting of the pesticide petition. Additional data may be needed before EPA rules on this pesticide petition.

Pursuant to 40 CFR 180.7(f), a summary of the petition included in this notice, prepared by the petitioner along with a description of the analytical method available for the detection and measurement of the pesticide chemical residues is available on EPA's Electronic Docket at http://www.regulations.gov. To locate this information on the home page of EPA's Electronic Docket, select "Quick Search" and type the OPP docket ID number. Once the search has located the docket, clicking on the "Docket ID" will bring up a list of all documents in the docket for the pesticide including the petition summary.

New Tolerance

(PP) 7E4855. Interregional Research Project #4 (IR-4), 500 College Rd., East, Princeton, NJ 08540, proposes to establish a tolerance for residues of the fungicide, oxytetracycline in or on food commodity apple at 0.35 parts per million (ppm). HWI Method MR-OPAP–MA with modifications is used to measure and evaluate oxytetracycline residues. The method is adapted from Pfizer Method STP No. 012.14 entitled Microbiological Agar Diffusion Assy for Oxytetracycline in Fruit Extract and Hazelton Method OTCF entitled Oxvtetracvcline in Feeds which is published in Official Methods of Analysis of the AOAC, 15th Edition as Method 968.50. The method is similar to Final Action Microbiological Methods I and II in the AOAC Official Methods of Analysis (1984; 42.293-42.298).

List of Subjects

Environmental protection, Agricultural commodities, Feed additives, Food additives, Pesticides and pests, Reporting and recordkeeping requirements. Dated: September 28, 2006.

Lois Rossi,

Director, Registration Division, Office of Pesticide Programs.

[FR Doc. E6–16691 Filed 10–10–06; 8:45 am] BILLING CODE 6560–50–S

ENVIRONMENTAL PROTECTION AGENCY

[EPA-HQ-OPP-2002-0302; FRL-8096-7]

Petition to Revoke Tolerances Established for Dichlorvos

AGENCY: Environmental Protection Agency (EPA).

ACTION: Notice.

SUMMARY: EPA is seeking public comment on a June 2, 2006, petition from the Natural Resources Defense Council (NRDC), available in docket (ID) number EPA-HQ-OPP-2002-0302, requesting that the Agency revoke all tolerances for the pesticide dichlorvos (DDVP). The petitioner, NRDC, requests this action to obtain what they believe would be proper application of the safety standards of the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Federal Food, Drug, and Cosmetic Act (FFDCA), section 408, as amended by the Food Quality Protection Act (FOPA) of 1996. The DDVP Interim Reregistration Eligibility Decision (IRED) is available in the electronic docket at http:// www.regulations.gov, or at the Office of Pesticide Programs (OPP) Regulatory Public Docket in Rm. S-4400, One Potomac Yard (South Bldg.), 2777 S. Crystal Dr., Arlington, VA.

DATES: Comments must be received on or before November 13, 2006.

ADDRESSES: Submit your comments, identified by docket ID number EPA–HQ–OPP–2002–0302, by one of the following methods:

- Federal eRulemaking Portal: http://www.regulations.gov. Follow the on-line instructions for submitting comments.
- Mail: Office of Pesticide Programs (OPP) Regulatory Public Docket (7502P), Environmental Protection Agency, 1200 Pennsylvania Ave., NW., Washington, DC 20460–0001.
- Delivery: OPP Regulatory Public Docket (7502P), Environmental Protection Agency, Rm. S-4400, One Potomac Yard (South Bldg.), 2777 S. Crystal Dr., Arlington, VA. Deliveries are only accepted during the Docket's normal hours of operation 8:30 a.m. to 4 p.m., Monday through Friday, excluding legal holidays). Special arrangements should be made for

deliveries of boxed information. The Docket telephone number is (703) 305–5805.

Instructions: Direct your comments to docket ID number EPA-HQ-OPP-2002-0302. EPA's policy is that all comments received will be included in the docket without change and may be made available on-line at http:// www.regulations.gov, including any personal information provided, unless the comment includes information claimed to be Confidential Business Information (CBI) or other information whose disclosure is restricted by statute. Do not submit information that you consider to be CBI or otherwise protected through regulations.gov or email. The Federal regulations.gov website is an "anonymous access" system, which means EPA will not know your identity or contact information unless you provide it in the body of your comment. If you send an e-mail comment directly to EPA without going through regulations.gov, your email address will be automatically captured and included as part of the comment that is placed in the docket and made available on the Internet. If you submit an electronic comment, EPA recommends that you include your name and other contact information in the body of your comment and with any disk or CD-ROM vou submit. If EPA cannot read your comment due to technical difficulties and cannot contact you for clarification, EPA may not be able to consider your comment. Electronic files should avoid the use of special characters, any form of encryption, and be free of any defects or viruses.

Docket: All documents in the docket are listed in the docket index. Although listed in the index, some information is not publicly available, e.g., CBI or other information whose disclosure is restricted by statute. Certain other material, such as copyrighted material, is not placed on the Internet and will be publicly available only in hard copy form. Publicly available docket materials are available either in the electronic docket at http:// www.regulations.gov, or, if only available in hard copy, at the OPP Regulatory Public Docket in Rm. S-4400, One Potomac Yard (South Bldg.), 2777 S. Crystal Dr., Arlington, VA. The hours of operation of this Docket Facility are from 8:30 a.m. to 4 p.m., Monday through Friday, excluding legal holidays. The Docket telephone number is (703) 305-5805.

FOR FURTHER INFORMATION CONTACT:

Dayton Eckerson, Special Review and Reregistration Division (7508P), Office of Pesticide Programs, Environmental Protection Agency, 1200 Pennsylvania Ave., NW., Washington, DC 20460–0001; telephone number: (703) 308–8038; fax number: (703) 308–8005; email address: eckerson.dayton@epa.gov. SUPPLEMENTARY INFORMATION:

I. General Information

A. Does this Action Apply to Me?

This action is directed to the public in general, and may be of interest to a wide range of stakeholders including environmental, human health, and agricultural advocates; the chemical industry; pesticide users; and members of the public interested in the sale, distribution, or use of pesticides. Since others also may be interested, the Agency has not attempted to describe all the specific entities that may be affected by this action. If you have any questions regarding the applicability of this action to a particular entity, consult the person listed under FOR FURTHER INFORMATION CONTACT.

- B. What Should I Consider as I Prepare My Comments for EPA?
- 1. Submitting CBI. Do not submit this information to EPA through regulations.gov or e-mail. Clearly mark the part or all of the information that vou claim to be CBI. For CBI information in a disk or CD ROM that you mail to EPA, mark the outside of the disk or CD ROM as CBI and then identify electronically within the disk or CD ROM the specific information that is claimed as CBI. In addition to one complete version of the comment that includes information claimed as CBI, a copy of the comment that does not contain the information claimed as CBI must be submitted for inclusion in the public docket. Information so marked will not be disclosed except in accordance with procedures set forth in 40 CFR part 2.
- 2. Tips for preparing your comments. When submitting comments, remember to:
- i. Identify the document by docket ID number and other identifying information (subject heading, **Federal Register** date and page number).
- ii. Follow directions. The Agency may ask you to respond to specific questions or organize comments by referencing a Code of Federal Regulations (CFR) part or section number.
- iii. Explain why you agree or disagree; suggest alternatives and substitute language for your requested changes.
- iv. Describe any assumptions and provide any technical information and/or data that you used.
- v. If you estimate potential costs or burdens, explain how you arrived at

- your estimate in sufficient detail to allow for it to be reproduced.
- vi. Provide specific examples to illustrate your concerns and suggest alternatives.
- vii. Explain your views as clearly as possible, avoiding the use of profanity or personal threats.
- viii. Make sure to submit your comments by the comment period deadline identified.

II. What Action is the Agency Taking?

EPA requests public comment during the next 30 days on a petition (available in docket ID number EPA-HQ-OPP-2002–0302) received from the NRDC requesting that the Agency revoke all tolerances, or maximum legal residue limits for the pesticide DDVP. The petitioner claims that EPA erred in making its safety finding that there is a reasonable certainty of no harm from dietary residues of DDVP and, therefore, EPA must revoke all tolerances established under section 408 of the FFDCA, as amended by the FQPA. In addition, NRDC is petitioning the Agency to cancel all uses of DDVP because NRDC believes DDVP cannot perform its intended function without causing unreasonable adverse affects on the environment. See 136 et seq. of FIFRA. NRDC filed its petition in pursuant to section 408(d) of FFDCA. EPA's assessment of human health and environmental risks of DDVP, and finding on whether the tolerances for DDVP comply with the safety standard in FFDCA section 408, as amended by FOPA, are contained in the IRED document for DDVP, which is available in the electronic docket at http:// www.regulations.gov, or at the OPP Regulatory Public Docket in Rm. S-4400, One Potomac Yard (South Bldg.), 2777 S. Crystal Dr., Arlington, VA.

List of Subjects

Environmental protection, Pesticides and pests.

Dated: September 28, 2006.

Debra Edwards,

Director, Special Review and Reregistration Division, Office of Pesticide Programs. [FR Doc. E6–16484 Filed 10–10–06; 8:45

BILLING CODE 6560-50-S

ENVIRONMENTAL PROTECTION AGENCY

[EPA-HQ-OPP-2004-0404; FRL-8096-8]

Pesticides; Availability of Schedule for Registration Review

AGENCY: Environmental Protection

Agency (EPA). **ACTION:** Notice.

SUMMARY: EPA is announcing the availability of a schedule for the registration review of pesticides mandated in section 3(g) of the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA). EPA is making the schedule available pursuant to the Registration Review procedural regulations, to inform the public and help interested stakeholders prepare for the initiation of the registration reviews scheduled for the first four years of the program. To develop the schedule, EPA used procedures set forth in the August 9, 2006 final rule. The schedule shows how the Agency plans to sequence pesticide reviews to meet the goal of reviewing each pesticide's registration every 15 years. Although there is not a comment period for this schedule, the Agency may consider issues raised by the public or the registrant when reviewing the posted schedule, to schedule a pesticide registration review, or to modify the schedule of a pesticide registration review as appropriate. This schedule will take effect on October 10, 2006, the effective date of the registration review regulation.

FOR FURTHER INFORMATION CONTACT:

Kennan Garvey, Special Review and Reregistration Division (7508P), Office of Pesticide Programs, Environmental Protection Agency, 1200 Pennsylvania Ave., NW., Washington, DC 20460– 0001; telephone number: (703) 305– 7106; fax number: (703) 308–8005; email address: garvey.kennan@epa.gov.

SUPPLEMENTARY INFORMATION:

I. General Information

A. Does this Action Apply to Me?

You may be potentially affected by this action if you hold pesticide registrations. Pesticide users or other persons interested in the regulation of the sale, distribution, or use of pesticides may also be interested in this action.

Potentially affected entities may include, but are not limited to:

Producers of pesticide products (NAICS code 32532).

Producers of antifoulant paints (NAICS code 32551).

Producers of antimicrobial pesticides (NAICS code 32561).

Producers of nitrogen stabilizer products (NAICS code 32531).

Producers of wood preservatives (NAICS code 32519).

This listing is not intended to be exhaustive, but rather provides a guide for readers regarding entities likely to be affected by this action. Other types of entities not listed in this unit could also be affected. The North American **Industrial Classification System** (NAICS) codes have been provided to assist you and others in determining whether this action might apply to certain entities. To determine whether you or your business may be affected by this action, you should carefully examine the applicability provisions in § 155.40 of the regulatory text of the Federal Register of August 9, 2006 (71 FR 45720-45734)(FRL-8080-4). If you have any questions regarding the applicability of this action to a particular entity, consult the person listed under FOR FURTHER INFORMATION CONTACT.

- B. How Can I Get Copies of this Document and Other Related Information?
- 1. Docket. EPA has established a docket for this action under docket identification (ID) number EPA-HQ-OPP-2004-0404. Publicly available docket materials are available either in the electronic docket at http:// www.regulations.gov, or, if only available in hard copy, at the Office of Pesticide Programs (OPP) Regulatory Public Docket in Rm. S-4400, One Potomac Yard (South Building), 2777 S. Crystal Drive Arlington, VA. The hours of operation of this Docket Facility are from 8:30 a.m. to 4 p.m., Monday through Friday, excluding legal holidays. The Docket telephone number is (703) 305-5805.
- 2. *Electronic access*. You may access this **Federal Register** document electronically through the EPA Internet under the "**Federal Register**" listings at http://www.epa.gov/fedrgstr/.

II. Background

A. What Action is the Agency Taking?

EPA has issued a schedule for the registration review program, the periodic review of all registered pesticides mandated by section 3(g) of FIFRA. The schedule will take effect upon the registration review regulation effective date of October 10, 2006.

This schedule is a timetable for opening registration review dockets for the first four years of the program. It shows how EPA plans to sequence the initiation of pesticide reviews to meet the statutory goal of reviewing all registered pesticides every 15 years to determine whether they still meet the statutory standard for registration. As noted in the explanation of the schedule, EPA expects a total of about 676 registration review cases comprised of about 1,075 pesticide active ingredients to undergo registration review. To review all of these pesticides every 15 years, the Agency plans to make decisions on 45 or more registration review cases, or about 70 pesticide active ingredients, each year.

The schedule shows which registration review cases are expected to begin the review process during the first four years of the program, beginning in fiscal year 2007. Each pesticide's place on the schedule is generally determined by its baseline date, that is, the date of its last substantive review. The oldest cases go first. The baseline date for a pesticide subject to reregistration is the date of the Reregistration Eligibility Decision (RED) or Interim RED, while for pesticides not subject to reregistration, it is the date the first product containing the active ingredient was registered. Although the draft schedule generally is constructed chronologically using baseline dates, some registration review cases in years two through four are grouped in the schedule to achieve greater program efficiencies. For example, pesticides that are chemically or use related, such as the organophosphate and carbamate chemical classes, the coppers group and the pyrethroids, pyrethrins and synergists group, would be reviewed during the same time frame.

Background information on the program is provided at:

http://www.epa.gov/oppsrrd1/ registration_review/

An explanation of the schedule is at: http://www.epa.gov/oppsrrd1/ registration_review/explanation.htm

The schedule is at:

http://www.epa.gov/oppsrrd1/registration_review/schedule.htm.

B. What is the Agency's Authority for Taking this Action?

EPA is announcing this schedule as provided in § \$155.42(d) and 155.44 of the Procedural Regulations for Registration Review: Final Rule http://www.epa.gov/fedrgstr/EPA-PEST/2006/August/Day-09/p12904.htm). In general, the Agency may consider issues raised by the public or the registrant when reviewing a posted schedule, to schedule a pesticide registration review, or to modify the schedule of a pesticide registration review as appropriate. This schedule will be updated at least annually.

List of Subjects

Environmental protection, Agricultural commodities, Pesticides and pests.

Dated: September 26, 2006.

Debra Edwards,

Director, Special Review and Reregistration Division, Office of Pesticide Programs.

[FR Doc. E6–16483 Filed 10–10–06; 8:45 am]

BILLING CODE 6560-50-S

FARM CREDIT ADMINISTRATION

Farm Credit Administration Board; Regular Meeting, Sunshine Act

AGENCY: Farm Credit Administration. **SUMMARY:** Notice is hereby given, pursuant to the Government in the Sunshine Act (5 U.S.C. 552b(e)(3)), of the regular meeting of the Farm Credit Administration Board (Board).

Date and Time: The regular meeting of the Board will be held at the offices of the Farm Credit Administration in McLean, Virginia, on October 12, 2006, from 9 a.m. until such time as the Board concludes its business.

FOR FURTHER INFORMATION CONTACT:

Roland E. Smith, Secretary to the Farm Credit Administration Board, (703) 883–4009, TTY (703) 883–4056.

Addresses: Farm Credit Administration, 1501 Farm Credit Drive, McLean, Virginia 22102–5090.

SUPPLEMENTARY INFORMATION: Parts of this meeting of the Board will be open to the public (limited space available), and parts will be closed to the public. In order to increase the accessibility to Board meetings, persons requiring assistance should make arrangements in advance. The matters to be considered at the meeting are:

Open Session

- A. Approval of Minutes
- September 14, 2006 (Open and Closed).
- B. New Business
- 1. Regulations
 - Regulatory Burden—Final Rule.
- 2. Reports
- OE Quarterly Report on FCS Condition.

Closed Session*

- Update on OE Oversight Activities.
- Overview of OE FY 2007 Oversight and Examination Plan.

Dated: October 6, 2006.

Roland E. Smith,

Secretary, Farm Credit Administration Board. *Session Closed—Exempt pursuant to 5 U.S.C. 552b(c)(8) and (9).

[FR Doc. 06–8633 Filed 10–6–06; 12:40 pm] BILLING CODE 6705–01–P

FEDERAL COMMUNICATIONS COMMISSION

Notice of Public Information Collection(s) Being Reviewed by the Federal Communications Commission for Extension Under Delegated Authority

October 4, 2006.

SUMMARY: The Federal Communications Commission, as part of its continuing effort to reduce paperwork burden invites the general public and other Federal agencies to take this opportunity to comment on the following information collection(s), as required by the Paperwork Reduction Act (PRA) of 1995, Public Law 104-13. An agency may not conduct or sponsor a collection of information unless it displays a currently valid control number. No person shall be subject to any penalty for failing to comply with a collection of information subject to the Paperwork Reduction Act that does not display a valid control number. Comments are requested concerning (a) whether the proposed collection of information is necessary for the proper performance of the functions of the Commission, including whether the information shall have practical utility; (b) the accuracy of the Commission's burden estimate; (c) ways to enhance the quality, utility, and clarity of the information collected; and (d) ways to minimize the burden of the collection of information on the respondents, including the use of automated collection techniques or other forms of information technology.

DATES: Written Paperwork Reduction Act (PRA) comments should be submitted on or before December 11, 2006. If you anticipate that you will be submitting comments, but find it difficult to do so within the period of time allowed by this notice, you should advise the contact listed below as soon as possible.

ADDRESSES: You may submit your all Paperwork Reduction Act (PRA) comments by email or U.S. postal mail. To submit your comments by e-mail send them to *PRA@fcc.gov*. To submit your comments by U.S. mail, mark them to the attention of Cathy Williams, Federal Communications Commission,

Room 1–C823, 445 12th Street, SW., Washington, DC 20554.

FOR FURTHER INFORMATION CONTACT: For additional information about the information collection(s) send an e-mail to *PRA@fcc.gov* or contact Cathy Williams at (202) 418–2918.

SUPPLEMENTARY INFORMATION:

OMB Control Number: 3060–0945. Title: Section 79.2, Accessibility of Programming Providing Emergency Information.

Form Number: Not applicable. Type of Review: Extension of a currently approved collection.

Respondents: Business or other forprofit entities; Not-for-profit institutions; State, local or tribal government.

Number of Respondents: 200. Estimated Time per Response: 1 hour-2 hours.

Frequency of Response: On occasion reporting requirement.

Total Annual Burden: 250 hours.
Total Annual Cost: \$5,000.
Privacy Impact Accessment: No.

 $\label{lem:privacy Impact Assessment: No impact (s).} Privacy Impact Assessment: No impact (s).$

Needs and Uses: 47 CFR 79.2 requires any broadcast station or multiple video programming distributor (MVPD) that provides local emergency information as part of a regularly scheduled newscast, or as part of a newscast that interrupts regularly scheduled programming, to make the critical details of the information accessible to persons with visual disabilities in the affected local area. In addition, any broadcast station or MVPD that provides emergency information through a crawl or scroll must accompany that information with an aural tone to alert persons with visual disabilities that the station or MVPD is providing this information. Under 47 CFR 79.2(c), a complaint alleging a violation of this section may be transmitted to the Commission by any reasonable means that would best accommodate the complainant's disability. The complaint should include the name of the video programming distributor against whom the complaint is alleged, the date and time of the omission of emergency information, and the type of emergency. The Commission will notify the video programming distributor of the complaint, and the distributor will reply to the complaint within 30 days.

Federal Communications Commission.

Marlene H. Dortch,

Secretary.

[FR Doc. E6–16829 Filed 10–10–06; 8:45 am] BILLING CODE 6712–10–P

FEDERAL COMMUNICATIONS COMMISSION

Public Information Collections Approved by Office of Management and Budget

October 2, 2006.

SUMMARY: The Federal Communications Commission (Commission) has received Office of Management and Budget (OMB) approval for the following public information collections pursuant to the Paperwork Reduction Act of 1995, Public Law 104–13. An agency may not conduct or sponsor and a person is not required to respond to a collection of information unless it displays a currently valid control number.

FOR FURTHER INFORMATION CONTACT: Paul J. Laurenzano, Federal Communications Commission, 445 12th Street, SW., Washington, DC 20554, (202) 418–1359 or via the Internet at plaurenz@fcc.gov.

SUPPLEMENTARY INFORMATION:

OMB Control No.: 3060–0921.

OMB Approval Date: 09/13/2006.

Expiration Date: 09/30/2009.

Title: Petitions for LATA Boundary Modification for the Deployment of Advanced Services.

Form No.: N/A.

Estimated Annual Burden: 1 response; 8 total annual burden hours.

Needs and Uses: Bell Operating Companies (BOCs) that petition for LATA boundary modifications to encourage the deployment of advanced service on a reasonable and timely basis are requested to include information in accordance with specified criteria. The Commission will use this information to review the petitions.

OMB Control No.: 3060–0710. OMB Approval Date: 09/21/2006. Expiration Date: 12/31/2006. Title: Part 36—Separations. Form No.: N/A.

Estimated Annual Burden: 5,788 responses; 58,418 total annual burden hours.

Needs and Uses: In order to allow determination of the study areas that are entitled to an expense adjustment, and the wire centers that are entitled to high-cost universal service support, incumbent and competitive telecommunications carriers must provide certain data to the National Exchange Carrier Association or the Universal Service Administrative Company annually and/or quarterly. Local telecommunications carriers who want to participate in the federal universal service support program must make certain informational showings to demonstrate eligibility.

Federal Communications Commission.

Marlene H. Dortch,

Secretary.

[FR Doc. E6–16831 Filed 10–10–06; 8:45 am] BILLING CODE 6712–01–P

FEDERAL COMMUNICATIONS COMMISSION

Sunshine Act Meeting; Open Commission Meeting Thursday, October 12, 2006

October 5, 2006.

The Federal Communications Commission will hold an Open Meeting on the subjects listed below on Thursday, October 12, 2006, which is scheduled to commence at 9:30 a.m. in Room TW-C305, at 445 12th Street, SW., Washington, DC.

Item No.	Bureau	Subject
1	Media	Title: Annual Assessment of the Status of Competition in the Market for the Delivery of Video Programming. Summary: The Commission will consider a Notice of Inquiry that seeks comments and information for the Thirteenth Annual Report on the status of competition in the market for
2	Wireless Telecommunications	the delivery of video programming. Title: Qualcomm Incorporated Petition for Declaratory Ruling (WT Docket No. 05–7). Summary: The Commission will consider an Order concerning a request for declaratory ruling regarding the interference protection requirements applicable to the 700 MHz Band.
3	Office of Engineering and Technology	Title: Unlicensed Operation in the TV Broadcast Bands (ET Docket No. 04–186). Summary: The Commission will consider a First Report and Order and Further Notice of Proposed Rule Making concerning new wireless operations in the TV broadcast bands.
4	Wireline Competition	Title: AT&T Inc. and BellSouth Corporation Application for Transfer of Control (WC Docket No. 06–74).
5	Wireline Competition	Summary: The Commission will consider a Memorandum Opinion and Order regarding the transfer of control application of AT&T and BellSouth. Title: Broadband Industry Practices. Summary: The Commission will consider a Notice of Inquiry regarding broadband industry practices.

Open captioning will be provided for this event. Other reasonable accommodations for people with disabilities are available upon request. Include a description of the accommodation you will need including as much detail as you can. Also include a way we can contact you if we need more information. Make your request as early as possible; please allow at least 5 days advance notice. Last minute requests will be accepted, but may be impossible to fill. Send an e-mail to: fcc504@fcc.gov or call the Consumer &

Governmental Affairs Bureau at 202–418–0530 (voice), 202–418–0432 (tty).

Additional information concerning this meeting may be obtained from Audrey Spivack or David Fiske, Office of Media Relations, (202) 418–0500; TTY 1–888–835–5322. Audio/Video coverage of the meeting will be broadcast live with open captioning over the Internet from the FCC's Audio/Video Events Web page at http://www.fcc.gov/realaudio.

For a fee this meeting can be viewed live over George Mason University's Capitol Connection. The Capitol Connection also will carry the meeting live via the Internet. To purchase these services, call (703) 993–3100 or go to http://www.capitolconnection.gmu.edu.

Copies of materials adopted at this meeting can be purchased from the FCC's duplicating contractor, Best Copy and Printing, Inc. (202) 488–5300; Fax (202) 488–5563; TTY (202) 488–5562. These copies are available in paper format and alternative media, including large print/type; digital disk; and audio and video tape. Best Copy and Printing, Inc. may be reached by e-mail at FCC@BCPIWEB.com.

Federal Communications Commission.

William F. Caton,

Deputy Secretary.
[FR Doc. 06–8639 Filed 10–6–06; 2:18 pm]
BILLING CODE 6712–01–P

FEDERAL RESERVE SYSTEM

Change in Bank Control Notices; Acquisition of Shares of Bank or Bank Holding Companies

The notificants listed below have applied under the Change in Bank Control Act (12 U.S.C. 1817(j)) and § 225.41 of the Board's Regulation Y (12 CFR 225.41) to acquire a bank or bank holding company. The factors that are considered in acting on the notices are set forth in paragraph 7 of the Act (12 U.S.C. 1817(j)(7)).

The notices are available for immediate inspection at the Federal Reserve Bank indicated. The notices also will be available for inspection at the office of the Board of Governors. Interested persons may express their views in writing to the Reserve Bank indicated for that notice or to the offices of the Board of Governors. Comments must be received not later than October 24, 2006.

A. Federal Reserve Bank of Dallas (W. Arthur Tribble, Vice President) 2200 North Pearl Street, Dallas, Texas 75201– 2272:

- 1. Mark A. Long, McQueeney, Texas, and Kelly Goulart, Seguin, Texas; individually and as trustees for The First Commercial Financial Corp. Employee Stock Ownership Plan, to acquire additional voting shares of First Commercial Financial Corp., Seguin, Texas, and thereby indirectly additional voting shares of First Commercial Bank, National Association, Seguin, Texas.
- B. Federal Reserve Bank of Minneapolis (Jacqueline G. King, Community Affairs Officer) 90 Hennepin Avenue, Minneapolis, Minnesota 55480-0291:
- 1. Katherine Anne Gray, Superior, Wisconsin, to acquire voting shares of Superior National Banc Holding Company, Superior, Wisconsin, and thereby indirectly acquire voting shares of Superior Bank, Superior, Wisconsin.

Board of Governors of the Federal Reserve System, October 4, 2006.

Robert deV. Frierson.

Deputy Secretary of the Board. [FR Doc. E6–16704 Filed 10–10–06; 8:45 am] BILLING CODE 6210–01–S

FEDERAL RESERVE SYSTEM

Formations of, Acquisitions by, and Mergers of Bank Holding Companies

The companies listed in this notice have applied to the Board for approval, pursuant to the Bank Holding Company Act of 1956 (12 U.S.C. 1841 et seq.) (BHC Act), Regulation Y (12 CFR Part 225), and all other applicable statutes and regulations to become a bank holding company and/or to acquire the assets or the ownership of, control of, or the power to vote shares of a bank or bank holding company and all of the banks and nonbanking companies owned by the bank holding company, including the companies listed below.

The applications listed below, as well as other related filings required by the Board, are available for immediate inspection at the Federal Reserve Bank indicated. The application also will be available for inspection at the offices of the Board of Governors. Interested persons may express their views in writing on the standards enumerated in the BHC Act (12 U.S.C. 1842(c)). If the proposal also involves the acquisition of a nonbanking company, the review also includes whether the acquisition of the nonbanking company complies with the standards in section 4 of the BHC Act (12 U.S.C. 1843). Unless otherwise noted, nonbanking activities will be conducted throughout the United States. Additional information on all bank holding companies may be obtained from the National Information Center website at www.ffiec.gov/nic/.

Unless otherwise noted, comments regarding each of these applications must be received at the Reserve Bank indicated or the offices of the Board of Governors not later than November 3, 2006.

A. Federal Reserve Bank of Philadelphia (Michael E. Collins, Senior Vice President) 100 North 6th Street, Philadelphia, Pennsylvania 19105– 1521:

1. Conestoga Bancorp, Inc., Chester Springs, Pennsylvania; to merge with PSB Bancorp, Inc., Philadelphia, Pennsylvania, and thereby indirectly acquire voting shares of First Penn Bank, Philadelphia, Pennsylvania.

In connection with this application, Applicant also has applied to acquire Jade Abstract Company, Feasterville, Pennsylvania, and engage in providing real estate settlement services, and Jade Insurance Agency, Inc., Feasterville, Pennsylvania, and engage in providing credit insurance, pursuant to sections 225.28(b)(2)(viii) and 225.28(b)(11)(i) of Regulation Y respectively.

2. Sterling Banks, Inc. Mount Laurel, New Jersey; to become a bank holding company by acquiring 100 percent of the voting shares of Sterling Bank, Mount Laurel, New Jersey.

In connection with this application, applicant also has applied to acquire Farnsworth Bancorp, Inc., Bordentown, New Jersey, and thereby acquire Peoples Savings Bank, Bordentown, New Jersey, and engage in operating a savings bank, pursuant to section 225.25(b)(4)(ii) of Regulation Y.

B. Federal Reserve Bank of Chicago (Patrick M. Wilder, Assistant Vice President) 230 South LaSalle Street, Chicago, Illinois 60690-1414:

1. Dearborn Bancorp, Inc., Dearborn, Michigan; to merge with Fidelity Financial Corporation of Michigan, Birmingham, Michigan, and thereby indirectly acquire Fidelity Bank, Birmingham, Michigan.

Board of Governors of the Federal Reserve System, October 4, 2006.

Robert deV. Frierson,

Deputy Secretary of the Board. [FR Doc. E6–16705 Filed 10–10–06; 8:45 am] BILLING CODE 6210–01–8

FEDERAL RESERVE SYSTEM

Formations of, Acquisitions by, and Mergers of Bank Holding Companies

The companies listed in this notice have applied to the Board for approval, pursuant to the Bank Holding Company Act of 1956 (12 U.S.C. 1841 et seq.) (BHC Act), Regulation Y (12 CFR Part 225), and all other applicable statutes and regulations to become a bank holding company and/or to acquire the assets or the ownership of, control of, or the power to vote shares of a bank or bank holding company and all of the banks and nonbanking companies owned by the bank holding company, including the companies listed below.

The applications listed below, as well as other related filings required by the Board, are available for immediate inspection at the Federal Reserve Bank indicated. The application also will be available for inspection at the offices of the Board of Governors. Interested persons may express their views in writing on the standards enumerated in the BHC Act (12 U.S.C. 1842(c)). If the proposal also involves the acquisition of a nonbanking company, the review also includes whether the acquisition of the nonbanking company complies with the standards in section 4 of the BHC Act (12 U.S.C. 1843). Unless otherwise noted, nonbanking activities will be conducted throughout the United States. Additional information on all bank

holding companies may be obtained from the National Information Center website at www.ffiec.gov/nic/.

Unless otherwise noted, comments regarding each of these applications must be received at the Reserve Bank indicated or the offices of the Board of Governors not later than November 3, 2006.

A. Federal Reserve Bank of New York (Anne McEwen, Financial Specialist) 33 Liberty Street, New York, New York 10045-0001:

- 1. Fort Orange Financial Corporation, Albany New York; to become a bank holding company by acquiring 100 percent of the voting shares of Capital Bank & Trust Company, Albany, New York.
- B. Federal Reserve Bank of San Francisco (Tracy Basinger, Director, Regional and Community Bank Group) 101 Market Street, San Francisco, California 94105-1579:
- 1. Castle Creek Capital Partners III, L.P., Castle Creek Capital III LLC, Eggemeyer Capital LLC, Ruh Capital LLC, Western States Opportunity LLC, Eggemeyer Family Trust, William J. Ruh Trust, Legions IV Advisory Corp., all located in Rancho Santa Fe, California, and LDF, Inc., Chicago, Illinois; to acquire 100 percent of the voting shares of BB&T Bancshares, Corp., and thereby indirectly acquire Bloomingdale Bank and Trust, both of Bloomingdale, Illinois.
- 2. West Valley Bancorp, Inc., Avondale, Arizona; to become a bank holding company by acquiring 100 percent of the voting shares of West Valley National Bank (in organization), both of Avondale, Arizona.

Board of Governors of the Federal Reserve System, October 5, 2006.

Robert deV. Frierson,

Deputy Secretary of the Board. [FR Doc. E6–16737 Filed 10–10–06; 8:45 am] BILLING CODE 6210–01–8

FEDERAL RESERVE SYSTEM

Notice of Proposals to Engage in Permissible Nonbanking Activities or to Acquire Companies that are Engaged in Permissible Nonbanking Activities

The companies listed in this notice have given notice under section 4 of the Bank Holding Company Act (12 U.S.C. 1843) (BHC Act) and Regulation Y (12 CFR Part 225) to engage *de novo*, or to acquire or control voting securities or assets of a company, including the companies listed below, that engages either directly or through a subsidiary or other company, in a nonbanking activity

that is listed in § 225.28 of Regulation Y (12 CFR 225.28) or that the Board has determined by Order to be closely related to banking and permissible for bank holding companies. Unless otherwise noted, these activities will be conducted throughout the United States.

Each notice is available for inspection at the Federal Reserve Bank indicated. The notice also will be available for inspection at the offices of the Board of Governors. Interested persons may express their views in writing on the question whether the proposal complies with the standards of section 4 of the BHC Act. Additional information on all bank holding companies may be obtained from the National Information Center website at www.ffiec.gov/nic/.

Unless otherwise noted, comments regarding the applications must be received at the Reserve Bank indicated or the offices of the Board of Governors not later than October 25, 2006.

A. Federal Reserve Bank of Chicago (Patrick M. Wilder, Assistant Vice President) 230 South LaSalle Street, Chicago, Illinois 60690-1414:

1. Great River Financial Group, Inc., Burlington, Iowa; to operate a federal Savings Bank upon the conversion of its subsidiary Burlington Bank and Trust, Burlington, Iowa, to a Federal Savings Bank, pursuant to section 225.28(b)(4)(ii) of Regulation Y.

Board of Governors of the Federal Reserve System, October 4, 2006.

Robert deV. Frierson,

Deputy Secretary of the Board. [FR Doc. E6–16703 Filed 10–10–06; 8:45 am] BILLING CODE 6210–01–8

DEPARTMENT OF HEALTH AND HUMAN SERVICES

Notice of Meeting of the Advisory Committee on Minority Health

AGENCY: Office of Minority Health, Office of Public Health and Science, Office of the Secretary, DHHS.

ACTION: Notice.

SUMMARY: As stipulated by the Federal Advisory Committee Act, the Department of Health and Human Services (DHHS) is hereby giving notice that the Advisory Committee on Minority Health (ACMH) will hold a meeting. This meeting is open to the public. Preregistration is required for both public attendance and comment. Any individual who wishes to attend the meeting and/or participate in the public comment session should e-mail acmb@osophs.dhhs.gov.

DATES: The meeting will be held on October 31, 2006, from 8:30 a.m. to 5 p.m.

ADDRESSES: The meeting will be held at the Crowne Plaza Hotel, 8777 Georgia Avenue, Silver Spring, Maryland 20910. The meeting is accessible from the Silver Spring Metro Station. The Crowne Plaza Hotel will provide shuttle service to and from the Silver Spring Metro Station for individuals attending the ACMH meeting on October 31, 2006. Meeting participants can call the hotel at (301) 589-0800 for shuttle pick-up if they don't see the shuttle. Meeting participants may also walk the three short blocks to the hotel from the Silver Spring station by existing onto Wayne Avenue and walking toward the Discovery Building. Make a left onto Georgia Avenue and walk the 1 block toward the Crowne Plaza. The hotel will be on the right-hand side.

FOR FURTHER INFORMATION CONTACT: Ms. Monica A. Baltimore, Tower Building, 1101 Wootton Parkway, Suite 600, Rockville, Maryland 20852. Phone: 240–453–2882 Fax: 240–453–2883.

SUPPLEMENTARY INFORMATION: In accordance with Public Law 105–392, the ACMH was established to provide advice to the Deputy Assistant Secretary for Minority Health in improving the health of each racial and ethnic minority group and on the development of goals and specific program activities of the Office of Minority Health.

Topics to be discussed during this meeting will include strategies to improve the health of racial and ethnic minority populations through the development of health policies and programs that will help eliminate health disparities, as well as other related issues.

Public attendance at the meeting is limited to space available. Individuals who plan to attend and need special assistance, such as sign language interpretation or other reasonable accommodations, should notify the designated contact person at least fourteen business days prior to the meeting. Members of the public will have an opportunity to provide comments at the meeting. Public comments will be limited to three minutes per speaker. Individuals who would like to submit written statements should mail or fax their comments to the Office of Minority Health at least five business days prior to the meeting. Any member of the public who wishes to have printed material distributed to ACMH committee members should submit their materials to Garth Graham, M.D., M.P.H., Executive Secretary, ACMH, Tower Building, 1101 Wootton Parkway, Suite 600, Rockville, Maryland 20852, prior to close of business on October 18, 2006.

October 3, 2006.

Mirtha R. Beadle,

Deputy Director, Office of Minority Health, Office of Public Health and Science, Office of the Secretary, U.S. Department of Health and Human Services.

[FR Doc. 06–8596 Filed 10–10–06; 8:45 am] BILLING CODE 4150–29–m

DEPARTMENT OF HEALTH AND HUMAN SERVICES

Agency for Healthcare Research and Quality

Agency Information Collection Activities: Proposed Collection; Comment Request

AGENCY: Agency for Healthcare Research and Quality, Department of Health and Human Services.

ACTION: Notice.

SUMMARY: This notice announces the intention of the Agency for Healthcare Research and Quality (AHRQ) to request that the Office of Management and Budget (OMB) allow the proposed information collection project: "Assessment of Unreimbursed Care among Community Primary Care Physicians." In accordance with the Paperwork Reduction Act of 1995, Public Law 104–13 (44 U.S.C. 3506(c)(2)(A)), AHRQ invites the public to comment on this proposed information collection.

DATES: Comments on this notice must be received by November 13, 2006.

ADDRESSES: Written comments should be submitted to: Doris Lefkowitz, Reports Clearance Officer, AHRQ, 540 Gaither Road, Room #5036, Rockville, MD 20850. Copies of the proposed collection plans, data collection instruments, and specific details on the estimated burden can be obtained from AHRQ's Reports Clearance Officer.

FOR FURTHER INFORMATION CONTACT: Doris Lefkowitz, AHRQ, Reports Clearance Officer, (301) 427–1477.

SUPPLEMENTARY INFORMATION:

Proposed Project

"Assessment of Unreimbursed Care among Community Primary Care Physicians"

This project is being conducted as part of AHRQ's Primary Care Practice-Based Research Networks (PBRN). One of AHRQ's PBRN contractors, the American Academy of Family Physician's National Research Network (AAFP–NRN), will survey primary care practices participating in its PBRN in order to assess the current state of unreimbursed medical care provided in community based primary care practices.

There has been substantial research conducted to quantify the amount of unreimbursed care provided in private physicians' offices. This survey will collect information from a sample of community-based primary care practices that are widely representative of private physicians across the United States in order to understand the current

state of private primary care office unreimbursed care and help assess factors that encourage and discourage practices from engaging in this activity.

The AAFP–NRN will collaborate with AHRQ on the design of a self-administered, web-based questionnaire. The survey will collect information pertaining to the level of un-reimbursed care in the practice as well as characteristics of the practice, the physician(s) and the patient population.

Methods of Collection

The survey will be distributed to 1200 primary care physicians with an expected response rate of 65% (780 responses). A stratified sampling approach will be used to ensure appropriate representation from the four Census regions, urban and rural areas, and small and large practices. Selected physicians will receive a letter informing them of the purpose of the study, inviting them to participate and offering them the opportunity to complete the survey on paper or via the Internet. A follow-up mailing with a duplicate paper-based version of the questionnaire will be mailed to nonresponders after two weeks. Reminder phone calls will be placed in weeks four and six to all non-responders. If necessary to achieve target response rates, a re-mailing of the paper-based questionnaire will occur in week eight. The questionnaire is estimated to take no more than fifteen minutes to complete.

ESTIMATED ANNUAL RESPONDENT BURDEN

Data collection effort	Number of respondents	Estimated time per respondent in hours	Estimated total burden hours	
Primary care clinicians	780	.25	195	

Estimated Costs to the Federal Government

The total cost to the government for this activity is estimated to be \$129,956.

Request for Comments

In accordance with the above-cited legislation, comments on AHRQ's information collection are requested with regard to any of the following: (a) Whether the proposed collection of information is necessary for the proper performance of health care research and information dissemination functions of AHRQ, including whether the information will have practical utility; (b) the accuracy of AHRQ's estimate of burden (including hours and costs) of the proposed collection(s) of

information; (c) ways to enhance the quality, utility, and clarity of the information to be collected; and (d) ways to minimize the burden of the collection of information upon the respondents, including the use of automated collection techniques or other forms of information technology.

To date, one comment has been received. The commenter noted that s/he believed no physicians provide free care. The purpose of this survey is to assess the current state of private primary care office un-reimbursed care and help assess factors that encourage and discourage practices from engaging in this activity.

Comments submitted in response to this notice will be summarized and included in the request for OMB approval of the proposed information collection. All comments will become a matter of public record.

Dated: September 26, 2006.

Carolyn M. Clancy,

Director.

[FR Doc. 06–8607 Filed 10–10–06; 8:45am] BILLING CODE 4160–90–M

DEPARTMENT OF HEALTH AND HUMAN SERVICES

Centers for Disease Control and Prevention

[60Day-06-05AI]

Proposed Data Collections Submitted for Public Comment and Recommendations

In compliance with the requirement of section 3506(c)(2)(A) of the Paperwork Reduction Act of 1995 for opportunity for public comment on proposed data collection projects, the Centers for Disease Control and Prevention (CDC) will publish periodic summaries of proposed projects. To request more information on the proposed projects or to obtain a copy of the data collection plans and instruments, call 404-639-5960 and send comments to Seleda Perryman, CDC Assistant Reports Clearance Officer, 1600 Clifton Road, MS-D74, Atlanta, GA 30333 or send an e-mail to omb@cdc.gov.

Comments are invited on: (a) Whether the proposed collection of information is necessary for the proper performance of the functions of the agency, including whether the information shall have practical utility; (b) the accuracy of the agency's estimate of the burden of the proposed collection of information; (c) ways to enhance the quality, utility, and clarity of the information to be collected; and (d) ways to minimize the burden of the collection of information on respondents, including through the use of automated collection techniques or other forms of information technology. Written comments should

be received within 60 days of this notice.

Proposed Project

Quantitative Assessment of Internet Use and HIV-Related Risk Behavior Among Black and Latino Men Who Have Sex with Men—New—National Center for HIV, STD, and TB Prevention (NCHSTP), Centers for Disease Control and Prevention (CDC).

Background and Brief Description

CDC is requesting a two year approval from the Office of Management and Budget (OMB) to administer an epidemiological survey on the Internet. CDC is funding an Internet study that examines behaviors of gay-identified and nongay-identified Black and Latino men who have sex with men. The objectives of the study are threefold: (1) To determine if Black and Latino men who have sex with men (MSM) who use the Internet to meet sexual partners report greater HIV-related sexual and drug risks than those who do not; (2) to identify respondents' non-Internet sexseeking behaviors, and (3) to explore to what degree Black and Latino MSM with Internet access view this medium as a potential tool for HIV prevention.

African American and Latino men, especially those men who have sex with men, continue to be an extremely vulnerable population affected by high rates of HIV/AIDS. The impact of HIV/AIDS on African American and Latino communities has been devastatingly disproportionate as compared to European American populations. Through December 2001, CDC reported that while African Americans represented only 12% of the total U.S. population, they accounted for almost

38% of all the AIDS cases. For all men, the exposure category of "men who have sex with men" represented the largest transmission route for HIV infection.

While existing studies show that Black and Latino MSM may be at greater risk for contracting and transmitting HIV/AIDS to partners, CDC knows little about Black and Latino MSM using the Internet and/or potential avenues for HIV prevention with this population since most of the studies conducted this far have been with White MSM samples. Data gathered from this study will guide CDC development of risk reduction programs for this high-risk population.

A convenience sample of 500 Black (African American, African-Latin, African-Caribbean, African, Mixed race) and 500 Latino (Caribbean, Central or South American ancestry) MSM will be asked to respond to a one-time survey of attitudes, knowledge and behavior related to Internet sex seeking behavior and HIV/STD (sexually transmitted disease) transmission. This survey will take approximately 20 minutes to complete and will include questions on the following topics: demographics (i.e., age, education, income, HIV status, etc.); sexual identity, racial/ethnic identity; homophobia; HIV/AIDS knowledge, attitudes, behavior; perceived HIV/AIDS susceptibility; STD history; characteristics of sexual partners and perceived HIV/AIDS susceptibility of sexual partners; risk behavior specific to online versus traditional venues; use of screen names and cruising sites; sexual compulsivity; substance use; time spent online and time spent sex seeking. There is no cost to the respondents other than their time.

ESTIMATED ANNUALIZED BURDEN HOURS

Respondents	Number of re- spondents	Number of re- sponses/re- spondent	Average bur- den per re- sponse (in hours)	Total burden hours
Participants: 1) Screener	1000 1000	1 1	5/60 15/60	83 250
Total	1000			333

Dated: October 4, 2006.

Joan F. Karr,

Acting Reports Clearance Officer, Centers for Disease Control and Prevention.

[FR Doc. E6–16746 Filed 10–10–06; 8:45 am]

BILLING CODE 4163-18-P

DEPARTMENT OF HEALTH AND HUMAN SERVICES

Centers for Disease Control and Prevention

CDC/HRSA Advisory Committee on HIV and STD Prevention and Treatment (CHACHSPT)

In accordance with section 10(a)(2) of the Federal Advisory Committee Act (Pub. L. 92–463), the Centers for Disease Control and Prevention (CDC) and the Health Resources and Services Administration (HRSA) announce the following committee meeting.

Name: CDC/HRSA Advisory Committee on HIV and STD Prevention and Treatment.

Times and Dates: 8 a.m.-5 p.m., November 13, 2006. 8 a.m.-12:15 p.m., November 14, 2006.

Place: Hotel Washington, 15th Street and Pennsylvania Avenue, NW., Washington, DC 20004, Telephone: 202–638–5900 or Fax 202–638–1594.

Status: Open to the public, limited only by the space available. The meeting room will accommodate approximately 100 people.

Purpose: This Committee is charged with advising the Secretary, the Director, CDC and the Administrator, HRSA, regarding activities related to prevention and control of HIV/AIDS and other STDs, the support of health care services to persons living with HIV/AIDS, and education of health professionals and the public about HIV/AIDS and other

Matters To Be Discussed: Agenda items include issues pertaining to (1) HIV issues related to stigma, racism and discrimination and (2) Comprehensive adolescent sexual health and other HIV related issues. Agenda items are subject to change as priorities dictate.

For Further Information Contact: Margie Scott-Cseh, Committee Management Specialist, National Center for HIV, STD, and TB Prevention, 1600 Clifton Road, NE., Mailstop E–07, Atlanta, Georgia 30333. Telephone: 404–639–8317, or Fax 404–639–3125, e-mail zkr7@cdc.gov.

The Director, Management Analysis and Services Office, has been delegated the authority to sign **Federal Register** notices pertaining to announcements of meetings and other committee management activities, for both CDC and the Agency for Toxic Substances and Disease Registry.

Dated: October 4, 2006.

Alvin Hall,

Director, Management Analysis and Services Office, Centers for Disease Control and Prevention.

[FR Doc. E6–16739 Filed 10–10–06; 8:45 am]

DEPARTMENT OF HEALTH AND HUMAN SERVICES

Centers for Disease Control and Prevention

National Institute for Occupational Safety and Health (NIOSH); Advisory Board on Radiation and Worker Health

In accordance with section 10(a)(2) of the Federal Advisory Committee Act (Pub. L. 92–463), the Centers for Disease Control and Prevention announces the following committee meeting:

Name: Advisory Board on Radiation and Worker Health, National Institute for Occupational Safety and Health.

Time and Date: 10 a.m.-4 p.m., October 18, 2006.

Place: Via Teleconference. For toll-free access, please dial 866–643–6504. Participant Pass Code 9448550.

Status: Open to the public, but without a public comment period.

Background: The Advisory Board was established under the Energy Employees Occupational Illness Compensation Program Act of 2000 to advise the President on a variety of policy and technical functions required to implement and effectively manage the new compensation program. Key functions of the Advisory Board include providing advice on the development of probability of causation guidelines that have been promulgated by the Department of Health and Human Services (HHS) as a final rule, advice on methods of dose reconstruction which have also been promulgated by HHS as a final rule, advice on the scientific validity and quality of dose estimation and reconstruction efforts being performed for purposes of the compensation program, and advice on petitions to add classes of workers to the Special Exposure Cohort.

In December 2000, the President delegated responsibility for funding, staffing, and operating the Advisory Board to HHS, which subsequently delegated this authority to CDC. NIOSH implements this responsibility for CDC. The charter was issued on August 3, 2001, renewed at appropriate intervals, and will expire on August 3, 2007.

Purpose: The Advisory Board is charged with (a) Providing advice to the Secretary, HHS, on the development of guidelines under Executive Order 13179; (b) providing advice to the Secretary, HHS, on the scientific validity and quality of dose reconstruction efforts performed for this program; and (c) upon request by the Secretary, HHS, advise the Secretary on whether there is a class of employees at any Department of Energy facility who were

exposed to radiation but for whom it is not feasible to estimate their radiation dose, and on whether there is reasonable likelihood that such radiation doses may have endangered the health of members of this class.

Matters To Be Discussed: The agenda for the Advisory Board meeting includes Updates on Conflict of Interest Issues; Working Group Updates; Selection of Board Members for Individual Dose Reconstruction Reviews; Planning for Board Future Meetings and Activities; and Discussion of Past Public Comments and Possible Board Actions.

The agenda is subject to change as priorities dictate. In the event an individual cannot attend, written comments may be submitted. Any written comments received will be provided at the meeting and should be submitted to the contact person below well in advance of the meeting.

Due to programmatic matters, this **Federal Register** Notice is being published on less than 15 calendar days notice to the public (41 CFR 102–3.150(b)).

Contact Person for More Information: Dr. Lewis V. Wade, Executive Secretary, NIOSH, CDC, 4676 Columbia Parkway, Cincinnati, Ohio 45226, telephone 513–533–6825, fax 513–533–6826.

The Director, Management Analysis and Services Office, has been delegated the authority to sign **Federal Register** notices pertaining to announcements of meetings and other committee management activities, for both CDC and the Agency for Toxic Substances and Disease Registry.

Dated: October 4, 2006.

Alvin Hall,

Director, Management Analysis and Services Office, Centers for Disease Control and Prevention (CDC).

[FR Doc. E6–16747 Filed 10–10–06; 8:45 am] BILLING CODE 4163–18–P

DEPARTMENT OF HEALTH AND HUMAN SERVICES

Food and Drug Administration

Request for Nominations for Voting Members on Public Advisory Panels or Committees

AGENCY: Food and Drug Administration, HHS.

ACTION: Notice.

SUMMARY: The Food and Drug
Administration (FDA) is requesting
nominations for voting members to
serve on the Device Good
Manufacturing Practice Advisory
Committee, certain device panels of the
Medical Devices Advisory Committee,
the National Mammography Quality
Assurance Advisory Committee, and the
Technical Electronic Products Radiation
Safety Standards Committee in the
Center for Devices and Radiological
Health. Nominations will be accepted

for current vacancies and those that will or may occur through August 31, 2007.

FDA has a special interest in ensuring that women, minority groups, and individuals with disabilities are adequately represented on advisory committees and, therefore, encourages nominations of qualified candidates from these groups.

DATES: Because scheduled vacancies occur on various dates throughout each year, no cutoff date is established for the receipt of nominations. However, when possible, nominations should be

received at least 6 months before the date of scheduled vacancies for each year, as indicated in this notice.

ADDRESSES: Send all nominations and curricula vitae to the following contact persons in table 1 of this document:

TABLE 1.

Contact Person	Committee/Panel
Geretta P. Wood, Center for Devices and Radiological Health (HFZ–400), Food and Drug Administration, 9200 Corporate Blvd., Rock-ville, MD 20850, 301–594–2022, e-mail: geretta.wood@fda.hhs.gov	Certain Device Panels of the Medical Devices Advisory Committee
Nancy M. Wynne, Center for Devices and Radiological Health (HFZ–240), Food and Drug Administration, 1350 Piccard Dr., Rockville, MD 20850, e-mail: nancy.wynne@fda.hhs.gov	National Mammography Quality Assurance Advisory Committee
Collin L. Figueroa, Center for Devices and Radiological Health (HFZ–342), Food and Drug Administration, 2094 Gaither Rd., Rockville, MD 20850, e-mail: collin.figueroa@fda.hhs.gov	Device Good Manufacturing Practice Advisory Committee
Richard V. Kaczmarek, Center for Devices and Radiological Health (HFZ–240), Food and Drug Administration, 1350 Piccard Dr., Rockville, MD 20850, e-mail: richard.kaczmarek@fda.hhs.gov	Technical Electronic Product Radiation Safety Standards Committee

FOR FURTHER INFORMATION CONTACT:

Kathleen L. Walker, Center for Devices and Radiological Health (HFZ–17), Food and Drug Administration, 7520 Standish Pl., Rockville, MD 20855, 301–827–7293, e-mail: kathleen.walker@fda.hhs.gov.

SUPPLEMENTARY INFORMATION:

I. Vacancies

FDA is requesting nominations of voting members for vacancies listed as follows:

TABLE 2.

Committee/Panel Expertise Needed	Current and Upcoming Vacancies	Approximate Date Needed	
Anesthesiology and Respiratory Therapy Devices Panel of the Medical Devices Advisory Committee—anesthesiologists, pulmonary medicine specialists, or other experts who have specialized interests in ventilator support, pharmacology, physiology, or the effects and complications of anesthesia	2 2	Immediately December 1, 2006	
Circulatory System Devices Panel of the Medical Devices Advisory Committee—interventional cardiologists, electrophysiologists, invasive (vascular) radiologists, vascular and cardiothoracic surgeons, and cardiologists with special interest in congestive heart failure	4	July 1, 2007	
Clinical Chemistry and Clinical Toxicology Devices Panel of the Medical Devices Advisory Committee—doctors of medicine or philosophy with experience in clinical chemistry (e.g., cardiac markers), clinical toxicology, clinical pathology, clinical laboratory medicine, and endocrinology	2	March 1, 2007	
Dental Products Panel of the Medical Devices Advisory Committee—dentists, engineers, and scientists who have expertise in the areas of dental implants, dental materials, periodontology, tissue engineering, and dental anatomy	2	November 1, 2006	
Ear, Nose, and Throat Devices Panel of the Medical Devices Advisory Committee—otologists, neurotologists, and audiologists	1	November 1, 2006	
Gastroenterology and Urology Devices Panel of the Medical Devices Advisory Committee—gastroenterologists, urologists, and nephrologists	2	January 1, 2007	
General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee—surgeons (general, plastic, reconstructive, pediatric, thoracic, abdominal, pelvic, and endoscopic); dermatologists; experts in biomaterials, lasers, wound healing, and quality of life; and biostatisticians	2 2	Immediately September 1, 2007	

TABLE 2.—Continued

Committee/Panel Expertise Needed	Current and Upcoming Vacancies	Approximate Date Needed
Hematology and Pathology Devices Panel of the Medical Devices Advisory Committee—hematologists (benign and/or malignant hematology), hematopathologists (general and special hematology, coagulation and homeostasis, and hematological oncology), gynecologists with special interests in gynecological oncology, cytopathologists, and molecular pathologists with special interests in development of predictive and prognostic biomarkers	3	Immediately
Immunology Devices Panel of the Medical Devices Advisory Committee—persons with experience in medical, surgical, or clinical oncology, internal medicine, clinical immunology, allergy, molecular diagnostics, or clinical laboratory medicine	2	March 1, 2007
Medical Devices Dispute Resolution Panel of the Medical Devices Advisory Committee—experts with broad, cross-cutting scientific, clinical, analytical, or mediation skills	1	Immediately
Microbiology Devices Panel of the Medical Devices Advisory Committee—infectious disease clinicians (e.g., pulmonary disease specialists, sexually transmitted disease specialists, pediatric infectious disease specialists, experts in tropical medicine and emerging infectious diseases, and mycologists); clinical microbiologists and virologists; clinical virology and microbiology laboratory directors, with expertise in clinical diagnosis and in vitro diagnostic assays (e.g., hepatologists and molecular biologists)	3 2	Immediately March 1, 2007
Molecular and Clinical Genetics Devices Panel of the Medical Devices Advisory Committee—experts in human genetics and in the clinical management of patients with genetic disorders (e.g., pediatricians, obstetricians, and neonatologists); individuals with training in inborn errors of metabolism, biochemical and/or molecular genetics, population genetics, epidemiology, and related statistical training; individuals with experience in genetic counseling or medical ethics; ancillary fields of study will be considered as well	1 3	Immediately June 1, 2007
Obstetrics and Gynecology Devices Panel of the Medical Devices Advisory Committee—experts in perinatology, embryology, reproductive endocrinology, pediatric gynecology, gynecological oncology, operative hysteroscopy, pelviscopy, electrosurgery, laser surgery, assisted reproductive technologies, contraception, postoperative adhesions, and cervical cancer and colposcopy; biostatisticians and engineers with experience in obstetrics/gynecology devices; urogynecologists; experts in breast care; experts in gynecology in the older patient; experts in diagnostic (optical) spectroscopy; experts in midwifery; labor and delivery nursing	2	February 1, 2007
Radiological Devices Panel of the Medical Devices Advisory Committee—physicians with experience in general radiology, mammography, ultrasound, magnetic resonance, computed tomography, other radiological subspecialties, and radiation oncology; scientists with experience in diagnostic devices, radiation physics, statistical analysis, digital imaging, and image analysis	1	February 1, 2007
National Mammography Quality Assurance Advisory Committee—physician, practitioner, or other health professional whose clinical practice, research specialization, or professional expertise includes a significant focus on mammography	1	February 1, 2007
Device Good Manufacturing Practice Advisory Committee—Nine vacancies occurring immediately; three government representatives, two industry representatives, two public representatives, and two health professionals	9	Immediately
Technical Electronic Product Radiation Safety Standards Committee—10 vacancies occurring immediately, 4 government representatives, 2 industry representatives, and 4 general public representatives; 5 vacancies occurring January 1, 2007, 3 industry representatives, 1 government representative, and 1 general public representative	10 5	Immediately January 1, 2007

II. Functions

A. Medical Devices Advisory Committee

The committee reviews and evaluates data on the safety and effectiveness of marketed and investigational devices and makes recommendations for their regulation. The panels engage in a number of activities to fulfill the functions the Federal Food, Drug, and Cosmetic Act (the act) envisions for device advisory panels. With the exception of the Medical Devices Dispute Resolution Panel, each panel, according to its specialty area, performs the following duties: (1) Advises the

Commissioner of Food and Drugs (the Commissioner) regarding recommended classification or reclassification of devices into one of three regulatory categories, (2) advises on any possible risks to health associated with the use of devices, (3) advises on formulation of product development protocols, (4)

reviews premarket approval applications for medical devices, (5) reviews guidelines and guidance documents, (6) recommends exemption of certain devices from the application of portions of the act, (7) advises on the necessity to ban a device, and (8) responds to requests from the agency to review and make recommendations on specific issues or problems concerning the safety and effectiveness of devices. With the exception of the Medical Devices Dispute Resolution Panel, each panel, according to its specialty area, may also make appropriate recommendations to the Commissioner on issues relating to the design of clinical studies regarding the safety and effectiveness of marketed and investigational devices.

The Dental Products Panel also functions at times as a dental drug panel. The functions of the dental drug panel are to evaluate and recommend whether various prescription drug products should be changed to over-the-counter status and to evaluate data and make recommendations concerning the approval of new dental drug products for human use.

The Medical Devices Dispute
Resolution Panel provides advice to the
Commissioner on complex or contested
scientific issues between FDA and
medical device sponsors, applicants, or
manufacturers relating to specific
products, marketing applications,
regulatory decisions and actions by
FDA, and agency guidance and policies.
The panel makes recommendations on
issues that are lacking resolution, are
highly complex in nature, or result from
challenges to regular advisory panel
proceedings or agency decisions or
actions

B. National Mammography Quality Assurance Advisory Committee

The functions of the committee are to advise FDA on the following topics: (1) Developing appropriate quality standards and regulations for mammography facilities, (2) developing appropriate standards and regulations for bodies accrediting mammography facilities under this program, (3) developing regulations with respect to sanctions, (4) developing procedures for monitoring compliance with standards, (5) establishing a mechanism to investigate consumer complaints, (6) reporting new developments concerning breast imaging which should be considered in the oversight of mammography facilities, (7) determining whether there exists a shortage of mammography facilities in rural and health professional shortage areas and determining the effects of

personnel on access to the services of such facilities in such areas, (8) determining whether there will exist a sufficient number of medical physicists after October 1, 1999, and (9) determining the costs and benefits of compliance with these requirements.

C. Device Good Manufacturing Practice Advisory Committee

The functions of the committee are to review proposed regulations issuance regarding good manufacturing practices governing the methods used in, and the facilities and controls used for manufacture, packaging, storage, installation, and servicing of devices, and make recommendations regarding the feasibility and reasonableness of those proposed regulations. The committee also reviews and makes recommendations on proposed guidelines developed to assist the medical device industry in meeting the good manufacturing practice requirements, and provides advice with regard to any petition submitted by a manufacturer for an exemption or variance from good manufacturing practice regulations.

Section 520 of the act (21 U.S.C. 360(j)), as amended, provides that the **Device Good Manufacturing Practice** Advisory Committee shall be composed of nine members as follows: (1) Three of the members shall be appointed from persons who are officers or employees of any Federal, State, or local government; (2) two shall be representatives of interests of the device manufacturing industry; (3) two shall be representatives of the interests of physicians and other health professionals; and (4) two shall be representatives of the interests of the general public.

D. Technical Electronic Product Radiation Safety Standards Committee

The function of the committee is to provide advice and consultation on the technical feasibility, reasonableness, and practicability of performance standards for electronic products to control the emission of radiation from such products. The committee may recommend electronic product radiation safety standards for consideration.

Section 534(f) of the act (21 U.S.C. 360kk(f)), as amended by the Safe Medical Devices Act of 1990, provides that the Technical Electronic Product Radiation Safety Standards Committee include five members from governmental agencies, including State or Federal Governments, five members from the affected industries, and five members from the general public, of

which at least one shall be a representative of organized labor.

III. Qualifications

A. Panels of the Medical Devices Advisory Committee

Persons nominated for membership on the panels should have adequately diversified experience appropriate to the work of the panel in such fields as clinical and administrative medicine, engineering, biological and physical sciences, statistics, and other related professions. The nature of specialized training and experience necessary to qualify the nominee as an expert suitable for appointment may include experience in medical practice, teaching, and/or research relevant to the field of activity of the panel. The particular needs at this time for each panel are listed in section I of this document. The term of office is up to 4 years, depending on the appointment

B. National Mammography Quality Assurance Advisory Committee

Persons nominated for membership should be physicians, practitioners, and other health professionals, whose clinical practice, research specialization, or professional expertise include a significant focus on mammography and individuals identified with consumer interests. Prior experience on Federal public advisory committees in the same or similar subject areas will also be considered relevant professional expertise. The particular needs at this time for this committee are listed in section I of this document. The term of office is up to 4 years, depending on the appointment date.

C. Device Good Manufacturing Practice Advisory Committee

Persons nominated for membership as a health professional or officer or employee of any Federal, State, or local government should have knowledge of or expertise in any one or more of the following areas: Quality assurance concerning the design, manufacture, and use of medical devices. To be eligible for selection as a representative of the general public or industry, nominees should possess appropriate qualifications to understand and contribute to the committee's work. The particular needs at this time for this committee are listed in section I of this document. The term of office is up to 4 years, depending on the appointment date.

D. Technical Electronic Product Radiation Safety Standards Committee

Persons nominated should be technically qualified by training and experience in one or more fields of science or engineering applicable to electronic product radiation safety. The particular needs at this time for this committee are listed in section I of this document. The term of office is up to 4 years, depending on the appointment date.

IV. Nomination Procedures

Any interested person may nominate one or more qualified persons for membership on one or more of the advisory panels or advisory committees. Self-nominations are also accepted. Nominations will include complete curriculum vitae of each nominee, current business address and telephone number. Nominations will specify the advisory panel(s) or advisory committee(s) for which the nominee is recommended. Nominations will include confirmation that the nominee is aware of the nomination, is willing to serve as a member of the advisory committee if selected, and appears to have no conflict of interest that would preclude membership. Potential candidates will be required to provide detailed information concerning such matters as financial holdings, employment, and research grants and/or contracts to permit evaluation of possible sources of conflict of interest.

This notice is issued under the Federal Advisory Committee Act (5 U.S.C. app. 2) and 21 CFR part 14 relating to advisory committees.

Dated: October 3, 2006.

Randall W. Lutter,

Associate Commissioner for Policy and Planning.

[FR Doc. E6–16679 Filed 10–10–06; 8:45 am]

DEPARTMENT OF HEALTH AND HUMAN SERVICES

Food and Drug Administration [Docket No. 2004E-0444]

Extension; BONIVA; Correction

Redetermination of Regulatory Review Period for Purposes of Patent

AGENCY: Food and Drug Administration, HHS.

ACTION: Notice; correction.

SUMMARY: The Food and Drug Administration (FDA) is correcting a notice that appeared in the **Federal Register** of June 22, 2006 (71 FR 35918).

The document announced that FDA had determined the regulatory review period for BONIVA. The notice provided that on or before August 21, 2006, anyone with knowledge that any of the dates as published are incorrect may submit a request for a redetermination of the regulatory review period. A request for revision of the regulatory review period was filed for the product on July 25, 2006. FDA reviewed its records and found that the effective date of the investigational new drug application (IND) was incorrect because of a clerical error. Therefore, FDA is republishing a determination of the regulatory review period to reflect the corrected effective date for the IND. FDA has made a determination of the regulatory review period because of the submission of an application to the Director of Patents and Trademarks, Department of Commerce, for the extension of a patent which claims that human drug product. **ADDRESSES:** Submit written comments and petitions to the Division of Dockets Management (HFA-305), Food and Drug Administration, 5630 Fishers Lane, rm. 1061, Rockville, MD 20852. Submit electronic comments to http:// www.fda.gov/dockets/ecomments. FOR FURTHER INFORMATION CONTACT:

FOR FURTHER INFORMATION CONTACT: Beverly Friedman, Office of Regulatory Policy (HFD–007), Food and Drug Administration, 5600 Fishers Lane, Rockville, MD 20857, 301–594–2041.

SUPPLEMENTARY INFORMATION: The Drug Price Competition and Patent Term Restoration Act of 1984 (Public Law 98-417) and the Generic Animal Drug and Patent Term Restoration Act (Public Law 100-670) generally provide that a patent may be extended for a period of up to 5 years so long as the patented item (human drug product, animal drug product, medical device, food additive, or color additive) was subject to regulatory review by FDA before the item was marketed. Under these acts, a product's regulatory review period forms the basis for determining the amount of extension an applicant may

A regulatory review period consists of two periods of time: A testing phase and an approval phase. For human drug products, the testing phase begins when the exemption to permit the clinical investigations of the drug becomes effective and runs until the approval phase begins. The approval phase starts with the initial submission of an application to market the human drug product and continues until FDA grants permission to market the product. Although only a portion of a regulatory review period may count toward the actual amount of extension that the

Director of Patents and Trademarks may award (for example, half the testing phase must be subtracted as well as any time that may have occurred before the patent was issued), FDA's determination of the length of a regulatory review period for a human drug product will include all of the testing phase and approval phase as specified in 35 U.S.C. 156(g)(1)(B).

FDA recently approved for marketing the human drug product BONIVA (ibandronate sodium). BONIVA is indicated for treatment and prevention of osteoporosis in postmenopausal women. Subsequent to this approval, the Patent and Trademark Office received a patent term restoration application for BONIVA (U.S. Patent No. 4,927,814) from Hoffmann-La Roche, Inc., and the Patent and Trademark Office requested FDA's assistance in determining this patent's eligibility for patent term restoration. In a letter dated October 19, 2004, FDA advised the Patent and Trademark Office that this human drug product had undergone a regulatory review period and that the approval of BONIVA represented the first permitted commercial marketing or use of the product. Shortly thereafter, the Patent and Trademark Office requested that FDA determine the product's regulatory review period.

FDA has determined that the applicable adjusted regulatory review period for BONIVA is 3,122 days. Of this time, 2,817 days occurred during the testing phase of the regulatory review period, while 305 days occurred during the approval phase. These periods of time were derived from the following dates:

1. The date an exemption under section 505(i) of the Federal Food, Drug, and Cosmetic Act (the act) (21 U.S.C. 355(i)) became effective: October 30, 1994. FDA has verified the applicant's claim that the date the IND became effective was on October 30, 1994.

2. The date the application was initially submitted with respect to the human drug product under section 505(b) of the act: July 16, 2002. FDA has verified the applicant's claim that the new drug application (NDA) for BONIVA (NDA 21–455) was initially submitted on July 16, 2002.

3. The date the application was approved: May 16, 2003. FDA has verified the applicant's claim that NDA 21–455 was approved on May 16, 2003.

This redetermination of the regulatory review period establishes the maximum potential length of a patent extension. However, the U.S. Patent and Trademark Office applies several statutory limitations in its calculations

of the actual period for patent extension. In its application for patent extension, this applicant seeks 1,713 days of patent term extension.

Anyone with knowledge that any of the dates as published are incorrect may submit to the Division of Dockets Management (see ADDRESSES) written or electronic comments and ask for a redetermination by December 11, 2006. Furthermore, any interested person may petition FDA for a determination regarding whether the applicant for extension acted with due diligence during the regulatory review period by April 9, 2007. To meet its burden, the petition must contain sufficient facts to merit an FDA investigation. (See H. Rept. 857, part 1, 98th Cong., 2d sess., pp. 41-42, 1984.) Petitions should be in the format specified in 21 CFR 10.30.

Comments and petitions should be submitted to the Division of Dockets Management. Three copies of any mailed information are to be submitted, except that individuals may submit one copy. Comments are to be identified with the docket number found in brackets in the heading of this document.

Comments and petitions may be seen in the Division of Dockets Management between 9 a.m. and 4 p.m., Monday through Friday.

Dated: September 22, 2006.

Jane A. Axelrad,

Associate Director for Policy, Center for Drug Evaluation and Research.

[FR Doc. E6–16816 Filed 10–10–06; 8:45 am] BILLING CODE 4160–01–S

DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

Clinical Center; Notice of Closed Meeting

Pursuant to section 10(d) of the Federal Advisory Committee Act, as amended (5 U.S.C. Appendix 2), notice is hereby given of a meeting of the Board of Scientific Counselors of the NIH Clinical Center.

The meeting will be closed to the public as indicated below in accordance with the provisions set forth in section 552b(c)(6), Title 5 U.S.C., as amended for the review, discussion, and evaluation of individual intramural programs and projects conducted by the Clinical Center, including consideration of personnel qualifications and performance, and the competence of individual investigators, the disclosure of which would constitute a clearly

unwarranted invasion of personal privacy.

Name of Committee: Board of Scientific Counselors of the NIH Clinical Center.

Date: October 16, 2006. Time: 3 p.m. to 5 p.m.

Agenda: To review and evaluate the Rehabilitation Medicine Program.

Place: National Institutes of Health, Building 10, 10 Center Drive, Bethesda, MD 20892, (Telephone Conference Call).

Contact Person: David K. Henderson, MD, Deputy Director for Clinical Care, Office of the Director, Clinical Center, National Institutes of Health, Building 10, Room 6–1480, Bethesda, MD 20892, 301/402–0244.

This notice is being published less than 15 days prior to the meeting due to the urgent need to meet timing limitations imposed by the intramural research review cycle.

Any interested person may file written comments with the committee by forwarding the statement to the Contact Person listed on this notice. The statement should include the name, address, telephone number and when applicable, the business or professional affiliation of the interested person.

Dated: October 4, 2006.

Anna Snouffer.

Acting Director, Office of Federal Advisory Committee Policy.

[FR Doc. 06–8602 Filed 10–10–06; 8:45 am]

BILLING CODE 4140-01-M

DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

Notice of Meeting; Interagency Autism Coordinating Committee

The National Institutes of Health (NIH) hereby announces a meeting of the Interagency Autism Coordinating Committee (IACC) to be held on November 17, 2006, on the NIH campus in Bethesda, Maryland.

The Children's Health Act of 2000 (Pub.L. 106–310), Title I, Section 104, mandated the establishment of an Interagency Autism Coordinating Committee (IACC) to coordinate autism research and other efforts within the Department of Health and Human Services (DHHS). In April 2001, the HHS Secretary delegated the authority to establish the IACC to the National Institutes of Health (NIH). The National Institute of Mental Health (NIMH) at the NIH has been designated the lead for this activity.

The IACC meeting will be open to the public, with attendance limited to space available. Individuals who plan to attend and need special assistance, such as sign language interpretation or other reasonable accommodations, should notify the contact person listed below in advance of the meeting.

Name of Committee: Interagency Autism Coordinating Committee.

Date: November 17, 2006. Time: 9 a.m.-4 p.m.

Agenda: Discussion of autism activities across Federal agencies.

Place: National Institutes of Health, Building 31, Conference Room 10 (6th floor), 31 Center Drive, Bethesda, Maryland 20892.

Contact Person: Ann Wagner, Ph.D., Division of Pediatric Translational Research and Treatment Development, National Institute of Mental Health, NIH, 6001 Executive Boulevard, Room 6184, MSC 9617, Bethesda, Maryland 20892. E-mail: awagner@mail.nih.gov. Phone: 301–443–5944.

Any member of the public interested in presenting oral comments to the Committee may notify the contact person listed on this notice at least 5 days in advance of the meeting. Interested individuals and representatives of organizations may submit a letter of intent, a brief description of the organization represented, and a short description of the oral presentation. Presentations may be limited to 5 minutes; both printed and electronic copies are requested for the record. In addition, any interested person may file written comments with the Committee by forwarding his/her statement to the contact person listed on this notice. The statement should include the name, address, telephone number, and, when applicable, the business or professional affiliation of the interested person.

Information about the meeting and online registration forms are also available on-line on the NIMH homepage at http://www.nimh.nih.gov/autismiacc/index.cfm.

Dated: September 29, 2006.

Raynard S. Kington, M.D., Ph.D.,

Deputy Director, National Institutes of Health. [FR Doc. E6–16721 Filed 10–10–06; 8:45 am] BILLING CODE 4167–01–P

DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

National Cancer Institute; Notice of Closed Meeting

Pursuant to section 10(d) of the Federal Advisory Committee Act, as amended (5 U.S.C. Appendix 2), notice is hereby given of the following meeting.

The meeting will be closed to the public in accordance with the provisions set forth in sections 552b(c)(4) and 522b(c)(6), Title 5 U.S.C.,

as amended. The contract proposals and the discussions could disclose confidential trade secrets or commercial property such as patentable material, and personal information concerning individuals associated with the contract proposals, the disclosure of which would constitute a clearly unwarranted invasion of personal privacy.

Name of Committee: National Cancer Institute Special Emphasis Panel, SBIR Topic 211 and Topic 212 (Phase II).

Date: November 7, 2006.

Time: 1 p.m. to 4 p.m.

Agenda: To review and evaluate contract proposals.

Place: National Institutes of Health, 6116 Executive Boulevard, Rockville, MD 20852. (Telephone Conference Call).

Contact Person: Kirt Vener, PhD. Branch Chief, Special Review and Logistics Branch, Division of Extramural Activities, National Cancer Institute, NIH, 6116 Executive Boulevard, Room 8061, Rockville, MD 20852. (301) 496–7174. venerk@mail.nih.gov.

Catalogue of Federal Domestic Assistance Program Nos. 93.392, Cancer Construction; 93.393, Cancer Cause and Prevention Research; 93.394, Cancer Detection and Diagnosis Research; 93.395, Cancer Treatment Research; 93.396, Cancer Biology Research; 93.397, Cancer Centers Support; 93.398, Cancer Research Manpower; 93.399, Cancer Control, National Institutes of Health, HHS)

Dated: October 1, 2006.

Anna Snouffer,

Acting Director, Office of Federal Advisory Committee Policy.

[FR Doc. 06–8585 Filed 10–10–06; 8:45 am]

BILLING CODE 4140-01-M

DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

National Heart, Lung, and Blood Institute; Notice of Closed Meeting

Pursuant to section 10(d) of the Federal Advisory Committee Act, as amended (5 U.S.C. Appendix 2), notice is hereby given of the following meeting.

The meeting will be closed to the public in accordance with the provisions set forth in sections 552b(c)(4) and 552b(c)(6), Title 5 U.S.C., as amended. The grant applications and the discussions could disclose confidential trade secrets or commercial property such as patentable material, and personal information concerning individuals associated with the grant applications, the disclosure of which would constitute a clearly unwarranted invasion of personal privacy.

Name of Committee: Heart, Lung, and Blood Initial Review Group, Clinical Trials Review Committee.

Date: October 30-31, 2006.

Time: 8 a.m. to 5 p.m.

Agenda: To review and evaluate grant applications.

Place: Hyatt Regency Hotel Baltimore, 300 Light Street, Baltimore, MD 21202.

Contact Person: Patricia A. Haggerty, PhD, Section Chief, Clinical Studies and Traning Scientific Review Group, Review Branch, Division of Extramural Research Activities, National Heart, Lung, and Blood Institute, NIH, 6701 Rockledge Drive, Room 7194, MSC 7924, Bethesda, MD 20892, 301/435–0288, haggertp@nhlbi.nih.gov.

(Catalogue of Federal Domestic Assistance Program Nos.93.233, National Center for Sleep Disorders Research; 93.837, Heart and Vascular Diseases Research; 93.838, Lung Diseases Research; 93.839, Blood Diseases and Resources Research, National Institutes of Health, HHS)

Dated: October 4, 2006.

Anna Snouffer,

Acting Director, Office of Federal Advisory Committee Policy.

[FR Doc. 06–8601 Filed 10–10–06; 8:45 am] BILLING CODE 4140–01–M

DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

National Institute of Mental Health; Notice of Closed Meetings

Pursuant to section 10(d) of the Federal Advisory Committee Act, as amended (5 U.S.C. Appendix 2), notice is hereby given of the following meetings.

The meetings will be closed to the public in accordance with the provisions set forth in sections 552b(c)(4) and 552b(c)(6), Title 5 U.S.C., as amended. The grant applications and the discussions could disclose confidential trade secrets or commercial property such as patentable material, and personal information concerning individuals associated with the grant applications, the disclosure of which would constitute a clearly unwarranted invasion of personal privacy.

Name of Committee: National Institute of Mental Health Special Emphasis Panel, HIV Prevention.

Date: October 26, 2006.

Time: 9 a.m. to 5 p.m.

Agenda: To review and evaluate grant applications.

Place: Holiday Inn Chevy Chase, 5520 Wisconsin Avenue, Chevy Chase, MD 20815.

Contact Person: David L. Sommers, PhD., Scientific Review Administrator, Division of Extramural Activities, National Institutes of Mental Health, National Institutes of Health, 6001 Executive Blvd., Room 6154, MSC 9609, Bethesda, MD 20892–9606. 301–435–7861. dsommers@mail.nih.gov.

Name of Committee: National Institute of Mental Health Special Emphasis Panel, Building Translational Research in Integrative Behavioral Science.

Date: October 26, 2006.

Time: 10 a.m. to 11:30 a.m.

Agenda: To review and evaluate grant applications.

Place: National Institutes of Health, Neuroscience Center, 6001 Executive Boulevard, Rockville, MD 20852. (Telephone Conference Call).

Contact Person: Peter J. Sheridan, PhD. Scientific Review Administrator, Division of Extramural Activities, National Institutes of Mental Health, NIH, Neuroscience Center, 6001 Executive Blvd., Room 6142, MSC 9606, Bethesda, MD 20892, 301–433–1513. psherida@mail.nih.gov.

(Catalogue of Federal Domestic Assistance Program Nos. 93.242, Mental Health Research Grants; 93.281, Scientist Development Award, Scientist Development Award for Clinicians, and Research Scientist Award; 93.282, Mental Health National Research Service Awards for Research Training, National Institutes of Health, HHS)

Dated: October 1, 2006.

Anna Snouffer,

Acting Director, Office of Federal Advisory Committee Policy.

[FR Doc. 06-8584 Filed 10-10-06; 8:45 am]

BILLING CODE 4140-01-M

DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

National Institute of Arthritis and Musculoskeletal and Skin Diseases; Notice of Closed Meeting

Pursuant to section 10(d) of the Federal Advisory Committee Act, as amended (5 U.S.C. Appendix 2), notice is hereby given of a meeting of the Board of Scientific Counselors, NIAMS.

The meeting will be closed to the public as indicated below in accordance with the provisions set forth in sections 552b(c)(6), Title 5 U.S.C., as amended for the review, discussion, and evaluation of individual intramural programs and projects conducted by the National Institute of Arthritis and Musculoskeletal and Skin Diseases, including consideration of personnel qualifications and performance, and the competence of individual investigators, the disclosure of which would constitute a clearly unwarranted invasion of personal privacy.

 $\begin{tabular}{ll} Name\ of\ Committee: Board\ of\ Scientific \\ Counselors, NIAMS. \end{tabular}$

Date: November 6–7, 2006.

Time: November 6, 2006, 6:30 p.m. to 9:30 p.m.

Agenda: To review and evaluate personnel qualifications and performance, and competence of individual investigators.

Place: Doubletree Hotel Bethesda, 8120 Wisconsin Avenue, Bethesda, MD 20814. Time: November 7, 2006, 8 a.m. to 3:30

Agenda: To review and evaluate personnel qualifications and performance, and competence of individual investigators.

Place: National Institutes of Health, Building 31, 31 Center Drive, Conference Room 4C32, Bethesda, MD 20892.

Contact Person: John J. O'Shea, MD, PhD, Scientific Director, National Institute of Arthritis & Musculoskeletal and Skin Diseases, Building 10, Room 9N262 MSC 1820, Bethesda, MD 20892, (301) 496–6026, osheaj@arb.niams.nih.gov.

(Catalogue of Federal Domestic Assistance Program Nos. 93.846, Arthritis, Musculoskeletal and Skin Diseases Research, National Institutes of Health, HHS)

Dated: October 4, 2006.

Anna Snouffer,

Acting Director, Office of Federal Advisory Committee Policy.

[FR Doc. 06–8603 Filed 10–10–06; 8:45 am]

DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

National Institute of Child Health and Human Development; Notices of Closed Meetings

Pursuant to section 10(d) of the Federal Advisory Committee Act, as amended (5 U.S.C. Appendix 2), notice is hereby given of the following meetings.

The meetings will be closed to the public in accordance with the provisions set forth in sections 552b(c)(4) and 552b(c)(6), Title 5 U.S.C., as amended. The grant applications and the discussions could disclose confidential trade secrets or commercial property such as patentable material, and personal information concerning individuals associated with the grant applications, the disclosure of which would constitute a clearly unwarranted invasion of personal privacy.

Name of Committee: National Institute of Child Health and Human Development Special Emphasis Panel, Estrogen and Neural Pathways in Female Pain Syndrome.

Date: October 24, 2006.

Time: 8 a.m. to 5 p.m.

Agenda: To review and evaluate grant applications.

Place: Hyatt Regency Bethesda, One Bethesda Metro Center, 7400 Wisconsin Avenue, Bethesda, MD 20814.

Contact Person: Jon M. Ranhand, PhD, Scientist Review Administrator, Division of Scientific Review, National Institute of Child Health, and Human Development, NIH, 6100 Executive Boulevard, Room 5B01, Bethesda, MD 20892, (301) 435–6884, ranhandj@mail.nih.gov.

Name of Committee: National Institute of Child Health and Human Development Special Emphasis Panel, Autism Centers of Excellence.

Date: October 26-27, 2006.

Time: 8 a.m. to 5 p.m.

Agenda: To review and evaluate grant applications.

Place: Holiday Inn Georgetown, 2101 Wisconsin Avenue, NW., Washington, DC

Contact Person: Norman Chang, PhD, Scientific Review Administrator, Division of Scientific Review, National Institute of Child Health and Human Development, NIH, 6100 Executive Blvd., Room 5B01, Bethesda, MD 20892, (301) 496–1485, changn@mail.nih.gov.

Name of Committee: National Institute of Child Health and Human Development Special Emphasis Panel, IEARDA Review Meeting.

Date: October 31, 2006.

Time: 8 a.m. to 5 p.m.

Agenda: To review and evaluate grant applications.

Place: Hyatt Regency Bethesda, One Bethesda Metro Center, 7400 Wisconsin Avenue, Bethesda, MD 20814.

Contact Person: Carla T. Walls, PhD, Scientific Review Administrator, Division of Scientific Review, National Institute of Child Health and Human Development, NIH 6100 Executive Blvd., Room 5B01, Bethesda, MD 20892, (301) 435–6898, wallsc@mail.nih.gov.

(Catalogue of Federal Domestic Assistance Program Nos. 93.864, Population Research; 93.865, Research for Mothers and Children; 93.929, Center for Medical Rehabilitation Research; 93.209, Contraception and Infertility Loan Repayment Program, National Institutes of Health, HHS)

Dated: October 3, 2006.

Anna Snouffer,

Acting Director, Office of Federal Advisory Committee Policy.

[FR Doc. 06–8604 Filed 10–10–06; 8:45 am] BILLING CODE 4140–01–M

DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

National Institute of General Medical Sciences; Notice of Closed Meeting

Pursuant to section 10(d) of the Federal Advisory Committee Act, as amended (5 U.S.C. Appendix 2), notice is hereby given of the following meeting.

The meeting will be closed to the public in accordance with the provisions set forth in sections 552b(c)(4) and 552b(c)(6), Title 5 U.S.C., as amended. The grant applications and the discussions could disclose

confidential trade secrets or commercial property such as patentable material, and personal information concerning individuals associated with the grant applications, the disclosure of which would constitute a clearly unwarranted invasion of personal privacy.

Name of Committee: National Institute of General Medical Sciences Special Emphasis Panel, Internet Assisted Review for R13 Conference Grant Applications.

Date: October 23, 2006.

Time: 9 a.m. to 5 p.m.

Agenda: To review and evaluate grant applications.

Place: National Institute of General Medical Sciences, Office of Scientific Review, 45 Center Drive, 3AN–12, Bethesda, MD 20892.

Contact Person: Arthur L. Zachary, PhD, Office of Scientific Review, National Institute of General Medical Sciences, National Institutes of Health, Natcher Building, Room 3AN–12, Bethesda, MD 20892, (301) 594–2886, zacharya@nigms.nih.gov.

(Catalogue of Federal Domestic Assistance Program Nos. 93.375, Minority Biomedical Research Support; 93.821, Cell Biology and Biophysics Research; 93.859, Pharmacology, Physiology, and Biological Chemistry Research; 93.862, Genetics and Developmental Biology Research; 93.88, Minority Access to Research Careers; 93.96, Special Minority Initiatives, National Institutes of Health, HHS)

Dated: October 3, 2006.

Anna Snouffer,

Acting Director, Office of Federal Advisory Committee Policy.

[FR Doc. 06-8605 Filed 10-10-06; 8:45 am]

DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

National Institute of Neurological Disorders and Stroke; Cancellation of Meeting

Notice is hereby given of the cancellation of the National Institute of Neurological Disorders and Stroke Special Emphasis Panel, October 17, 2006, 7 p.m. to October 18, 2006, 9 p.m., Atlanta-Centennial Olympic Park, Embassy Suites Hotel, 267 Marietta Street, Atlanta, GA, 30313 which was published in the **Federal Register** on September 15, 2006, 71 FR 06–7676.

Cancelled due to withdrawn application.

Dated: October 3, 2006.

Anna Snouffer,

Acting Director, Office of Federal Advisory Committee Policy.

[FR Doc. 06–8606 Filed 10–10–06; 8:45am] BILLING CODE 4140–01–M

DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

[HHS Reference Nos. E-095-2000/0, 1, 2, 3 and 4]

Public Teleconference Regarding Licensing and Collaborative Research Opportunities for: A Promising Treatment for Inflammatory Arthritis Targeting the Pre-ligand Assembly Domain (PLAD) of Tumor Necrosis Factor Receptors; Michael J. Lenardo et al. (NIAID)

AGENCY: National Institutes of Health, Public Health Service, HHS.

ACTION: Notice.

Technology Summary

The technology is an innovative treatment for inflammatory arthritis that involves modulating Tumor Necrosis Factor Receptor (TNFR) 1 signaling. NIH scientists have discovered that the Preligand Assembly Domains (PLADs) of TNFR1 can be selectively blocked by soluble P60-PLAD protein compositions (P60 PLAD-Sol) which interfere with TNFR1 assembly thereby preventing the inflammatory effects of TNF α both in vitro and in vivo.

Technology Description

Current anti-TNF α arthritis treatments rely on the use of antibodies or fusion proteins directed against TNF α to reduce inflammation. The cytokine TNF α plays a key role in the pathogenesis of numerous autoimmune and inflammatory diseases including psoriatic, rheumatoid, and septic arthritis. It has been shown that blocking TNF α has a dramatic therapeutic effect; however, blocking TNF α also blocks TNF α 's beneficial effects during immune responses that are mediated through TNFR2.

This invention involves a functional domain, which is essential for signaling involving receptors of the TNFR superfamily including TNFR-1 (p60), TNFR-2 (p80), FAS, TRAIL-R, LTR, CD40, CD30, CD27, HVEM, OX40 and DR4. PLADs can be isolated as functional polypeptides which can be useful in inhibiting the first step in TNFR mediated signaling, ligandindependent assembly of members of the TNFR superfamily. The ability to inhibit TNFR signaling suggests that these PLAD polypeptides may be useful in developing new therapeutic molecules or as therapeutic molecules themselves.

P60 PLAD-Sol has the benefit of selectively blocking only the signaling

of TNFR1, not signaling mediated through TNFR2. Treatment of mice with the P60 PLAD-Sol ameliorated inflammatory joint disease with no side effects in 5 different animal models of arthritis including: collagen-induced arthritis, adjuvant and lipopolysaccharide induced arthritis, and joint disease due to TNF. Therefore, P60 PLAD-Sol may lead to novel inflammatory arthritis treatments that avoid the serious side effects associated with currently marketed therapeutics that directly block TNF α rather than TNFR1.

Competitive Advantage of Our Technology

More than 20% of the population in the USA currently seek arthritis treatment; of these over 2 million suffer rheumatic symptoms. Worldwide this figure is close to five million people. Existing commercially available anti-TNF α treatments are expensive: in the U.S. Enbrel®, Remicade®, and Humira® all cost more than \$10,000 per year. In addition to this market there is the potential to treat other inflammatory based diseases such as Crohn's Disease and Multiple Sclerosis. Owing to the high price of these agents and their increased use in treatment, the market for TNFα inhibitors is expected to grow from \$7.1 billion in 2005 to nearly \$12 billion in 2014 in the United States, Western Europe, and Japan.

The existing TNF blockers, e.g., Enbrel® (Etanercept—a dimeric fusion protein by Amgen/Wyeth), Remicade® (Infliximab—a mouse chimeric anti-TNF monoclonal antibody by J&J), and Humira® (Adalimumab—a humanized anti-TNF monoclonal antibody by Abbott) have been effective in the treatment of rheumatoid arthritis. They are beneficial in over 70% of patients including many who have not responded to Rheumatrex® (Methotrexate—an antimetabolite by STADA); however, serious and sometimes fatal side effects have been observed. In addition, the current costs of these drugs are prohibitive for many patients. This technology has the potential to be less expensive yet more effective than existing products.

For arthritis sufferers who are unresponsive to, or adversely affected by, current inflammatory arthritis treatments our technology is a new method of blocking inflammation that provides a more targeted action. Unlike the currently marketed anti-TNF medications, P60 PLAD-Sol has the potential to more effectively treat a broader range of inflammatory diseases with no known side-effects. The current anti-TNF drugs directly block the

binding of TNFα to both TNFR1 and TNFR2. There is evidence that this inhibits the beneficial effects mediated by TNFR2, while arresting the diseasecausing effects of TNFR1. This is because the P60 PLAD-Sol involves the use of small soluble proteins that preferentially target only the PLAD of TNFR1. In our models, a dose of a P60 PLAD-Sol (5 mg/kg) had similar effects to doses of Infliximab (10 mg/kg) and Etanercept (0.4 mg/kg) that have been used clinically in the amelioration of arthritis. As a selective TNFR1 blocking agent, this technology may avoid the serious side effects of these currently available compounds yet have enhanced efficacy.

Patent Estate

A PCT application, filed 9 February 2001 (WO 01/58953), has entered the national phase in the US, EP, AU and CA.

Next Step: Teleconference

There will be a teleconference where the principal investigator will discuss non-confidential information concerning this technology. Licensing and collaborative research opportunities will also be discussed. If you are interested in participating in this teleconference please call or email Mojdeh Bahar; (301) 435–2950; baharm@mail.nih.gov. OTT will then email you the date, time and number for the teleconference.

Dated: October 2, 2006.

Steven M. Ferguson,

Director, Division of Technology Development and Transfer, Office of Technology Transfer, National Institutes of Health.

[FR Doc. E6–16735 Filed 10–10–06; 8:45 am] BILLING CODE 4140–01–P

DEPARTMENT OF HEALTH AND HUMAN SERVICES

Substance Abuse and Mental Health Services Administration

Current List of Laboratories Which Meet Minimum Standards To Engage in Urine Drug Testing for Federal Agencies

AGENCY: Substance Abuse and Mental Health Services Administration, HHS.

ACTION: Notice.

SUMMARY: The Department of Health and Human Services (HHS) notifies Federal agencies of the laboratories currently certified to meet the standards of Subpart C of the Mandatory Guidelines for Federal Workplace Drug Testing Programs (Mandatory Guidelines). The

Mandatory Guidelines were first published in the **Federal Register** on April 11, 1988 (53 FR 11970), and subsequently revised in the **Federal Register** on June 9, 1994 (59 FR 29908), on September 30, 1997 (62 FR 51118), and on April 13, 2004 (69 FR 19644).

A notice listing all currently certified laboratories is published in the **Federal Register** during the first week of each month. If any laboratory's certification is suspended or revoked, the laboratory will be omitted from subsequent lists until such time as it is restored to full certification under the Mandatory Guidelines.

If any laboratory has withdrawn from the HHS National Laboratory Certification Program (NLCP) during the past month, it will be listed at the end, and will be omitted from the monthly listing thereafter.

This notice is also available on the Internet at http://workplace.samhsa.gov and http://www.drugfreeworkplace.gov.
FOR FURTHER INFORMATION CONTACT: Mrs.

Giselle Hersh or Dr. Walter Vogl, Division of Workplace Programs, SAMHSA/CSAP, Room 2–1035, 1 Choke Cherry Road, Rockville, Maryland 20857; 240–276–2600 (voice), 240–276– 2610 (fax).

SUPPLEMENTARY INFORMATION: The Mandatory Guidelines were developed in accordance with Executive Order 12564 and section 503 of Public Law 100-71. Subpart C of the Mandatory Guidelines, "Certification of Laboratories Engaged in Urine Drug Testing for Federal Agencies," sets strict standards that laboratories must meet in order to conduct drug and specimen validity tests on urine specimens for Federal agencies. To become certified, an applicant laboratory must undergo three rounds of performance testing plus an on-site inspection. To maintain that certification, a laboratory must participate in a quarterly performance testing program plus undergo periodic, on-site inspections.

Laboratories which claim to be in the applicant stage of certification are not to be considered as meeting the minimum requirements described in the HHS Mandatory Guidelines. A laboratory must have its letter of certification from HHS/SAMHSA (formerly: HHS/NIDA) which attests that it has met minimum standards.

In accordance with Subpart C of the Mandatory Guidelines dated April 13, 2004 (69 FR 19644), the following laboratories meet the minimum standards to conduct drug and specimen validity tests on urine specimens: ACL Laboratories, 8901 W. Lincoln Ave., West Allis, WI 53227, 414–328– 7840/800–877–7016, (Formerly: Bayshore Clinical Laboratory)

ACM Medical Laboratory, Inc., 160 Elmgrove Park, Rochester, NY 14624, 585–429–2264

- Advanced Toxicology Network, 3560 Air Center Cove, Suite 101, Memphis, TN 38118, 901–794–5770/888–290– 1150
- Aegis Analytical Laboratories, Inc., 345 Hill Ave., Nashville, TN 37210, 615– 255–2400
- Baptist Medical Center-Toxicology Laboratory, 9601 I–630, Exit 7, Little Rock, AR 72205–7299, 501–202–2783, (Formerly: Forensic Toxicology Laboratory Baptist Medical Center)
- Clinical Reference Lab, 8433 Quivira Road, Lenexa, KS 66215–2802, 800– 445–6917
- Diagnostic Services, Inc., dba DSI, 12700 Westlinks Drive, Fort Myers, FL 33913, 239–561–8200/800–735– 5416
- Doctors Laboratory, Inc., 2906 Julia Drive, Valdosta, GA 31602, 229–671– 2281
- DrugScan, Inc., P.O. Box 2969, 1119 Mearns Road, Warminster, PA 18974, 215–674–9310
- Dynacare Kasper Medical Laboratories*, 10150–102 St., Suite 200, Edmonton, Alberta, Canada T5J 5E2, 780–451– 3702 / 800–661–9876
- ElSohly Laboratories, Inc., 5 Industrial Park Drive, Oxford, MS 38655, 662– 236–2609
- Gamma-Dynacare Medical Laboratories*, A Division of the Gamma-Dynacare Laboratory Partnership, 245 Pall Mall Street, London, ONT, Canada N6A 1P4, 519– 679–1630
- General Medical Laboratories, 36 South Brooks St., Madison, WI 53715, 608– 267–6225
- Kroll Laboratory Specialists, Inc., 1111 Newton St., Gretna, LA 70053, 504–361–8989/800–433–3823, (Formerly: Laboratory Specialists, Inc.)
- Kroll Scientific Testing Laboratories, Inc., 450 Southlake Blvd., Richmond, VA 23236, 804–378–9130, (Formerly: Scientific Testing Laboratories, Inc.)
- Laboratory Corporation of America Holdings, 7207 N. Gessner Road, Houston, TX 77040, 713–856–8288/ 800–800–2387
- Laboratory Corporation of America Holdings, 69 First Ave., Raritan, NJ 08869, 908–526–2400/800–437–4986, (Formerly: Roche Biomedical Laboratories, Inc.)
- Laboratory Corporation of America Holdings, 1904 Alexander Drive, Research Triangle Park, NC 27709, 919–572–6900 / 800–833–3984, (Formerly: LabCorp Occupational Testing Services, Inc., CompuChem

- Laboratories, Inc.; CompuChem Laboratories, Inc., A Subsidiary of Roche Biomedical Laboratory; Roche CompuChem Laboratories, Inc., A Member of the Roche Group)
- Laboratory Corporation of America Holdings, 10788 Roselle St., San Diego, CA 92121, 800–882–7272, (Formerly: Poisonlab, Inc.)
- Laboratory Corporation of America
 Holdings, 550 17th Ave., Suite 300,
 Seattle, WA 98122, 206–923–7020/
 800–898–0180, (Formerly: DrugProof,
 Division of Dynacare/Laboratory of
 Pathology, LLC; Laboratory of
 Pathology of Seattle, Inc.; DrugProof,
 Division of Laboratory of Pathology of
 Seattle, Inc.)
- Laboratory Corporation of America Holdings, 1120 Main Street, Southaven, MS 38671, 866–827–8042/ 800–233–6339, (Formerly: LabCorp Occupational Testing Services, Inc.; MedExpress/National Laboratory Center)
- LabOne, Inc. d/b/a Quest Diagnostics.
 10101 Renner Blvd., Lenexa, KS
 66219, 913–888–3927/800–873–8845,
 (Formerly: Quest Diagnostics
 Incorporated; LabOne, Inc.; Center for
 Laboratory Services, a Division of
 LabOne, Inc.,
- Marshfield Laboratories, Forensic Toxicology Laboratory, 1000 North Oak Ave., Marshfield, WI 54449, 715– 389–3734/800–331–3734
- MAXXAM Analytics Inc.*, 6740 Campobello Road, Mississauga, ON Canada L5N 2L8, 905–817–5700, (Formerly: NOVAMANN (Ontario), Inc.)
- MedTox Laboratories, Inc., 402 W. County Road D, St. Paul, MN 55112, 651–636–7466/800–832–3244
- MetroLab-Legacy Laboratory Services, 1225 NE 2nd Ave., Portland, OR 97232, 503–413–5295/800–950–5295
- Minneapolis Veterans Affairs Medical Center, Forensic Toxicology Laboratory, 1 Veterans Drive, Minneapolis, MN 55417, 612–725– 2088
- National Toxicology Laboratories, Inc., 1100 California Ave., Bakersfield, CA 93304, 661–322–4250/800–350–3515
- One Source Toxicology Laboratory, Inc. 1213 Genoa-Red Bluff Pasadena, TX 77504 888–747–3774 (Formerly: University of Texas Medical Branch, Clinical Chemistry Division; UTMB Pathology-Toxicology Laboratory)
- Oregon Medical Laboratories 123 International Way Springfield, OR 97477 541–341–8092
- Pacific Toxicology Laboratories 9348 DeSoto Ave. Chatsworth, CA 91311 800–328–6942 (Formerly: Centinela Hospital Airport Toxicology Laboratory)

- Pathology Associates Medical Laboratories 110 West Cliff Dr. Spokane, WA 99204 509–755–8991 / 800–541–7897 x7
- Physicians Reference Laboratory 7800 West 110th St. Overland Park, KS 66210 913–339–0372 / 800–821–3627
- Quest Diagnostics Incorporated 3175 Presidential Dr. Atlanta, GA 30340 770–452–1590 / 800–729–6432 (Formerly: SmithKline Beecham Clinical Laboratories; SmithKline Bio-Science Laboratories)
- Quest Diagnostics Incorporated 4770 Regent Blvd. Irving, TX 75063 800– 824–6152 (Moved from the Dallas location on 03/31/01; Formerly: SmithKline Beecham Clinical Laboratories; SmithKline Bio-Science Laboratories)
- Quest Diagnostics Incorporated 4230 South Burnham Ave., Suite 250 Las Vegas, NV 89119–5412 702–733–7866 / 800–433–2750 (Formerly: Associated Pathologists Laboratories, Inc.)
- Quest Diagnostics Incorporated 400 Egypt Road Norristown, PA 19403 610–631–4600 / 877–642–2216 (Formerly: SmithKline Beecham Clinical Laboratories; SmithKline Bio-Science Laboratories)
- Quest Diagnostics Incorporated 506 E. State Pkwy. Schaumburg, IL 60173 800–669–6995 / 847–885–2010 (Formerly: SmithKline Beecham Clinical Laboratories; International Toxicology Laboratories)
- Quest Diagnostics Incorporated 7600 Tyrone Ave. Van Nuys, CA 91405 866–370–6699 / 818–989–2521 (Formerly: SmithKline Beecham Clinical Laboratories)
- Quest Diagnostics Incorporated 2282 South Presidents Drive, Suite C West Valley City, UT 84120 801–606–6301 / 800–322–3361 (Formerly: Northwest Toxicology, a LabOne Company; LabOne, Inc., dba Northwest Toxicology; NWT Drug Testing, NorthWest Toxicology, Inc.; Northwest Drug Testing, a division of NWT Inc.)
- S.E.D. Medical Laboratories 5601 Office Blvd. Albuquerque, NM 87109 505– 727–6300 / 800–999–5227
- South Bend Medical Foundation, Inc. 530 N. Lafayette Blvd. South Bend, IN 46601 574–234–4176 x276
- Southwest Laboratories 4645 E. Cotton Center Boulevard Suite 177 Phoenix, AZ 85040 602–438–8507 / 800–279– 0027
- Sparrow Health System Toxicology
 Testing Center, St. Lawrence Campus
 1210 W. Saginaw Lansing, MI 48915
 517–364–7400 (Formerly: St.
 Lawrence Hospital & Healthcare
 System)

- St. Anthony Hospital Toxicology Laboratory 1000 N. Lee St. Oklahoma City, OK 73101 405–272–7052
- Toxicology & Drug Monitoring Laboratory University of Missouri Hospital & Clinics 301 Business Loop 70 West, Suite 208 Columbia, MO 65203 573–882–1273
- Toxicology Testing Service, Inc. 5426 N.W. 79th Ave. Miami, FL 33166 305– 593–2260
- US Army Forensic Toxicology Drug Testing Laboratory 2490 Wilson St. Fort George G. Meade, MD 20755– 5235 301–677–7085
- * The Standards Council of Canada (SCC) voted to end its Laboratory Accreditation Program for Substance Abuse (LAPSA) effective May 12, 1998. Laboratories certified through that program were accredited to conduct forensic urine drug testing as required by U.S. Department of Transportation (DOT) regulations. As of that date, the certification of those accredited Canadian laboratories will continue under DOT authority. The responsibility for conducting quarterly performance testing plus periodic on-site inspections of those LAPSA-accredited laboratories was transferred to the U.S. HHS, with the HHS' NLCP contractor continuing to have an active role in the performance testing and laboratory inspection processes. Other Canadian laboratories wishing to be considered for the NLCP may apply directly to the NLCP contractor just as U.S. laboratories do.

Upon finding a Canadian laboratory to be qualified, HHS will recommend that DOT certify the laboratory (Federal Register, July 16, 1996) as meeting the minimum standards of the Mandatory Guidelines published in the Federal Register on April 13, 2004 (69 FR 19644). After receiving DOT certification, the laboratory will be included in the monthly list of HHS-certified laboratories and participate in the NLCP certification maintenance program.

Dated: October 4, 2006.

Elaine Parry,

Acting Director, Office Program Services, SAMHSA.

[FR Doc. E6–16744 Filed 10–10–06; 8:45 am] BILLING CODE 4160–20–P

DEPARTMENT OF HOMELAND SECURITY

Office of the Secretary

Designation of Manager, National Communications System

AGENCY: Office of the Secretary, Department of Homeland Security.

ACTION: Notice.

SUMMARY: The Secretary of Homeland Security announces the designation of the Under Secretary for Preparedness, Directorate for Preparedness, as the Manager, National Communications System (NCS).

DATES: The designation of the Manager, National Communications System, is effective August 15, 2006.

FOR FURTHER INFORMATION CONTACT: Ms. Marilyn Witcher, Chief, Industry, Government, and External Affairs, National Communications System, telephone (703) 235–5515, e-mail: Marilyn.Witcher@dhs.gov or write the Deputy Manager, National Communications System, PREP/CS&T/NCS/N5, Mail Stop 8500, Department of Homeland Security, 245 Murray Lane, Building 410, Washington, DC 20528–8500.

SUPPLEMENTARY INFORMATION: This designation is issued in accordance with section 1(e)(1) of Executive Order 12472 of April 3, 1984, as amended by section 46 of Executive Order 13286 of February 28, 2003. It supersedes the designation to the Assistant Secretary of Homeland Security for Infrastructure Protection.

The NCS consists of the telecommunications assets of the entities represented on the NCS Committee of Principals and an administrative structure consisting of the Executive Agent, the NCS Committee of Principals, and the Manager. The mission of the NCS is to assist the President, the National Security Council, the Homeland Security Council, the Director of the Office of Science and Technology Policy, and the Director of the Office of Management and Budget in:

(1) The exercise of designated telecommunications functions and responsibilities; and

(2) The coordination of the planning for and provision of national security and emergency preparedness communications for the Federal Government under all circumstances, including crisis or emergency, attack, recovery, and reconstitution.

As stated in Section 1(g) of Executive Order 12472 of April 3, 1984, as amended, the Manager, NCS, shall develop for consideration by the NCS Committee of Principals and the Executive Agent:

- (1) A recommended evolutionary telecommunications architecture designed to meet current and future Federal Government national security and emergency preparedness telecommunications requirements;
- (2) Plans and procedures for the management, allocation, and use,

including the establishment of priorities or preferences, of federally owned or leased telecommunications assets under all conditions of crisis or emergency;

(3) Plans, procedures, and standards for minimizing or removing technical impediments to the interoperability of government-owned and/or commercially-provided telecommunications systems;

(4) Test and exercise programs and procedures for the evaluation of the capability of the Nation's telecommunications resources to meet national security or emergency preparedness telecommunications

requirements; and

(5) Alternative mechanisms for funding, through the budget review process, national security or emergency preparedness telecommunications initiatives that benefit multiple Federal departments, agencies, or entities. Those mechanisms recommended by the NCS Committee of Principals and the Executive Agent shall be submitted to the Director of the Office of Management and Budget.

The Manager shall also:

(1) Implement and administer any approved plans or programs as assigned, including any system of priorities and preferences for the provision of communications service, in consultation with the NCS Committee of Principals and the Federal Communications Commission, to the extent practicable or otherwise required by law or regulation;

(2) Chair the NCS Committee of Principals and provide staff support and

technical assistance thereto;

(3) Serve as a focal point for joint industry-government planning, including the dissemination of technical information, concerning the national security or emergency preparedness telecommunications requirements of the Federal Government;

(4) Conduct technical studies or analyses, and examine research and development programs, for the purpose of identifying, for consideration by the NCS Committee of Principals and the Executive Agent, improved approaches that may assist Federal entities in fulfilling national security or emergency preparedness telecommunications objectives;

(5) Pursuant to the Federal
Standardization Program of the General
Services Administration, and in
consultation with other appropriate
entities of the Federal Government
including the NCS Committee of
Principals, manage the Federal
Telecommunications Standards
Program, ensuring wherever feasible
that existing or evolving industry,
national, and international standards are

used as the basis for Federal telecommunications standards; and

(6) Provide such reports and perform such other duties as are from time to time assigned by the President or his authorized designee, the Executive Agent, or the NCS Committee of Principals. Any such assignments of responsibility to, or reports made by, the Manager shall be transmitted through the Executive Agent.

Designation: In accordance with section 1(e)(1) of Executive Order 12472 of April 3, 1984, as amended by section 46 of Executive Order 13286 of February 28, 2003, and as the designated Executive Agent for the National Communications System, Department of Homeland Security, I designate the position Under Secretary for Preparedness, Directorate for Preparedness, as the Manager, National Communications System. This designation supersedes the prior designation to the Assistant Secretary of Homeland Security for Infrastructure Protection.

Dated: September 28, 2006.

Michael Chertoff,

Secretary of Homeland Security.
[FR Doc. E6–16833 Filed 10–10–06; 8:45 am]
BILLING CODE 4410–10–P

DEPARTMENT OF HOMELAND SECURITY

U.S. Citizenship and Immigration Services

Agency Information Collection Activities: Extension of a Currently approved information Collection; Comment Request

ACTION: 30-Day Notice of Information Collection under Review: Interagency Record of Individual Requesting Change/Adjustment to or From A or G Status or Requesting A, G, or NATO dependent Employment Authorization; Form I–566; Control No. 1615–0027.

The Department of Homeland Security (DHS), U.S. Citizenship and Immigration Services (USCIS), has submitted the following information collection request to the Office of Management and Budget (OMB) for review and clearance in accordance with the Paperwork Reduction Act of 1995. The information collection was previously published in the **Federal Register** on July 26, 2006 at 71FR 42407, allowing for a 60-day public comment period. No comments were received on this information collection.

The purpose of this notice is to notify the public that the USCIS is seeking OMB approval on this information collection and to allow an additional 30 days for public comments. Comments are encouraged and will be accepted until November 13, 2006. This process is conducted in accordance with 5 CFR 1320.10.

Written comments and/or suggestions regarding the item(s) contained in this notice, especially regarding the estimated public burden and associated response time, should be directed to the Department of Homeland Security (DHS), and to the Office of Management and Budget (OMB) USCIS Desk Officer. Comments may be submitted to: USCIS, Director, Regulatory Management Division, Clearance Office, 111 Massachusetts Avenue, 3rd floor, Washington, DC 20529. Comments may also be submitted to DHS via facsimile to 202-272-8352 or via e-mail at rfs.regs@dhs.gov, and to the OMB USCIS Desk Officer via facsimile at 202-395-6974 or via e-mail at kastrich@omb.eop.gov.

When submitting comments by e-mail please make sure to add OMB Control Number 1615–0027. Written comments and suggestions from the public and affected agencies should address one or more of the following four points:

(1) Evaluate whether the proposed collection of information is necessary for the proper performance of the functions of the agency, including whether the information will have practical utility;

(2) Evaluate the accuracy of the agency's estimate of the burden of the proposed collection of information, including the validity of the methodology and assumptions used;

(3) Enhance the quality, utility, and clarity of the information to be

collected; and

(4) Minimize the burden of the collection of information on those who are to respond, including through the use of appropriate automated, electronic, mechanical, or other technological collection techniques or other forms of information technology, e.g., permitting electronic submission of responses.

Överview of this information collection:

(1) Type of Information Collection: Extension of a currently approved information collection.

(2) Title of the Form/Collection: Interagency Record of Individual Requesting Change/Adjustment to or From A or G Status or Requesting A, G, or NATO Dependent Employment Authorization.

(3) Agency form number, if any, and the applicable component of the Department of Homeland Security sponsoring the collection: Form I–566. U.S. Citizenship and Immigration Services.

(4) Affected public who will be asked or required to respond, as well as a brief abstract: Primary: Individuals or households. The data on this form is used by Department of State (DOS) to certify to USCIS eligibility of dependents of A or G principals requesting employment authorization, as well as for North Atlantic Treaty Organization/Headquarters, Supreme Allied Commander Transformation (NATO/HQ SACT) to certify to USCIS similar eligibility for dependents of NATO principals. DOS also uses this form to certify to USCIS that certain, A, G or NATO nonimmigrants may change their status to another nonimmigrant status. USCIS, on the other hand, uses data on this form in the adjudication of change or adjustment of status applications from aliens in A, G, or NATO classifications, and following any such adjudication informs DOS of the results by use of this form.

(5) An estimate of the total number of respondents and the amount of time estimated for an average respondent to respond: 5,800 responses at 15 minutes (.250 hours) per response.

(6) An estimate of the total public burden (in hours) associated with the collection: 1,450 annual burden hours.

If you have additional comments, suggestions, or need a copy of the proposed information collection instrument with instructions, or additional information, please visit the USCIS Web site at: http://uscis.gov/graphics/formsfee/forms/pra/index.htm.

If additional information is required contact: USCIS, Regulatory Management Division, 111 Massachusetts Avenue, 3rd Floor Suite 3008, Washington, DC 20529, (202) 272–8377.

Dated: October 4, 2006.

Richard A. Sloan,

Director, Regulatory Management Division, U.S. Citizenship and Immigration Services, Department of Homeland Security.

[FR Doc. 06–8578 Filed 10–10–06; 8:45 am]

DEPARTMENT OF HOMELAND SECURITY

U.S. Citizenship and Immigration Services

Agency Information Collection Activities: Extension of a Currently Approved Information Collection, Comment Request

ACTION: 30-day notice of information collection under review; Application for

Waiver of Grounds of Excludability, Form I–690, OMB Control Number 1615–0032.

The Department of Homeland Security, U.S. Citizenship and Immigration Services (USCIS) has submitted the following information collection request to the Office of Management and Budget (OMB) for review and clearance in accordance with the Paperwork Reduction Act of 1995. The information collection was previously published in the **Federal Register** on July 26, 2006, at 71FR 42408. The notice allowed for a 60-day public comment period. No comments were received on this information collection.

The purpose of this notice is to allow an additional 30 days for public comments. Comments are encouraged and will be accepted until November 13, 2006. This process is conducted in accordance with 5 CFR 1320.10.

Written comments and/or suggestions regarding the item(s) contained in this notice, especially regarding the estimated public burden and associated response time, should be directed to the Department of Homeland Security (DHS), and to the Office of Management and Budget (OMB) USCIS Desk Officer. Comments may be submitted to: USCIS, Director, Regulatory Management Division, Clearance Officer, 111 Massachusetts Avenue, 3rd Floor, Washington, DC 20529. Comments may also be submitted to DHS via facsimile to 202-272-8352 or via e-mail at rfs.regs@dhs.gov, and to the OMB USCIS Desk Officer via facsimile at 202–395– 6974 or via e-mail at kastrich@omb.eop.gov.

When submitting comments by e-mail please make sure to add OMB Control Number 1615–0032. Written comments and suggestions from the public and affected agencies should address one or more of the following four points:

(1) Evaluate whether the collection of information is necessary for the proper performance of the functions of the agency, including whether the information will have practical utility;

(2) Evaluate the accuracy of the agency's estimate of the burden of the collection of information, including the validity of the methodology and assumptions used:

(3) Enhance the quality, utility, and clarity of the information to be collected; and

(4) Minimize the burden of the collection of information on those who are to respond, including through the use of appropriate automated, electronic, mechanical, or other technological collection techniques or

other forms of information technology, e.g., permitting electronic submission of responses.

Överview of this information collection:

(1) Type of Information Collection: Extension of a currently approved information collection.

(2) *Title of the Form/Collection:* Application for Waiver of Grounds of Excludability.

(3) Agency form number, if any, and the applicable component of the Department of Homeland Security sponsoring the collection: Form I–690. U.S. Citizenship and Immigration Services.

(4) Affected public who will be asked or required to respond, as well as a brief abstract: Primary: Individuals or Households. This information on the application will be used by the USCIS in considering eligibility for legalization under sections 210 and 245A of the Immigration and Nationality Act.

(5) An estimate of the total number of respondents and the amount of time estimated for an average respondent to respond: 85 respondents at 15 minutes (.25 hours) per response.

(6) An estimate of the total public burden (in hours) associated with the collection: 21 annual burden hours.

If you have additional comments, suggestions, or need a copy of the proposed information collection instrument with instructions, or additional information, please visit the USCIS Web site at: http://uscis.gov/graphics/formsfee/forms/pra/index.htm.

If additional information is required contact: USCIS, Regulatory Management Division, 111 Massachusetts Avenue, 3rd Floor, Suite 3008, Washington, DC 20529, 272–8377.

Dated: October 4, 2006.

Richard A. Sloan,

Director, Regulatory Management Division, U.S. Citizenship and Immigration Services, Department of Homeland Security. [FR Doc. 06–8579 Filed 10–10–06; 8:45 am]

BILLING CODE 4410-10-M

DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT

[Docket No. FR-5037-N-69]

Notice of Submission of Proposed Information Collection to OMB; Application for the Transfer of Physical Assets

AGENCY: Office of the Chief Information Officer, HUD.

ACTION: Notice.

SUMMARY: The proposed information collection requirement described below

has been submitted to the Office of Management and Budget (OMB) for review, as required by the Paperwork Reduction Act. The Department is soliciting public comments on the subject proposal.

The Application for the Transfer of Physical Assets is completed and submitted to HUD by prospective purchasers of properties with mortgage either HUD-insured or HUD-held prior to conveying the title. The form cites all the supportive documentation that must be submitted to HUD for approval. HUD uses the information submitted to determine the suitability of new owners and managers of multifamily projects and to ensure the legal and administrative sufficiency of the proposal.

DATES: *Comments Due Date:* October 11, 2006.

ADDRESSES: Interested persons are invited to submit comments regarding this proposal. Comments should refer to the proposal by name and/or OMB approval Number (2502–0275) and should be sent to: HUD Desk Officer, Office of Management and Budget, New Executive Office Building, Washington, DC 20503; fax: 202–395–6974.

FOR FURTHER INFORMATION CONTACT:

Lillian Deitzer, Departmental Reports Management Officer, QDAM, Department of Housing and Urban Development, 451 Seventh Street, SW., Washington, DC 20410; e-mail Lillian_L._Deitzer@HUD.gov or telephone (202) 708–2374. This is not a toll-free number. Copies of available documents submitted to OMB may be obtained from Ms. Deitzer or from HUD's Web site at http://hlannwp031.hud.gov/po/i/icbts/collectionsearch.cfm.

SUPPLEMENTARY INFORMATION: This notice informs the public that the Department of Housing and Urban Development has submitted to OMB a request for approval of the information collection described below. This notice is soliciting comments from members of the public and affecting agencies concerning the proposed collection of information to: (1) Evaluate whether the proposed collection of information is necessary for the proper performance of the functions of the agency, including whether the information will have practical utility; (2) Evaluate the accuracy of the agency's estimate of the burden of the proposed collection of information; (3) Enhance the quality, utility, and clarity of the information to

be collected; and (4) Minimize the burden of the collection of information on those who are to respond; including through the use of appropriate automated collection techniques or other forms of information technology, e.g., permitting electronic submission of responses.

This notice also lists the following information:

Title of Proposal: Application for the Transfer of Physical Assets.

OMB Approval Number: 2502–0275. Form Numbers: HUD–92266.

Description of the Need for the Information and Its Proposed Use:

The Application for the Transfer of Physical Assets is completed and submitted to HUD by prospective purchasers of properties with mortgages either HUD-insure or HUD-held prior to conveying the title. The form cites all the supportive documentation that must be submitted to HUD for approval. HUD uses the information submitted to determine the suitability of new owners and managers of multifamily projects and to ensure the legal and administrative sufficiency of the proposal.

Frequency of Submission: On Occasion.

	Number of respondents	Annual responses	×	Hours per response	=	Burden hours
Reporting Burden	350	1		92		32,200

Total Estimated Burden Hours: 32.200.

Status: Extension of a currently approved collection.

Authority: Section 3507 of the Paperwork Reduction Act of 1995, 44 U.S.C. 35, as amended.

Dated: October 4, 2006.

Lillian L. Deitzer,

Departmental Paperwork Reduction Act Officer, Office of the Chief Information Officer.

[FR Doc. E6–16716 Filed 10–10–06; 8:45 am] **BILLING CODE 4210–67–P**

DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT

[Docket No. FR-5030-FA-19]

Announcement of Funding Awards for Fiscal Year 2006 Hispanic-Serving Institutions Assisting Communities Program

AGENCY: Office of the Assistant Secretary for Policy Development and Research, HUD. **ACTION:** Announcement of funding awards.

SUMMARY: In accordance with section 102 (a)(4)(C) of the Department of Housing and Urban Development Reform Act of 1989, this document notifies the public of funding awards for Fiscal Year 2005 Hispanic-Serving **Institutions Assisting Communities** (HSIAC) Program. The purpose of this document is to announce the names, addresses and the amount awarded to the winners to be used to help Hispanic-Serving Institutions of higher education to expand their role and effectiveness in addressing community development needs in their localities, consistent with the purposes of Title I of the Housing and Community Development Act of 1974 as amended.

FOR FURTHER INFORMATION CONTACT:

Susan Brunson, Office of University Partnerships, U.S. Department of Housing and Urban Development, 451 Seventh Street, SW., Room 8106, Washington, DC 20410, telephone (202) 708–3061, extension 3852. To provide service for persons who are hearing-orspeech-impaired, this number may be reached via TTY by Dialing the Federal Information Relay Service on (800) 877– 8339 or (202) 708–1455. (Telephone numbers, other than "800" TTY numbers, are not toll free).

SUPPLEMENTARY INFORMATION: The **Hispanic-Serving Institutions Assisting** Communities Program was approved by Congress under section 107 of the Community Development Block Grant (CDBG) appropriations for the Fiscal Year 2006, and is administered by the Office of University Partnerships under the Assistant Secretary for Policy Development and Research. In addition to this program, the Office of University Partnerships administers HUD's ongoing grant programs to institutions of higher education as well as creates initiatives through which colleges and universities can bring their traditional missions of teaching, research, service, and outreach to bear on the pressing local problems in their communities.

The HSIAC program provides funds for a wide range of CDBG-eligible

activities including housing rehabilitation and financing, property demolition or acquisition, public facilities, economic development, business entrepreneurship, and fair housing programs.

The Catalog of Federal Domestic Assistance number for this program is 14.514.

On March 8, 2006, (71 FR 11756), HUD published a Notice of Funding Availability (NOFA) announcing the availability of \$5.94 million in Fiscal Year 2006, plus \$78,000 in previously unobligated funds for the HSIAC Program. The Department reviewed, evaluated, and scored the applications received based on the criteria in the NOFA. As a result, HUD has funded the applications below, in accordance with section 102(a)(4)(C) of the Department of Housing and Urban Development Reform Act of 1989 (103 Stat. 1987, 42 U.S.C. 3545).

List of Awardees for Grant Assistance Under the FY 2006 Hispanic-Serving Institutions Assisting Communities Program Funding Competition, by Institution, Address and Grant Amount

Region I

1. Urban College of Boston, Ms. Shelia Taylor-King, Urban College of Boston, 178 Tremont Street, Boston, MA 02111– 1093. Grant: \$600,000.

Region II

2. Passaic County Community College, Mr. Todd Sorber, Passaic County Community College, One College Boulevard, Paterson, NJ 07505. Grant: \$597,035.

Region IV

- 3. Universidad Del Este, Mr. Alberto Maldonado-Ruiz, Universidad Del Este, CARR 190 Road km 1.8, Avenue Principle Sabana bo, Sabana Abajo, Carolina, PR 00983. Grant: \$600,000.
- 4. University of Puerto Rico at Humacao, Dr. Hilda M. Colon-Plumay, University of Puerto Rico at Humacao, Office of the Chancellor, 100 Street 908th Road, Humacao, PR 00791–4300. Grant: \$583,284.
- 5. Universidad del Turabo, SUAGM, Ms. Betsy Vidal, Universidad del Turabo, SUAGM, State Road 189, km. 3.3. Gurabo, PR 00778–3030. Grant: \$599,635.

Region VI

- 6. Mesalands Community College, Mr. David Buchen, Mesalands Community College, 911 South Tenth Street, Tucumcari, NM 88401. Grant: \$600,000.
- 7. San Jacinto College North, Dr. Richard Bailey, San Jacinto College

North, 5800 Uvalde Street, Houston, TX 77049. Grant: \$599,815.

8. University of Texas at San Antonio, Dr. Harriett Romo, University of Texas at San Antonio, 501 West Durango Boulevard, Frio Street, Building 4.418, San Antonio, TX 78207. Grant: \$599,984.

Region IX

9. Yosemite Community College District-Modesto Junior College, Ms. Judith Monast, Yosemite Community College District-Modesto Junior College, 2201 Blue Gum Avenue, Modesto, CA 95352. Grant: \$527,290.

Region X

10. Columbia Basin College, Ms. Evangelina Galvan-Holt, Columbia Basin College, 2600 North 20th Avenue, Pasco, WA 99301. Grant: \$600,000.

Dated: September 21, 2006.

Darlene F. Williams,

Assistant Secretary.

[FR Doc. E6–16714 Filed 10–10–06; 8:45 am]

DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT

[Docket No. FR-5030-FA-28]

Announcement of Funding Awards for Fiscal Year 2006 Historically Black Colleges and Universities Program

AGENCY: Office of the Assistant Secretary for Policy Development and Research, HUD.

ACTION: Announcement of funding awards.

SUMMARY: In accordance with section 102(a)(4)(C) of the Department of Housing and Urban Development Reform Act of 1989, this document notifies the public of funding awards for Fiscal Year (FY) 2006 Historically Black Colleges and Universities Program. The purpose of this document is to announce the names, addresses and the amount awarded to the winners to be used to help Historically Black Colleges and Universities (HBCUs) expand their role and effectiveness in addressing community development needs in their localities, consistent with the purposes of HUD's Community Development Block Grant program (CDBG)

FOR FURTHER INFORMATION CONTACT:

Susan Brunson, Office of University Partnerships, U.S. Department of Housing and Urban Development, 451 Seventh Street, SW., Room 8106, Washington, DC 20410, telephone (202) 708–3061, extension 3852. To provide service for persons who are hearing-orspeech-impaired, this number may be reached via TTY by Dialing the Federal Information Relay Service on (800) 877–8339 or (202) 708–1455. (Telephone number, other than "800" TTY numbers are not toll free.)

SUPPLEMENTARY INFORMATION: The Historically Black Colleges and Universities Program was enacted under section 107 of the CDBG appropriation for FY 2006, as part of the "Veterans Administration, HUD and Independent Agencies Appropriations Act of 2002" and is administered by the Office of University Partnerships under the Assistant Secretary for Policy Development and Research. In addition to this program, the Office of University Partnerships administers HUD's ongoing grant programs to institutions of higher education as well as creates initiatives through which colleges and universities can bring their traditional missions of teaching, research, service, and outreach to bear on the pressing local problems in their communities.

The HBCU Program provides funds for a wide range of CDBG-eligible activities including housing rehabilitation and financing, property demolition or acquisition, public facilities, economic development, business entrepreneurship, and fair housing programs.

The Catalog Federal Domestic Assistance number for this program is 14.520.

On March 8, 2006 (71 FR 11747), HUD published a Notice of Funding Availability (NOFA) announcing the availability of \$7.9 million in FY 2006, plus \$2.5 million in previously unobligated funds for the HBCU Program. This year HUD awarded two types of grants: Category I and Category II. Of the amount available, \$6.0 million was available to Category I applicants and \$4.4 million is available to fund Category II applicants.

Category I grants were awarded to institutions that sustained in excess of \$50 million in damages and destructions from hurricanes Katrina or Rita in FY 2005 (applicants can request up to \$2,000,000) to provide critical resources and assistance. Funding awarded under Category II grants will allow institutions to expand their role and effectiveness in addressing community development needs in their localities or a designated disaster area (applicants could request up to \$600,000). The Department reviewed, evaluated, and scored the applications received based on the criteria in the NOFA. As a result, HUD has funded the applications below, in accordance with section 102(a)(4)(C) of the Department of Housing and Urban Development Reform Act of 1989 (103 Stat. 1987, 42 U.S.C. 3545).

List of Awardees for Grant Assistance Under the FY 2006 Historically Black Program Funding Competition, by Institution, Address, and Grant Amount

Region III

- 1. Howard University, Dr. Rodney Green, Howard University, Center for Urban Progress, 1840 7th Street, NW., Suite 318, Washington, DC 20001. Grant: \$586.027.
- 2. Morgan State University, Mr. Ellis Brown, Morgan State University, Community and Economic Development, Truth Hall, Room #111-G, 1700 East Cold Spring Lane, Baltimore, MD 21251. Grant: \$600,000.
- 3. Norfolk State University, Mrs. Debra Atkins, Norfolk State University, Community and Outreach Service, 700 Park Avenue, Norfolk, VA 23504. Grant: \$600,000.

Region IV

- 4. Alabama A&M University, Mr. Larry Dejarnett, Alabama A&M University, Community Planning/Urban Studies, 4900 Meridian Street, James I. Dawson Building, Rm. 316B, Normal, AL 35762. Grant: \$600,000.
- 5. Benedict College, Dr. Jabari Simama, Benedict College, Benedict-Allen Community Development Corporation, 1600 Harden Street, Columbia, SC 29204. Grant: \$600,000.
- 6. C.A. Fredd Technical College Campus, Dr. Cordell Wynn, C.A. Fredd Technical College Campus, 3401 Martin Luther King Jr. Boulevard, Tuscaloosa, AL 35401. Grant: \$599,020.
- Morris College, Ms. Dorothy Cheagle, Morris College, Planning and Governmental Relations, 100 West College Street, Sumter, SC 29150. Grant: \$600,000.
- 8. North Carolina A&T State University, Dr. N. Radhakrishman, North Carolina A&T State University, Research and Economic Development, 1601 East Market Street, Greensboro, NC 27411. Grant: \$597,538.

Region VI

- Southern University and A&M College, Dr. Alma Thornton, Southern University and A&M College, Center for Social Research, 208 Higgins Hall, Roosevelt Steptoe Drive, Baton Rouge, LA 70813. Grant: \$600,000.
- 10. Dillard University, Mr. Theodore Callier, Dillard University, Office of Sponsored Programs, 1555 Poydras Street, 12th Floor, New Orleans, LA 70112. Grant: \$2,000,000.
- 11. Langston University, Ms. Linda Tillman, Langston University, Rural

- Business Development, 4205 North Lincoln Boulevard, Room 109, Oklahoma City, OK 73105. Grant: \$587,806.
- 12. Xavier University of Louisiana, Dr. Kyshun Webster, Xavier University of Louisiana, One Drexel Drive, New Orleans, LA 70125. Grant: \$2,000,000.
- 13. University of Arkansas at Pine Bluff, Mr. Henry Golatt, Sr., University of Arkansas at Pine Bluff, Economic Research and Development Center, 1200 North University Drive, Pine Bluff, AR 71601. Grant: \$429,609.

Dated: September 21, 2006.

Darlene F. Williams,

Assistant Secretary.

[FR Doc. E6–16715 Filed 10–10–06; 8:45 am]

BILLING CODE 4210-67-P

DEPARTMENT OF THE INTERIOR

Bureau of Indian Affairs

Notice of Cancellation of the **Environmental Impact Statement for** the Proposed Operations and Maintenance of the Flathead Indian Irrigation Project Upon Transfer in Favor of Preparation of an **Environmental Assessment, Flathead,** Lake, Missoula and Sanders Counties,

AGENCY: Bureau of Indian Affairs,

ACTION: Notice.

Interior.

SUMMARY: This notice advises the public that the Bureau of Indian Affairs (BIA) intends to prepare an Environmental Assessment (EA) instead of an Environmental Impact Statement (EIS) for the proposed operations and maintenance of the Flathead Indian Irrigation Project upon transfer. This notice also announces a public comment period. The purpose of this notice and public comment period is to obtain additional suggestions and information from other agencies and the public regarding BIA's intention to prepare an EA instead of an EIS. Because the BIA has already held public meetings to satisfy scoping requirements for preparation of an EIS, and the subject matter of the EA is identical, at this time, the BIA does not intend to hold additional public meetings. However, if the need for additional public meetings becomes evident through public comment or otherwise, the BIA will hold additional public meetings.

DATES: Comments on the implementation of this proposal must be received before November 13, 2006.

ADDRESSES: Mail or hand deliver written comments to Mr. Travis Teegarden, Project Manager, Branch of Irrigation, Power, and Safety of Dams, Natural Resources Division, Office of Trust Services, Bureau of Indian Affairs, 490 N. 31st Street, Suite 203, Billings, MT 59101. You may also fax comments to Mr. Travis Teegarden at (406) 657-5988.

FOR FURTHER INFORMATION CONTACT: Mr. Travis Teegarden, (406) 657–5987.

SUPPLEMENTARY INFORMATION: The Flathead Indian Irrigation Project (Project) is located on the Flathead Indian Reservation in northwestern Montana. The Secretary of the Interior (Secretary) is required to transfer the operations and management of the Project as provided by the Act of May 29, 1908, Public Law 60-156, 35 Stat. 441 (the 1908 Act) and the Act of May 25, 1948, Public Law 80-554, 62 Stat. 269 (the 1948 Act).

In 1904, the Flathead Indian Allotment Act authorized allotments of land within the Flathead Indian Reservation to members of the Confederated Salish and Kootenai Tribes (Tribes) and construction of the Flathead Indian Irrigation Project for "the benefit of Indians" on the Flathead Indian Reservation (33 Stat. 302). When this Act was amended in 1908, it also authorized the construction of irrigation systems to serve homesteaded lands within the Flathead Indian Reservation and provided for turnover of the operation and management of irrigation works serving non-Indian lands when certain Project construction repayment conditions had been met (35 Stat. 450). Further, upon turnover of the project, the 1948 Act called for the operation and management of the Project under rules and regulations approved by the Secretary.

As of August 2002, there were 134,788 total acres in the project; 127,535 of which were assessed acres, with 7,252 designated as temporarily non-assessed acres. Approximately 10 percent of the Project's irrigated lands are held in trust by the United States for the benefit of individual Indian landowners and for the Confederated Salish and Kootenai Tribes. Trust land totals 11,771 acres, while land in fee status totals 115,764 acres. The primary source of the water for the Project originates from the Mission Mountains which border the east side of the reservation. The Project facilities include 17 major storage reservoirs, 1,300 miles of canals and laterals and more than 10,000 structures. The Project is divided into the Mission, Post, Pablo, Camas, and Jocko divisions. Primary irrigated crops are hay and alfalfa,

grains, potatoes, canola, and some fruit orchards.

Currently, the BIA's Flathead Agency Superintendent is the Officer-in-Charge of the Project and administers activities through the Irrigation Systems Manager. The Irrigation Systems Manager supervises the operation and maintenance of the Project works.

Non-Indian irrigation interests are represented by three irrigation districts, the Flathead Irrigation District, the Mission Irrigation District, and the Jocko Valley Irrigation District. These Districts signed repayment contracts with the United States in 1928, 1931, and 1934 respectively, and are collectively represented by the Flathead Joint Board of Control (FJBC), which is chartered under state law and represents only owners of fee lands. Individual Indians and the Tribes that irrigate lands held in trust by the United States are statutorily excluded from representation by the FIBC.

Repayment of Project construction conditions were fulfilled in early January 2004. The BIA, the Tribes and the FJBC are developing proposed standard operating procedures for the Project and are proposing to contract the management of the Project under a Cooperating Management Entity, made up of representatives from the FJBC and the Tribes, with the BIA providing oversight functions and maintaining its role as trustee.

The BIA has been delegated the responsibility to serve as the Lead Agency for National Environmental Policy Act compliance in connection with the proposed operations and maintenance of the Flathead Indian Irrigation Project upon transfer. Issues to be addressed in the environmental analysis include, but are not limited to, irrigation and farming, rights-of-ways, treaty-protected fisheries, aquatic habitat, biological resources, wildlife habitat, and Indian traditional and cultural properties and resources.

On June 7, 2004, the BIA issued a Notice of Intent to prepare an EIS for the proposed operations and maintenance of the Flathead Indian Irrigation Project upon transfer (69 FR 31835). The BIA held public scoping meetings on June 28, 2004, in Arlee, Montana, and June 30, 2004, in Ronan, Montana. Public comments were solicited and received by the BIA and work began on the EIS. As work on the EIS progressed, it became evident that an EA would be a more appropriate NEPA document for the proposed transfer of the operation and maintenance of the Project. Preliminary analysis of current operation and maintenance of the Project and proposed future operations

and maintenance after turnover showed the two plans to be very similar and any environmental affects of the limited changes and new actions to be taken would result primarily in environmental benefits. Thus, after consultation with the Tribes, the FJBC, and the U.S. Fish and Wildlife Service, the BIA now intends to prepare an EA instead of an EIS. A biological assessment prepared in accordance with the Endangered Species Act will accompany the EA.

The proposed operations and management of the Project after transfer will be examined in the EA, including Project management control structures, certain operating and maintenance methods or procedures, system rehabilitation, and alternative water delivery regimes. The environmental issues will be substantially the same as those that were to be addressed in the EIS that was originally contemplated. A draft EA will be made available for public comment. Following consideration of public comments on the draft EA, BIA will publish a final EA. Based on the information in the final EA, BIA will either issue a finding of no significant impact (FONSI), or, if the final EA reveals significant environmental impacts, BIA will prepare an EIS.

Authority

This notice is published in accordance with Council on Environmental Quality regulations (40 CFR parts 1500 through 1508) implementing the procedural requirements of the National Environmental Policy Act of 1969, as amended (42 U.S.C. 4321 et seq.) and the Department of the Interior Manual (516 DM 1.6) and is within in the exercise of authority delegated to the Assistant Secretary—Indian Affairs by 209 DM 8.l.

Dated: September 22, 2006.

Michael D. Olsen,

Principal Deputy Assistant Secretary—Indian Affairs.

[FR Doc. E6–16720 Filed 10–10–06; 8:45 am] BILLING CODE 4310–W7–P

DEPARTMENT OF THE INTERIOR

Bureau of Land Management

[AZ-410-06-1220-AL]

Emergency Closure of Public Lands: Graham County, AZ

AGENCY: Bureau of Land Management, Interior.

ACTION: Notice of Emergency Closure.

SUMMARY: Notice is hereby given that certain public lands in Graham County, Arizona are temporarily closed to public

This Closure Order restricts all public use on a year-round basis on public lands administered by the BLM Safford Field Office in the Watson Wash area. This Order is issued under the authority of 43 CFR 8364.1 and affects the following public lands: Gila and Salt River Meridian, Arizona, T. 6 S., R.25 E., Sec. 14, S½, SW¼: Sec. 15, S½ SE¼; Sec. 22, E½ NE¼; Sec. 23, NW¾.

The affected lands contain conditions that compromised public health and safety due to illegal activities at the site that included murder, assaults, fights, disorderly conduct, drugs, under-age drinking, weapon offenses, motor vehicle accidents, vandalism, and littering. Public health and safety hazards have increased substantially and are expected to continue to do so unless immediate management action is taken. The restriction prohibiting public entry and use will help to mitigate public health and safety threats. The BLM's immediate removal of an unauthorized hot tub, which was an attractive nuisance, will reduce the area's appeal as a party spot.

DATES: This temporary closure will be effective the date this notice is published in the **Federal Register** and will remain in effect until rescinded or modified by the Authorized Officer.

FOR FURTHER INFORMATION CONTACT: Bill Brandau, Safford Field Manager, BLM, Safford Field Office, 711 14th Avenue, Safford, AZ 85546, (928) 348–4461.

Discussion of the Rules: Pursuant to 43 CFR 8364.1 the following is prohibited on lands administered by BLM within the Watson Wash Area:

- 1. Unless otherwise authorized, no person shall enter or remain in the closed area.
- 2. Persons who are exempt from the restriction include:
- a. Any Federal, State or local officer or member of an organized firefighting force in the performance of an official duty.
- b. BLM employees engaged in official duties, and
- c. Persons specifically authorized by the BLM to enter the restricted area.

Penalties: Violation of this Order is punishable by a fine of not more than \$1,000, and/or imprisonment of not more than 12 months (43 CFR 8364.1(d)).

Marlo M. Draper,

Acting Safford Field Office Manager.
[FR Doc. E6–16698 Filed 10–10–06; 8:45 am]
BILLING CODE 4310–32–P

DEPARTMENT OF THE INTERIOR

Bureau of Land Management

[OR-130-1020-PH; GP7-0005]

Notice of Public Meeting, Eastern Washington Resource Advisory Council Meeting

AGENCY: Bureau of Land Management, U.S. Department of the Interior. **ACTION:** Notice of Public Meeting.

SUMMARY: In accordance with the Federal Land Policy and Management Act of 1976 and the Federal Advisory Committee Act of 1972, the U.S. Department of the Interior, Bureau of Land Management Eastern Washington Resource Advisory Council will meet as indicated below.

DATES: The Eastern Washington Resource Advisory Council will meet Friday, November 3, 2006 at the Spokane District Office, Bureau of Land Management, 1103 North Fancher Road, Spokane Valley, Washington, 99212–1275.

SUPPLEMENTARY INFORMATION: The meeting will start at 8 a.m., adjourn at 4 p.m., and will be open to the public. Topics of discussion will include Federal Energy Regulatory Commission (FERC) re-licensing of dams, energy development, and rights-of-way corridors. There will be an opportunity for public comment at 3 p.m.

FOR FURTHER INFORMATION CONTACT:

Scott Pavey, Bureau of Land Management, Spokane District Office, 1103 N. Fancher Road, Spokane Valley, Washington, 99212, or call (509) 536– 1200.

Dated: October 4, 2006.

Richard Bailey,

 $Acting\ District\ Manager.$

[FR Doc. E6-16743 Filed 10-10-06; 8:45 am]

BILLING CODE 4310-33-P

DEPARTMENT OF THE INTERIOR

Bureau of Land Management

[CO-922-06-1310-FI; COC68518]

Notice of Proposed Reinstatement of Terminated Oil and Gas Lease

AGENCY: Bureau of Land Management, Interior.

ACTION: Notice of proposed reinstatement of terminated oil and gas lease

SUMMARY: Under the provisions of 30 U.S.C. 188(d) and (e), and 43 CFR 3108.2–3(a) and (b)(1), the Bureau of Land Management (BLM) received a

petition for reinstatement of oil and gas lease COC68518 from Gunsmoke Production Company for lands in Rio Blanco County, Colorado. The petition was filed on time and was accompanied by all the rentals due since the date the lease terminated under the law.

FOR FURTHER INFORMATION CONTACT:

Bureau of Land Management, Milada Krasilinec, Land Law Examiner, Branch of Fluid Minerals Adjudication, at 303– 239–3767.

SUPPLEMENTARY INFORMATION: The lessee has agreed to the amended lease terms for rentals and royalties at rates of \$10.00 per acre or fraction thereof, per year and 162/3 percent, respectively. The lessee has paid the required \$500 administrative fee and \$163 to reimburse the Department for the cost of this Federal Register notice. The lessee has met all the requirements for reinstatement of the lease as set out in Section 31(d) and (e) of the Mineral Lands Leasing Act of 1920 (30 U.S.C. 188), and the Bureau of Land Management is proposing to reinstate lease COC68518 effective July 1, 2006, under the original terms and conditions of the lease and the increased rental and royalty rates cited above.

Dated: September 28, 2006.

Milada Krasilinec,

Land Law Examiner.

[FR Doc. E6–16697 Filed 10–10–06; 8:45 am]

BILLING CODE 4310-JB-P

DEPARTMENT OF THE INTERIOR

Bureau of Land Management

[CO-922-06-1310-FI; COC68525]

Notice of Proposed Reinstatement of Terminated Oil and Gas Lease

AGENCY: Bureau of Land Management, Interior.

ACTION: Notice of Proposed Reinstatement of Terminated Oil and Gas Lease.

SUMMARY: Under the provisions of 30 U.S.C. 188 (d) and (e), and 43 CFR 3108.2–3 (a) and (b)(1), the Bureau of Land Management (BLM) received a petition for reinstatement of oil and gas lease COC68525 from Gunsmoke Production Company for lands in Rio Blanco County, Colorado. The petition was filed on time and was accompanied by all the rentals due since the date the lease terminated under the law.

FOR FURTHER INFORMATION CONTACT:

Bureau of Land Management, Milada Krasilinec, Land Law Examiner, Branch of Fluid Minerals Adjudication, at 303.239.3767. SUPPLEMENTARY INFORMATION: The lessee has agreed to the amended lease terms for rentals and royalties at rates of \$10.00 per acre or fraction thereof, per year and 162/3 percent, respectively. The lessee has paid the required \$500 administrative fee and \$163 to reimburse the Department for the cost of this Federal Register notice. The lessee has met all the requirements for reinstatement of the lease as set out in Section 31 (d) and (e) of the Mineral

Lands Leasing Act of 1920 (30 U.S.C. 188), and the Bureau of Land Management is proposing to reinstate lease COC68525 effective July 1, 2006, under the original terms and conditions of the lease and the increased rental and royalty rates cited above.

Dated: September 28, 2006.

Milada Krasilinec.

Land Law Examiner.

[FR Doc. E6–16699 Filed 10–10–06; 8:45 am] BILLING CODE 4310–JB–P

DEPARTMENT OF THE INTERIOR

Bureau of Land Management

[CO-922-06-1310-FI; COC68524]

Notice of Proposed Reinstatement of Terminated Oil and Gas Lease

AGENCY: Bureau of Land Management, Interior.

ACTION: Notice of Proposed Reinstatement of Terminated Oil and Gas Lease.

SUMMARY: Under the provisions of 30 U.S.C. 188 (d) and (e), and 43 CFR 3108.2–3 (a) and (b)(1), the Bureau of Land Management (BLM) received a petition for reinstatement of oil and gas lease COC68524 from Gunsmoke Production Company for lands in Rio Blanco County, Colorado. The petition was filed on time and was accompanied by all the rentals due since the date the lease terminated under the law.

FOR FURTHER INFORMATION CONTACT:

Bureau of Land Management, Milada Krasilinec, Land Law Examiner, Branch of Fluid Minerals Adjudication, at 303.239.3767.

SUPPLEMENTARY INFORMATION: The lessee has agreed to the amended lease terms for rentals and royalties at rates of \$10.00 per acre or fraction thereof, per year and 162/3 percent, respectively. The lessee has paid the required \$500 administrative fee and \$163 to reimburse the Department for the cost of this Federal Register notice. The lessee has met all the requirements for reinstatement of the lease as set out in Section 31 (d) and (e) of the Mineral

Lands Leasing Act of 1920 (30 U.S.C. 188), and the Bureau of Land Management is proposing to reinstate lease COC68524 effective July 1, 2006, under the original terms and conditions of the lease and the increased rental and royalty rates cited above.

Dated: September 28, 2006.

Milada Krasilinec,

Land Law Examiner.

[FR Doc. E6-16701 Filed 10-10-06; 8:45 am]

BILLING CODE 4310-JB-P

DEPARTMENT OF THE INTERIOR

Bureau of Land Management

[CO-922-06-1310-FI; COC68523]

Notice of Proposed Reinstatement of **Terminated Oil and Gas Lease**

AGENCY: Bureau of Land Management, Interior.

ACTION: Notice of Proposed Reinstatement of Terminated Oil and Gas Lease.

SUMMARY: Under the provisions of 30 U.S.C. 188(d) and (e), and 43 CFR 3108.2-3(a) and (b)(1), the Bureau of Land Management (BLM) received a petition for reinstatement of oil and gas lease COC68523 from Gunsmoke Production Company for lands in Rio Blanco County, Colorado. The petition was filed on time and was accompanied by all the rentals due since the date the lease terminated under the law.

FOR FURTHER INFORMATION CONTACT:

Bureau of Land Management, Milada Krasilinec, Land Law Examiner, Branch of Fluid Minerals Adjudication, at 303.239.3767.

SUPPLEMENTARY INFORMATION: The lessee has agreed to the amended lease terms for rentals and royalties at rates of \$10.00 per acre or fraction thereof, per year and 163/3 percent, respectively. The lessee has paid the required \$500 administrative fee and \$163 to reimburse the Department for the cost of this Federal Register notice. The lessee has met all the requirements for reinstatement of the lease as set out in Section 31(d) and (e) of the Mineral Lands Leasing Act of 1920 (30 U.S.C. 188), and the Bureau of Land Management is proposing to reinstate lease COC68523 effective July 1, 2006, under the original terms and conditions of the lease and the increased rental and royalty rates cited above.

Dated: September 28, 2006.

Milada Krasilinec,

Land Law Examiner.

[FR Doc. E6-16702 Filed 10-10-06; 8:45 am]

BILLING CODE 4310-JB-P

DEPARTMENT OF THE INTERIOR

Bureau of Land Management

[CO-922-06-1310-FI; COC68522]

Notice of Proposed Reinstatement of **Terminated Oil and Gas Lease**

AGENCY: Bureau of Land Management, Interior.

ACTION: Notice of proposed reinstatement of terminated oil and gas lease.

SUMMARY: Under the provisions of 30 U.S.C. 188(d) and (e), and 43 CFR 3108.2-3(a) and (b)(1), the Bureau of Land Management (BLM) received a petition for reinstatement of oil and gas lease COC68522 from Gunsmoke Production Company for lands in Rio Blanco County, Colorado. The petition was filed on time and was accompanied by all the rentals due since the date the lease terminated under the law.

FOR FURTHER INFORMATION CONTACT:

Bureau of Land Management, Milada Krasilinec, Land Law Examiner, Branch of Fluid Minerals Adjudication, at 303-239-3767.

SUPPLEMENTARY INFORMATION: The lessee has agreed to the amended lease terms for rentals and royalties at rates of \$10.00 per acre or fraction thereof, per year and 16²/₃ percent, respectively. The lessee has paid the required \$500 administrative fee and \$163 to reimburse the Department for the cost of this Federal Register notice. The lessee has met all the requirements for reinstatement of the lease as set out in Section 31(d) and (e) of the Mineral Lands Leasing Act of 1920 (30 U.S.C. 188), and the Bureau of Land Management is proposing to reinstate lease COC68522 effective July 1, 2006, under the original terms and conditions of the lease and the increased rental and royalty rates cited above.

Dated: September 28, 2006.

Milada Krasilinec.

Land Law Examiner.

[FR Doc. E6-16706 Filed 10-10-06; 8:45 am]

BILLING CODE 4310-JB-P

DEPARTMENT OF THE INTERIOR

Bureau of Land Management

[UTU81046]

Notice of Proposed Reinstatement of Terminated Oil and Gas Lease, Utah

AGENCY: Bureau of Land Management, Interior.

ACTION: Notice.

SUMMARY: In accordance with Title IV of the Federal Oil and Gas Royalty Management Act (Pub. L. 97-451), Petro-Hunt LLC timely filed a petition for reinstatement of oil and gas lease UTU81046 for lands in Sanpete County, Utah, and it was accompanied by all required rentals and royalties accruing from May 1, 2006, the date of termination.

FOR FURTHER INFORMATION CONTACT:

Douglas F. Cook, Chief, Branch of Fluid Minerals at (801) 539–4040.

SUPPLEMENTARY INFORMATION: The Lessee has agreed to new lease terms for rentals and royalties at rates of \$5 per acre and 162/3 percent, respectively. The \$500 administrative fee for the lease has been paid and the lessee has reimbursed the Bureau of Land Management for the cost of publishing this notice.

Having met all the requirements for reinstatement of the lease as set out in Section 31(d) and (e) of the Mineral Leasing Act of 1920 (30 U.S.C. 188), the Bureau of Land Management is proposing to reinstate lease UTU81046. effective May 1, 2004, subject to the original terms and conditions of the lease and the increased rental and royalty rates cited above.

Douglas F. Cook,

Chief, Branch of Fluid Minerals. [FR Doc. E6-16707 Filed 10-10-06; 8:45 am] BILLING CODE 4310-DQ-P

DEPARTMENT OF THE INTERIOR

Bureau of Land Management

[CO-910-06-7122-PN-C002]

Notice of Proposed Amended Supplementary Rules for Public Land Administered by the Bureau of Land Management in Colorado Relating to the Unlawful Use of Alcohol by **Underage Persons, Driving Under the** Influence of Alcohol and/or Drugs, and Firearms and Drug Paraphernalia Use and Possession on Public Land

AGENCY: Bureau of Land Management, Interior.

ACTION: Proposed amended supplementary rules for public land within the State of Colorado.

SUMMARY: The Bureau of Land Management (BLM) is proposing to amend the supplementary rules established in 2003 (68 FR 1858) January 14, 2003) for the public lands within the State of Colorado. The rules relate to the illegal use of alcohol and drugs on the public lands. The amended supplementary rules are necessary to protect natural resources and the health and safety of public land users. These amended supplementary rules will allow BLM personnel to continue enforcement of existing public land regulations pertaining to alcohol and drug use in a manner consistent with current state laws as contained in the Colorado Revised Statutes.

DATES: Comments on the proposed supplementary rules must be received or postmarked by December 11, 2006 to be assured consideration. In developing final supplementary rules, BLM may not consider comments postmarked or delivered in person or by electronic mail after this date.

ADDRESSES: You may submit comments by the following methods:

Mail or hand-delivery: Bureau of Land Management, Colorado State Office, 2850 Youngfield Street, Lakewood, Colorado 80215.

Internet e-mail: http:// www.co_proposed_rule@blm.gov (Include Attn: Dorothy Bensusan in your subject line).

Federal eRulemaking Portal: http://www.regulations.gov.

FOR FURTHER INFORMATION CONTACT:

Dorothy Bensusan, Bureau of Land Management, 2850 Youngfield Street, Lakewood, Colorado 80215, telephone (303) 239–3893. Persons who use a telecommunications device for the deaf (TDD) may contact this individual by calling the Federal Information Relay Service (FIRS) at (800) 877–8339, 24 hours a day, 7 days a week.

SUPPLEMENTARY INFORMATION:

I. Public Comment Procedures II. Background III. Procedural Matters

I. Public Comment Procedures

Electronic Access and Filing Address

You may also comment via the Internet to http:// www.co_proposed_rule@blm.gov. Please also include your name and return address in your Internet message, and include "attn: Dorothy Bensusan."

You also may comment via the Internet by accessing the Federal

eRulemaking Portal at http:// www.regulations.gov and following the instructions there.

Written Comments

Written comments on the proposed amended supplementary rules should be specific, confined to issues pertinent to the proposed amendments, and should explain the reason for any recommended change. Where possible, comments should reference the specific section or paragraph of the proposal which the comment is addressing. BLM may not necessarily consider or include in the Administrative Record for the final rule comments that BLM receives after the close of the comment period (see DATES), unless they are postmarked or electronically dated before the deadline, or comments delivered to an address other than those listed above (see ADDRESSES).

Comments, including names, street addresses, and other contact information of respondents, will be available for public review at 2850 Youngfield Street, Lakewood, CO 80215, during regular business hours (7:45 a.m. to 3:45 p.m.), Monday through Friday, except Federal holidays. Individual respondents may request confidentiality. If you wish to request that BLM consider withholding your name, street address, and other contact information (such as: Internet address FAX or phone number) from public review or from disclosure under the Freedom of Information Act, you must state this prominently at the beginning of your comment. BLM will honor requests for confidentiality on a case-bycase basis to the extent allowed by law. BLM will make available for public inspection in their entirety all submissions from organizations or businesses, and from individuals identifying themselves as representatives or officials of organizations or businesses.

II. Background

The BLM, Colorado, published final supplementary rules in 2003 that prohibited certain activities related to drug and alcohol use on public lands in the state. Since that publication, state legislation has been passed that is more restrictive in several of these areas, and as a result the existing supplemental regulations are no longer in concurrence with state law. These amended supplementary rules will correct this, and further promote consistency between the BLM and other agencies including Colorado Division of Wildlife, Colorado State Parks, Colorado State Patrol, and various County Sheriff Offices where working relationships and partnerships in public land management exist.

In keeping with the BLM's performance goal of reducing threats to public health, safety, and property, these amended supplementary rules are necessary to protect natural resources and allow for safe public recreation and public health; to reduce the potential for damage to the environment; and to enhance the safety of visitors and neighboring residents. Alcohol-related offenses are a growing problem on the public lands. Unlawful consumption of alcohol and drugs poses a significant health and safety hazard to all users. Operation of motor vehicles while under the influence of alcohol or drugs can result in the destruction of natural resources and property, and/or serious physical injury or death. Of special concern is the use of firearms by persons under the influence of alcohol or drugs, or in violation of state law. Vandalism to public land resources as a result of firearm use, and the clear risks to public safety, demonstrate the need for greater regulation of these activities. Possession of drug paraphernalia has frequently been linked to other illegal use of controlled substances, including cultivation, manufacture, or possession for distribution. The BLM, in keeping with the National Drug Control policy, intends to continue efforts towards the reduction of illegal use of controlled substances on public lands. These amended supplementary rules will provide an avenue for consistent application and enforcement of alcohol and drug regulations on public lands, further enhancing public safety by all public land users.

III. Procedural Matters

Executive Order 12866, Regulatory Planning and Review

These proposed amended supplementary rules are not a significant regulatory action and are not subject to review by the Office of Management and Budget under Executive Order 12866. These amended rules will not have an effect of \$100 million or more on the economy. They will not adversely affect, in a material way, the economy, productivity, competition, jobs, the environment, public health or safety, or state, local, or Tribal governments or communities. These proposed supplementary rules will not create a serious inconsistency or otherwise interfere with an action taken or planned by another agency. The amended supplementary rules do not alter the budgetary effects of entitlements, grants, user fees, or loan programs or the right or obligations of

their recipients; nor do they raise novel legal or policy issues. The amended supplementary rules would merely revise the existing supplementary rules for greater consistency with the Colorado Revised Statutes, as applied to public land management. They prohibit unlawful personal behavior on public lands in order to protect public health and safety, and natural resources.

Clarity of the Supplementary Rules

Executive Order 12866 requires each agency to write regulations that are simple and easy to understand. We invite your comments on how to make these proposed supplementary rules easier to understand, including answers to questions such as the following: (1) Are the requirements in the proposed supplementary rules clearly stated? (2) Do the proposed supplementary rules contain technical language or jargon that interferes with their clarity? (3) Does the format of the proposed supplementary rules (grouping and order of sections, use of headings, paragraphing, etc.) aid or reduce their clarity? (4) Would the supplementary rules be easier to understand if they were divided into more (but shorter) sections? (5) Is the description of the proposed supplementary rules in the SUPPLEMENTARY INFORMATION section of this preamble helpful to your understanding of the proposed supplementary rules? How could this description be more helpful in making the proposed supplementary rules easier to understand?

Please send any comments you have on the clarity of the supplementary rules to the address specified in the ADDRESSES section.

National Environmental Policy Act

BLM has prepared an environmental assessment (EA) and has found that the proposed supplementary rules would not constitute a major Federal action significantly affecting the quality of the human environment under section 102(2)(C) of the Environmental Protection Act of 1969 (NEPA), 42 U.S.C. 4332(2)(C). The supplementary rules will enable BLM law enforcement personnel to cite persons for unlawful possession/use of alcohol or drugs on public lands, in order to protect public health, safety, and the environment. BLM has placed the EA and the Finding of No Significant Impact (FONSI) on file in the BLM Administrative Record at the address specified in the ADDRESSES section. BLM invites the public to review these documents and suggests that anyone wishing to submit comments in response to the EA and

FONSI do so in accordance with the Written Comments section, above.

Regulatory Flexibility Act

Congress enacted the Regulatory Flexibility Act of 1980, as amended, 5 U.S.C. 601-612, (RFA) to ensure that Government regulations do not unnecessarily or disproportionately burden small entities. The RFA requires a regulatory flexibility analysis if a rule would have a significant economic impact, either detrimental or beneficial, on a substantial number of small entities. The proposed supplementary rules do not pertain specifically to commercial or governmental entities of any size, but contain rules to protect the health and safety of individuals, property, and resources on the public lands. Therefore, BLM has determined under the RFA that these proposed supplementary rules would not have a significant economic impact on a substantial number of small entities.

Small Business Regulatory Enforcement Fairness Act (SBREFA)

These supplementary rules do not constitute a major rule under 5 U.S.C. 804(2). Again, the supplementary rules pertain only to individuals who may wish to use alcohol or drugs on the public lands. In this respect, the regulation of such use is necessary to protect the public lands and facilities and those, including small business concessionaires and outfitters, who use them. The supplementary rules have no effect on business, commercial, or industrial use of the public lands.

Unfunded Mandates Reform Act

These proposed supplementary rules do not impose an unfunded mandate on state, local, or Tribal governments or the private sector of more than \$100 million per year; nor do these supplementary rules have a significant or unique effect on state, local, or Tribal governments or the private sector. The supplementary rules do not require anything of state, local, or Tribal governments. Therefore, BLM is not required to prepare a statement containing the information required by the Unfunded Mandates Reform Act (2 U.S.C. 1531 et seq.)

Executive Order 12630, Governmental Actions and Interference With Constitutionally Protected Property Rights (Takings)

The proposed supplementary rules do not represent a government action capable of interfering with constitutionally protected property rights. The supplementary rules do not address property rights in any form, and do not cause the impairment of anyone's

property rights. Therefore, the Department of the Interior has determined that the proposed supplementary rules would not cause a taking of private property or require further discussion of takings implications under this Executive Order.

Executive Order 13132, Federalism

The proposed supplementary rules will not have a substantial direct effect on the states, on the relationship between the national government and the states, or on the distribution of power and responsibilities among the various levels of government. The supplementary rules apply in only one state, Colorado, and do not address jurisdictional issues involving the Colorado State government. Therefore, in accordance with Executive Order 13132, BLM has determined that these proposed supplementary rules do not have sufficient Federalism implications to warrant preparation of a Federalism Assessment.

Executive Order 12988, Civil Justice Reform

Under Executive Order 12988, Colorado State Office of BLM has determined that these proposed supplementary rules would not unduly burden the judicial system and that they meet the requirements of sections 3(a) and 3(b)(2) of the Order. They merely update the existing supplementary rules to conform with changed state laws.

Executive Order 13175, Consultation and Coordination With Indian Tribal Governments

In accordance with E.O. 13175, we have found that these proposed supplementary rules do not include policies that have Tribal implications. Since the rules do not change BLM policy and do not involve Indian reservation lands or resources, we have determined that the government-to-government relationships should remain unaffected. The supplementary rules only prohibit the illegal use of alcoholic beverages and controlled substances, and regulate the use of firearms, on public lands, in conformance with state law.

Executive Order 13211, Actions Concerning Regulations That Significantly Affect Energy Supply, Distribution, or Use

These proposed supplementary rules do not comprise a significant energy action. The rules will not have an adverse effect on energy supplies, production, or consumption. They only address use of alcoholic beverages, drugs, and firearms on public lands, and have no conceivable connection with energy policy.

Paperwork Reduction Act

These proposed supplementary rules do not contain information collection requirements that the Office of Management and Budget must approve under the Paperwork Reduction Act of 1995 (44 U.S.C. 3501 *et seq.*).

Author

The principal author of these proposed supplementary rules is State Staff Ranger Dorothy Bensusan, Colorado State Office, Bureau of Land Management.

For the reasons stated in the Preamble, and under the authority of 43 CFR 8365.1–6, the Colorado State Director, Bureau of Land Management, proposes supplementary rules for public lands in Colorado, to read as follows:

Supplementary Rules on Public Lands in Colorado

- A. You must not violate any state laws relating to the purchase, possession, use, or consumption of alcohol.
- B. You must not operate a motor vehicle while under the influence of alcohol, in violation of any state law.
- C. You must not possess any drug paraphernalia, in violation of any state law.
- D. You must not possess or discharge a firearm or explosive device in violation of any state law.
- E. Penalties. Under section 303(a) of the Federal Land Policy and Management Act of 1976 (43 U.S.C. 1733(a) and 43 CFR 8360.0–7), any person who violates any of these supplementary rules on public lands may be tried before a United States Magistrate and fined no more than \$1,000 or imprisoned for no more than 12 months, or both. Such violations may also be subject to enhanced fines provided for by 18 U.S.C. 3571.

Sally Wisely,

Colorado State Director, Bureau of Land Management.

[FR Doc. E6–16709 Filed 10–10–06; 8:45 am]

DEPARTMENT OF THE INTERIOR

National Park Service

Chesapeake and Ohio Canal National Historical Park; Notice of Public Meeting

AGENCY: Department of the Interior, National Park Service, Chesapeake and Ohio Canal National Historical Park. **ACTION:** Notice of meeting.

SUMMARY: Notice is hereby given that a meeting of the Chesapeake and Ohio Canal National Historical Park Advisory Commission will be held at 9:30 a.m., on Friday, October 20, 2006, at the Chesapeake and Ohio Canal National Historical Park Headquarters, 1850 Dual Highway, Hagerstown, Maryland 21740. **DATES:** Friday, October 20, 2006.

ADDRESSES: Chesapeake and Ohio Canal National Historical Park Headquarters, 1850 Dual Highway, Hagerstown, Maryland 21740.

FOR FURTHER INFORMATION CONTACT:

Kevin Brandt, Superintendent, Chesapeake and Ohio Canal National Historical Park, 1850 Dual Highway, Suite 100, Hagerstown, Maryland 21740, telephone: (301) 714–2201.

SUPPLEMENTARY INFORMATION: The Commission was established by Public Law 91–664 to meet and consult with the Secretary of the Interior on general policies and specific matters related to the administration and development of the Chesapeake and Ohio Canal National Historical Park.

The members of the Commission are as follows:

Mrs. Sheila Rabb Weidenfeld, Chairperson, Mr. Charles J. Weir, Mr. Barry A. Passett, Mr. Terry W. Hepburn, Ms. JoAnn M. Spevacek, Mrs. Mary E. Woodward, Mrs. Donna Printz, Mrs. Ferial S. Bishop, Ms. Nancy C. Long, Mrs. Jo Reynolds, Dr. James H. Gilford, Brother James Kirkpatrick, Mr. George E. Lewis, Jr., Mr. Charles D. McElrath, Ms. Patricia Schooley, Mr. Jack Reeder.

Topics that will be presented during the meeting include:

- 1. Update on park operations.
- 2. Update on major construction/development projects.
 - 3. Update on partnership projects.

The meeting will be open to the public. Any member of the public may file with the Commission a written statement concerning the matters to be discussed. Persons wishing further information concerning this meeting, or who wish to submit written statements, may contact Kevin Brandt, Superintendent, Chesapeake and Ohio Canal National Historical Park. Minutes of the meeting will be available for public inspection six weeks after the meeting at Chesapeake and Ohio Canal National Historical Park Headquarters, 1850 Dual Highway, Suite 100, Hagerstown, Maryland 21740.

Dated: September 11, 2006.

Kevin D. Brandt,

Superintendent, Chesapeake and Ohio Canal, National Historical Park.

[FR Doc. E6–16740 Filed 10–10–06; 8:45 am] BILLING CODE 4310–6V–P

DEPARTMENT OF THE INTERIOR

National Park Service

Notice of Meeting of Concessions Management Advisory Board

AGENCY: National Park Service, Interior. **ACTION:** Notice.

SUMMARY: In accordance with the Federal Advisory Committee Act (Public Law 92–463, 86 Stat. 770, 5 U.S.C. App 1, Section 10), notice is hereby given that the Concessions Management Advisory Board (the Board) will hold its 16th meeting October 24–25, 2006, at Glen Canyon National Recreation Area in Page, Arizona. The meeting will be held at the Lake Powell Lodge located in Glen Canyon National Recreation Area. The meeting will convene at 8:30 a.m. each day and will conclude at 4:30 p.m.

SUPPLEMENTARY INFORMATION: The Board was established by Title IV, Section 409 of the National Park Omnibus
Management Act of 1998, November 13, 1998 (Public Law 105–391). The purpose of the Board is to advise the Secretary and the National Park Service on matters relating to management of concessions in the National Park System. The Board will meet at 8:30 a.m. for the regular business meeting for continued discussions on the following subjects:

- Leasehold Surrender Interest Regulations Status.
 - Service Contract Act issues.
- Standards, Evaluations and Rate Approval Project Update.
- Concession Contracting Status Update.
- Superintendent's Training Project Update.
- Electronic Annual Financial Report Project Update.
- Concession Data Management System Project Update.

The meeting will be open to the public, however, facilities and space for accommodating members of the public are limited, and persons will be accommodated on a first-come-first-served basis.

Assistance to Individuals With Disabilities at the Public Meeting

The meeting site is accessible to individuals with disabilities. If you plan to attend and will require an auxiliary aid or service to participate in the meeting (e.g., interpreting service, assistive listening device, or materials in an alternate format), notify the contact person listed in this notice at least 2 weeks before the scheduled meeting date, however, we may not be able to

make the requested auxiliary aid or service available because of insufficient time to arrange for it. Anyone may file with the Board a written statement concerning matters to be discussed. The Board may also permit attendees to address the Board, but may restrict the length of the presentations, as necessary to allow the Board to complete its agenda within the allotted time. Such requests should be made to the Director, National Park Service, Attention:

Manager Concession Program, at least 7 days prior to the meeting.

Further information concerning the meeting may be obtained from National Park Service, Concession Program, 1201 Eye Street, NW., Washington, DC 20240, Telephone: 202/513–7151. Draft minutes of the meeting will be available for public inspection approximately 6 weeks after the meeting, at the Concession Program office located at 102 Eye Street, NW., 11th Floor, Washington, DC.

Dated: October 2, 2006.

Fran P. Mainella,

Director, National Park Service.

[FR Doc. 06-8590 Filed 10-10-06; 8:45 am]

BILLING CODE 4312-53-M

DEPARTMENT OF THE INTERIOR

National Park Service

National Preservation Technology and Training Board—National Center for Preservation Technology and Training: Meeting

AGENCY: National Park Service, U.S. Department of the Interior.

ACTION: Notice.

SUMMARY: Notice is hereby given in accordance with the Federal Advisory Committee Act (FACA) (5 U.S.C. Appendix (1988)), that the Preservation Technology and Training Board (Board) of the National Center for Preservation Technology and Training, National Park Service will meet on Monday and Tuesday, October 16–17, 2006, at Yellowstone National Park, Wyoming.

The Board was established by Congress to provide leadership, policy advice, and professional oversight to the National Park Service's National Center for Preservation Technology and Training (National Center) in compliance with Section 404 of the National Historic Preservation Act of 1966, as amended, (16 U.S.C. 470x–2(e)).

The Board will meet at the Old Faithful Snow Lodge, One Grand Loop Road, Yellowstone, WY 82190 telephone (307) 344–7901. The meeting will begin at 9 a.m. and end no later than 5 p.m. each day.

The Board's meeting agenda will include: review and comment on National Center FY2006 accomplishments and operational priorities for FY2007; status of FY2007 National Center budget and initiatives; development and launch of the Lee. H. Nelson Prize in Historic Preservation Technology; proposed Wingspread Conference on Sustainability in Preservation; revitalization of the Center's Friends group, and Board workgroup reports.

The Board meeting is open to the public. Facilities and space for accommodating members of the public are limited, however, and persons will be accommodated on a first come first served basis. Any member of the public may file a written statement concerning any of the matters to be discussed by the Board.

Persons wishing more information concerning this meeting, or who wish to submit written statements, may contact: Mr. Kirk A. Cordell, Executive Director, National Center for Preservation Technology and Training, National Park Service, U.S. Department of the Interior, 645 University Parkway, Natchitoches, LA 71457—telephone (318) 356–7444. In addition to U.S. Mail or commercial delivery, written comments may be sent by fax to Mr. Cordell at (318) 356–9119.

Minutes of the meeting will be available for public inspection no later than 90 days after the meeting at the office of the Executive Director, National Center for Preservation Technology and Training, National Park Service, U.S. Department of the Interior, 645 University Parkway, Natchitoches, LA 71457—telephone (318) 356–7444.

September 14, 2006.

Kirk A. Cordell,

Executive Director, National Center for Preservation Technology and Training, National Park Service.

[FR Doc. 06–8592 Filed 10–10–06; 8:45 am] BILLING CODE 4312–52–M

DEPARTMENT OF THE INTERIOR

National Park Service

Committee for the Preservation of the White House; Notice of Public Meeting

AGENCY: Department of the Interior, National Park Service.

ACTION: Notice of meeting.

SUMMARY: Notice is hereby given in accordance with the Federal Advisory Committee Act that a meeting of the Committee for the Preservation of the

White House will be held at the White House at 10 a.m. on Thursday, October 26, 2006.

DATES: October 26, 2006.

FOR FURTHER INFORMATION CONTACT:

Executive Secretary, Committee for the Preservation of the White House, 1100 Ohio Drive, SW., Washington, DC 20242. (202) 619–6344.

SUPPLEMENTARY INFORMATION: It is expected that the meeting agenda will include policies, goals, and long range plans. The meeting will be open, but subject to appointment and security clearance requirements. Clearance information, which includes full name, date of birth and social security number, must be received by October 19, 2006. Due to the present mail delays being experienced, clearance information should be faxed to (202) 619-6353 in order to assure receipt by deadline. Inquiries may be made by calling the Committee for the Preservation of the White House between 9 a.m. and 4 p.m. weekdays at (202) 619-6344. Written comments may be sent to the Executive Secretary, Committee for the Preservation of the White House, 1100 Ohio Drive, SW., Washington, DC

Dated: October 2, 2006.

Ann Bowman Smith,

Executive Secretary, Committee for the Preservation of the White House.

[FR Doc. E6–16876 Filed 10–10–06; 8:45 am] BILLING CODE 4312–52–P

DEPARTMENT OF THE INTERIOR

Bureau of Reclamation

Central Valley Project Improvement Act, Water Management Plans

AGENCY: Bureau of Reclamation, Interior.

ACTION: Notice of availability.

SUMMARY: The following Water Management Plans are available for review:

- Santa Clara Valley Water District
- City of Fairfield
- Solano County Water Agency
- City of Roseville
- Suisun-Solano Irrigation District

To meet the requirements of the Central Valley Project Improvement Act of 1992 (CVPIA) and the Reclamation Reform Act of 1982, the Bureau of Reclamation has developed and published the Criteria for Evaluating Water Management Plans (Criteria).

Note: For the purpose of this announcement, Water Management Plans (Plans) are considered the same as Water

Conservation Plans. The above districts have developed Plans, which Reclamation has evaluated and preliminarily determined to meet the requirements of these Criteria. Reclamation is publishing this notice in order to allow the public to review the Plans and comment on the preliminary determinations. Public comment on Reclamation's preliminary (i.e., draft) determination is invited at this time.

DATES: All public comments must be received by November 13, 2006.

ADDRESSES: Please mail comments to Laurie Sharp, Bureau of Reclamation, 2800 Cottage Way, MP–410, Sacramento, California 95825, or contact at 916–978–5232 (TDD 978–5608), or e-mail lsharp@mp.usbr.gov.

FOR FURTHER INFORMATION CONTACT: To be placed on a mailing list for any subsequent information, please contact Ms. Sharp at the e-mail address or telephone number above.

SUPPLEMENTARY INFORMATION: We are inviting the public to comment on our preliminary (i.e., draft) determination of Plan adequacy. Section 3405(e) of the CVPIA (Title 34 Public Law 102-575) requires the Secretary of the Interior to establish and administer an office on Central Valley Project water conservation best management practices (BMPs) that shall "* * * develop criteria for evaluating the adequacy of all water conservation plans developed by project contractors, including those plans required by Section 210 of the Reclamation Reform Act of 1982." Also, according to Section 3405(e)(1), these Criteria must be developed. "* * * with the purpose of promoting the highest level of water use efficiency reasonably achievable by project contractors using best available cost-effective technology and best management practices." These Criteria state that all parties (Contractors) that contract with Reclamation for water supplies (municipal and industrial contracts over 2,000 acre-feet and agricultural contracts over 2,000 irrigable acres) must prepare Plans that contain the following information:

- 1. Description of the District.
- 2. Inventory of Water Resources.
- 3. BMPs for Agricultural Contractors.
- 4. BMPs for Urban Contractors.
- 5. BMP Plan Implementation.
- 6. BMP Exemption Justification.

Reclamation will evaluate Plans based on these Criteria. A copy of these Plans will be available for review at Reclamation's Mid-Pacific (MP) Regional Office located in Sacramento, California, and the local area office.

Our practice is to make comments, including names and home addresses of respondents, available for public review. Individual respondents may request that Reclamation withhold their home address from public disclosure, and we will honor such requests to the extent allowable by law. There also may be circumstances in which Reclamation would elect to withhold a respondent's identity from public disclosure, as allowable by law. If you wish us to withhold your name and/or address, you must state this prominently at the beginning of your comments. We will make all submissions from organizations, businesses, and from individuals identifying themselves as representatives or officials of organizations or businesses available for public disclosure in their entirety. If you wish to review a copy of these Plans, please contact Ms. Sharp to find the office nearest you.

Dated: September 5, 2006.

Michael Heaton,

Acting Regional Resources Manager, Mid-Pacific Region.

[FR Doc. 06–8573 Filed 10–10–06; 8:45 am] BILLING CODE 4310–MN–M

INTERNATIONAL TRADE COMMISSION

[Inv. No. 337-TA-576]

In the Matter of Certain Portable Digital Media Players and Components Thereof; Notice of Commission Decision Not To Review an Initial Determination of the Administrative Law Judge Terminating the Investigation on the Basis of a Binding Term Sheet

AGENCY: U.S. International Trade Commission.

ACTION: Notice.

SUMMARY: Notice is hereby given that the U.S. International Trade Commission has determined not to review the presiding administrative law judge's ("ALJ") initial determination ("ID") (Order No. 3) terminating the above-captioned investigation on the basis of a binding term sheet.

FOR FURTHER INFORMATION: Michael Liberman, Esq., Office of the General Counsel, U.S. International Trade Commission, 500 E Street, SW., Washington, DC 20436, telephone 202–205–3152. Copies of the ID and all other nonconfidential documents filed in connection with this investigation are or will be available for inspection during official business hours (8:45 a.m. to 5:15 p.m.) in the Office of the Secretary, U.S. International Trade Commission, 500 E Street, SW., Washington, DC 20436, telephone 202–205–2000. Hearing-

impaired persons are advised that information on this matter can be obtained by contacting the Commission's TDD terminal on 202–205–1810. General information concerning the Commission may also be obtained by accessing its Internet server (http://www.usitc.gov). The public record for this investigation may be viewed on the Commission's electronic docket (EDIS) at http://edis.usitc.gov.

SUPPLEMENTARY INFORMATION: On July 6, 2006, the Commission instituted this investigation under section 337 of the Tariff Act of 1930, 19 U.S.C. 1337, based on a complaint, as supplemented and amended, filed by Apple Computer, Inc. of Cupertino, California ("Apple"), alleging a violation of section 337 in the importation, sale for importation, and sale within the United States after importation of certain portable digital media players and components thereof by reason of infringement of claim 25 of U.S. Patent No. 7,046,230; claims 25 and 33 of U.S. Patent No. 5,341,293; claims 36-39, 48, 65, 72-73, and 77-78 of U.S. Patent No. 5,898,434; and claims 1, 24, and 32 of U.S. Patent No. 6,282,646. 71 FR 38421 (July 6, 2006). The complainant named Creative Labs, Inc. of Milpitas, California, and Creative Technology Ltd. of Singapore (collectively, "Creative") as respondents.

On September 13, 2006, the ALJ issued an ID (Order No. 3) granting a joint motion filed by Apple and Creative seeking termination of this investigation on the basis of a binding term sheet. No party petitioned for review of Order No. 3.

The Commission has determined not to review Order No. 3.

The authority for the Commission's determination is contained in section 337 of the Tariff Act of 1930, as amended (19 U.S.C. 1337), and in § 210.42(h) of the Commission's Rules of Practice and Procedure (19 CFR 210.42(h)).

By order of the Commission. Issued: October 4, 2006.

Marilyn R. Abbott,

BILLING CODE 7020-02-P

Secretary to the Commission. [FR Doc. E6–16808 Filed 10–10–06; 8:45 am]

INTERNATIONAL TRADE COMMISSION

[Inv. No. 337-TA-573]

In the Matter of Certain Portable Digital Media Players; Notice of Commission Decision Not To Review an Initial Determination of the Administrative Law Judge Terminating the Investigation on the Basis of a Binding Term Sheet

AGENCY: U.S. International Trade

Commission. **ACTION:** Notice.

SUMMARY: Notice is hereby given that the U.S. International Trade Commission has determined not to review the presiding administrative law judge's ("ALJ") initial determination ("ID") (Order No. 4) terminating the above-captioned investigation on the basis of a binding term sheet.

FOR FURTHER INFORMATION CONTACT:

Michael Liberman, Esq., Office of the General Counsel, U.S. International Trade Commission, 500 E Street, SW., Washington, DC 20436, telephone 202-205-3152. Copies of the ID and all other nonconfidential documents filed in connection with this investigation are or will be available for inspection during official business hours (8:45 a.m. to 5:15 p.m.) in the Office of the Secretary, U.S. International Trade Commission, 500 E Street, SW., Washington, DC 20436, telephone 202-205-2000. Hearingimpaired persons are advised that information on this matter can be obtained by contacting the Commission's TDD terminal on 202-205-1810. General information concerning the Commission may also be obtained by accessing its Internet server (http://www.usitc.gov). The public record for this investigation may be viewed on the Commission's electronic docket (EDIS) at http://edis.usitc.gov.

SUPPLEMENTARY INFORMATION: On June 14, 2006, the Commission instituted this investigation under section 337 of the Tariff Act of 1930, 19 U.S.C. 1337, based on a complaint, as supplemented, filed by Creative Labs, Inc. of Milpitas, California, and Creative Technology Ltd. of Singapore (collectively, "Creative"), alleging a violation of section 337 in the importation, sale for importation, and sale within the United States after importation of certain portable digital media players by reason of infringement of claims 2-5, 7, 11-13, 15, and 16 of U.S. Patent No. 6,928,433. 71 FR 34390 (June 14, 2006). The complainant named Apple Computer, Inc. of Cupertino, California ("Apple") as the respondent.

On September 13, 2006, the ALJ issued an ID (Order No. 4) granting a

joint motion filed by Creative and Apple seeking termination of this investigation on the basis of a binding term sheet. No party petitioned for review of Order No. 4.

The Commission has determined not to review Order No. 4.

The authority for the Commission's determination is contained in section 337 of the Tariff Act of 1930, as amended (19 U.S.C. 1337), and in section 210.42(h) of the Commission's Rules of Practice and Procedure (19 CFR 210.42(h)).

By order of the Commission. Issued: October 4, 2006.

Marilyn R. Abbott,

Secretary to the Commission.

[FR Doc. E6–16809 Filed 10–10–06; 8:45 am]

BILLING CODE 7020-02-P

DEPARTMENT OF JUSTICE

[OMB Number 1103-0087]

Office of Community Oriented Policing Services; Agency Information Collection Activities: Revision of a Currently Approved Collection; Comments Requested

ACTION: 60-Day Notice of Information Collection Under Review: Tribal Resources Grant Program Equipment/Training Progress Report.

The Department of Justice (DOJ)
Office of Community Oriented Policing
Services (COPS) has submitted the
following information collection request
to the Office of Management and Budget
(OMB) for review and approval in
accordance with the Paperwork
Reduction Act of 1995. The revision of
a currently approved information
collection is published to obtain
comments from the public and affected
agencies.

The purpose of this notice is to allow for 60 days for public comment until December 11, 2006. This process is conducted in accordance with 5 CFR 1320.10.

If you have comments especially on the estimated public burden or associated response time, suggestions, or need a copy of the proposed information collection instrument with instructions or additional information, please contact Rebekah Dorr, Department of Justice Office of Community Oriented Policing Services, 1100 Vermont Avenue, NW., Washington, DC 20530.

Written comments and suggestions from the public and affected agencies concerning the proposed collection of information are encouraged. Your comments should address one or more of the following four points:

- —Evaluate whether the proposed collection of information is necessary for the proper performance of the functions of the agency, including whether the information will have practical utility;
- —Evaluate the accuracy of the agency's estimate of the burden of the proposed collection of information, including the validity of the methodology and assumptions used;
- —Enhance the quality, utility, and clarity of the information to be collected; and
- —Minimize the burden of the collection of information on those who are to respond, including through the use of appropriate automated, electronic, mechanical, or other technological collection techniques or other forms of information technology, e.g., permitting electronic submission of responses.

Overview of This Information Collection

- (1) Type of Information Collection: Revision of a Currently Approved Collection.
- (2) *Title of the Form/Collection:* Tribal Resources Grant Program Equipment/ Training Progress Report.
- (3) Agency form number, if any, and the applicable component of the Department sponsoring the collection: None. U.S. Department of Justice Office of Community Oriented Policing Services.
- (4) Affected public who will be asked or required to respond, as well as a brief abstract: Primary: Tribal Resources Grant Program—Equipment and Training grant recipients will report to the COPS Office on the status of grant implementation on an annual basis. Secondary: None.
- (5) An estimate of the total number of respondents and the amount of time estimated for an average respondent to respond/reply:

It is estimated that 275 respondents will complete the form annually within 30 minutes.

(6) An estimate of the total public burden (in hours) associated with the collection: 138 total annual burden hours.

If additional information is required contact: Lynn Bryant, Clearance Officer, United States Department of Justice, Justice Management Division, Policy and Planning Staff, Patrick Henry Building, Suite 1600, 601 D Street, NW., Washington, DC 20530.

Dated: October 4, 2006.

Lynn Bryant,

Department Clearance Officer, PRA, Department of Justice.

[FR Doc. E6–16723 Filed 10–10–06; 8:45 am]

BILLING CODE 4410-AT-P

DEPARTMENT OF JUSTICE

Notice of Lodging of Consent Decree Under the Clean Air Act

Notice is hereby given that on August 24, 2006, a proposed Consent Decree in United States of America and the Michigan Department of Environmental Quality v. CEMEX, Inc., St. Mary's Cement Inc. (U.S.), and St. Barbara Cement, Inc., Civil Action No. 1:06–CV–0607, was lodged with the United States District Court for the Western District of

Michigan.

In this action the United States sought injunctive relieve and civil penalties for violations for the Clean Air Act that occurred at the portland cement manufacturing facility located in 16000 Bell Bays Road, in Charlevoix, Michigan, which was owned and operated by CEMEX, Inc. prior to March 31, 2005, and owned by St. Barbara Cement Inc. and operated by St.Marys Cement Inc. (U.S.) on and after March 31, 2005. The complaint alleges that CEMEX Inc. failed to control and limit particulate matter (dust) emissions, failed to perform required compliance monitoring, and failed to comply with various other requirements government operation of portland cement manufacturing plants.

The proposed consent decree resolves all violations alleged in the complaint. Among other things, the consent decree requires CEMEX Inc. to pay a civil penalty of \$1,359,422 to the United States and the State of Michigan and requires St. Marys and St. Barbara to install a baghouse filtering system, which is estimated to cost in excess of \$11 million, to remedy the ongoing emissions violations. In addition, the consent decree requires the defendants to spend at least \$6.2 million on the installation of a new indirect firing system for the facility's kiln, which is expected to substantially reduce emissions of particulate matter, sulfur dioxide, and nitrogen oxides.

The Department of Justice will receive, for a period of thirty (30) days from the date of this publication, comments relating to the Consent Decree. Comments should be addressed to the Assistant Attorney General, Environmental and Natural Resources Division, P.O. Box 7611, U.S. Department of Justice, Washington, DC

20044–7611, and should refer to *United States, et al.* v. *CEMEX, et al.*, D.J. Ref. 90–5–2–1–08077.

at the Office of the United States

The Consent Decree may be examined

Attorney, Fifth Floor, 330 Ionia NW., Grand Rapids, MI. During the public comment period, the Consent Decree may also be examined on the following Department of Justice Web site, http:// www.usdoj.gov/enrd/ Consent_Decrees.html. A copy of the Consent Decree may also be obtained by mail from the Consent Decree Library, P.O. Box 7611, U.S. Department of Justice, Washington, DC 20044-7611, or by faxing or e-mailing a request to Tonia Fleetwood (tonia.fleetwood@usdoj.gov), fax no. (202) 514-0097. phone confirmation number (202) 514-1547. In requesting a copy from the Consent Decree Library, please enclose a check in the amount of \$50.50 (25 cents per page reproduction cost) payable to the U.S. Treasury or, if by e-mail or fax, forward a check in that amount to the Consent Decree Library at the state address. In requesting a copy exclusive of exhibits, please enclose a check in the amount of \$10.00 (25 cents per page reproduction cost) payable to the U.S. Treasury.

Margaret M. Chiara,

United States Attorney.

W. Francesca Ferguson,

Assistant United States Attorney, Western District of Michigan.

[FR Doc. 06-8574 Filed 10-10-06; 8:45 am]

DEPARTMENT OF JUSTICE

[AAG/A Order No. 016-2006]

Privacy Act of 1974; Systems of Records

AGENCY: United States Trustee Program, Department of Justice.

ACTION: Notice of modifications to current systems of records and establishment of a new system of records.

SUMMARY: Pursuant to the Privacy Act of 1974 (5 U.S.C. 552a) and Office of Management and Budget Circular No. A–130, the United States Trustee Program (USTP), Department of Justice, proposes to modify the following existing Privacy Act systems of records:

existing Privacy Act systems of records: JUSTICE/UST-001, "Bankruptcy Case Files and Associated Records" (last substantively revised on March 4, 2004, at 69 FR 10255; as amended June 15, 2004, 69 FR 33403); JUSTICE/UST-002, "Bankruptcy Trustee Oversight Records" (last substantively revised on March 4, 2004, at 69 FR 10255; as amended June 15, 2004, 69 FR 33403); JUSTICE/UST-003, "U.S. Trustee Program Timekeeping Records" (last substantively revised on March 4, 2004, at 69 FR 10255; as amended June 15, 2004, 69 FR 33403); and JUSTICE/UST-004, "U.S. Trustee Program Case Referral System" (last substantively revised on March 4, 2004, at 69 FR 10255; as amended June 15, 2004, 69 FR33403). In addition, the USTP proposes to establish a new system of records entitled, JUSTICE/UŠT-005, "Credit Counseling and Debtor Education Files and Associated Records." The modified system notices and the new system notice are published in their entirety below.

DATES: These actions will be effective November 20, 2006.

FOR FURTHER INFORMATION CONTACT: For information regarding these changes and for general information regarding the USTP's Privacy Act systems, contact Sue Ann Slates, FOIA/Privacy Counsel, Executive Office for United States Trustees (EOUST), at (202) 307–1399.

SUPPLEMENTARY INFORMATION: On April 20, 2005, amendments to the Bankruptcy Code, 11 U.S.C. 101, et seq., were enacted that took effect on October 17, 2005. Under the new provisions, all individual debtors are required to receive credit counseling and a budget analysis from a USTP approved nonprofit budget and credit counseling agency within 180 days prior to filing a bankruptcy petition. Also, an individual debtor is required to take a personal financial management course from a USTP approved debtor education provider before receiving a bankruptcy discharge. The United States Trustees approve credit counseling and debtor education providers after determining their qualifications meet the standards set forth in the Bankruptcy Code and agency regulations. Accordingly, a new system of records is needed to cover applicants seeking to be USTP approved and reapproved providers of credit counseling and debtor education services under the Bankruptcy Code, as well as individuals who submit complaints and comments to the USTP regarding such providers. The records in this system will be used, among other things, to assist the EOUST and United States Trustees to assess the qualifications of credit counseling and debtor education applicants and providers, ensure compliance with the statutory and regulatory requirements, and collect and maintain complaints and comments submitted by individuals.

In addition to the above amendments, other changes to the Bankruptcy Code further necessitate modifications to the categories of individuals in JUSTICE/ UST-001 and JUSTICE/UST-003 and to the categories of records in JUSTICE/ UST-001 and JUSTICE/UST-004. For example, individual debtors must undergo means testing and possible debtor audits and, in certain business cases, bankruptcy examiners and ombudsmen may be appointed. The USTP is also implementing a new employee timekeeping system. Besides modifications to comport with amendments to the Bankruptcy Code, the USTP has made minor changes and clarifications in its existing systems of records to correct typographical errors, update certain statutory references, reflect uniform nomenclature changes, and add data elements. A summary of the changes to the current systems of records and a summary of the new system of records is set forth below:

In system of records JUSTICE/UST-001, Bankruptcy Case Files and Associated Records, the paragraph entitled "Categories of Individuals Covered by the System" has been modified to cover credit counseling and debtor education providers, auditors, examiners, and ombudsmen, as well as individuals who may be considered for appointment as trustees, examiners, and ombudsmen. Also included in the system are individuals who have filed complaints or inquiries related to a bankruptcy case with the USTP. The "Categories of Records in the System" paragraph has been revised to include new categories of records resulting from amendments to the Bankruptcy Code and to reflect the types of records covered by this system. The routine use that allows the release of information to bankruptcy trustees has been modified to clarify that such information may be shared when necessary to enable trustees to respond to complaints and inquiries by interested parties. Four new "Routine Uses" are being added for release of information to law enforcement authorities, USTP approved credit counseling and debtor education providers, bankruptcy examiners, and ombudsmen. The "Retrievability" and "Record Source Categories" paragraphs have been updated to reflect agency practices. The system of records was also modified to correct typographical errors, update certain statutory references, and reflect uniform nomenclature changes.

System of records, JUSTICE/UST–002, Bankruptcy Trustee Oversight Records, was modified to reflect uniform nomenclature changes. Also, the routine use that allows the release of

information to bankruptcy trustees has been modified to clarify that such information may be shared when necessary to enable trustees to respond to complaints and inquiries by interested parties. A new routine use allows information to be shared with law enforcement authorities.

System of records, JUSTICE/UST-003, U.S. Trustee Program Timekeeping Records, was modified to reflect uniform nomenclature changes. Also, the "Categories of Individuals Covered by the System" and the "System Managers and Address" paragraphs were modified to reflect agency practices.

In system of records JUSTICE/UST-004, U.S. Trustee Program Case Referral System, the paragraph "Categories of Records in the System" has been modified to include information pertaining to credit counseling and debtor education providers. The routine use that allows the release of information to bankruptcy trustees has been modified to clarify that such information may be shared when necessary to enable trustees to respond to complaints and inquiries by interested parties. Four new "Routine Uses" are being added for release of information to law enforcement authorities, USTP approved credit counseling and debtor education providers, bankruptcy examiners, and ombudsmen. The "Retention and Disposal" paragraph is being amended to include criminal referral records in which a criminal case has been brought against an individual subject (National Archives and Records Administration approval pending). The system of records was also modified to reflect uniform nomenclature changes.

The USTP has added a new system of records entitled JUSTICE/UST-005, Credit Counseling and Debtor Education Files and Associated Records, to cover applicants seeking to be USTP approved and reapproved providers of credit counseling and debtor education services under the Bankruptcy Code, as well as third parties who submit information, including complaints and comments, to the USTP regarding such providers. In addition to the standard routine uses currently used in the existing systems of records, three new routine uses are being added to system of records JUSTICE/UST-005: (1) for the release of information to law enforcement authorities, (2) for the release of information to appropriate third parties, including government agencies, in connection with USTP decisions to grant, deny, or revoke approval or reapproval of credit counseling and debtor education

applicants and providers, and (3) for the release of information to approved credit counseling and debtor education providers to the extent necessary to enable providers to accomplish the credit counseling and debtor education requirements of the Bankruptcy Code and to respond to complaints and inquiries submitted to the USTP by interested parties. The entire systems of records notice is published below.

In accordance with 5 U.S.C. 552a(e)(4) and (11), the public is given a 30-day period in which to comment; and the Office of Management and Budget (OMB), which has oversight responsibility of the Act, requires a 40day period in which to conclude its review of the system. Therefore, please submit any comments by November 20, 2006. The public, OMB, and Congress are invited to submit comments to: Mary Cahill, Management and Planning Staff, Justice Management Division, Department of Justice, Washington, DC 20530 (Room 1400, National Place Building).

In accordance with 5 U.S.C. 552a(r), the Department has provided a report to OMB and Congress.

Dated: October 4, 2006.

Lee J. Lofthus,

Acting Assistant Attorney General for Administration.

JUSTICE/UST-001

SYSTEM NAME:

Bankruptcy Case Files and Associated Records.

SECURITY CLASSIFICATION:

Sensitive But Unclassified.

SYSTEM LOCATION:

The Executive Office for United States Trustees (EOUST) and other offices of the United States Trustee Program (USTP) depending upon the judicial district where a bankruptcy case or proceeding is pending or was administered. (Office addresses can be located on the Internet at http://www.usdoj.gov/ust.)

CATEGORIES OF INDIVIDUALS COVERED BY THE SYSTEM:

Individuals and entities involved in cases or proceedings under the Bankruptcy Code (11 U.S.C. 101, et seq.), including, but not limited to: debtors; creditors; bankruptcy trustees; other parties in interest; professionals, attorneys, and agents representing debtors, creditors, and trustees; credit counselors; debtor education providers; auditors; examiners; ombudsmen; and individuals who may be considered for appointment as trustees, examiners, and

ombudsmen, or otherwise involved in bankruptcy cases or proceedings.

Individuals who have filed complaints, inquiries, or comments related to a bankruptcy case with the USTP.

CATEGORIES OF RECORDS IN THE SYSTEM:

Records in this system may include: (a) Petitions/orders for relief; (b) schedules of assets and liabilities of debtors; (c) lists of creditors; (d) statements of financial affairs; (e) operating or status reports; (f) alphabetical cross-reference index cards; (g) general correspondence regarding bankruptcy cases and proceedings; (h) miscellaneous investigative records; (i) copies of certain pleadings, official forms, or other papers filed in court, including those filed by the USTP; (j) appraisal reports; (k) names of bank depositories and amounts of funds deposited therein; (l) names of sureties and amounts of trustees' bonds; (m) tape or other recordings of creditors meetings conducted under 11 U.S.C. 341 for the purpose of examination of debtors by creditors, trustees, and others; (n) plans filed under chapter 11, 12, or 13; (o) names of persons serving as counsel, trustee, professionals, or other functionaries in bankruptcy cases and proceedings, including compensation earned or sought by each; (p) names and qualifications of individuals who may be considered for appointment as trustees, examiners, and ombudsmen; (q) names and contact information of credit counselors and debtor education providers; (r) credit counseling certificates, debtor education certificates, certificate numbers, completion dates of credit counseling briefings and debtor education courses; (s) debt management plans; (t) means test review forms; (u) targeted and random debtor audit forms, audit reports, and related working papers; (v) federal and state tax returns; and (w) other case-related information, such as case number, case status, case type, parties' names and other personal identifiers, Social Security numbers and financial account numbers, estate assets/liabilities, case filings/reports, trustee bonds, calendars of meetings and hearings, due dates of plan, schedules and other filings, creditors' committee status, attorneys/professionals' data, and trustees/examiners' data, and ombudsmen data, including health care and medical records of patients of entities involved in cases or proceedings under 11 U.S.C. 101, et seq. and related information.

AUTHORITY FOR MAINTENANCE OF THE SYSTEM:

This system is established and maintained pursuant to the bankruptcy oversight and related responsibilities of the USTP under, e.g., 28 U.S.C. 581, et seq., and 11 U.S.C. 101, et seq.

PURPOSES:

The records in this system are used by USTP personnel to determine the existence of a case, to ascertain the status of actions with respect to a case, to ensure that timely action is taken as appropriate, to determine the involvement by agents or other representatives of parties in such cases, to implement and monitor compliance with credit counseling and debtor education requirements, and to facilitate the performance of USTP duties under, e.g., 28 U.S.C. 581, et seq., 11 U.S.C. 101, et seq., and other legal authority.

As provided in 11 U.S.C. 107, a document filed in a case and the dockets of the bankruptcy court are public records and open to examination except when the court enters a protective order or otherwise acts to seal a docket entry.

ROUTINE USES OF RECORDS MAINTAINED IN THE SYSTEM, INCLUDING CATEGORIES OF USERS AND THE PURPOSES OF SUCH USES:

(A) Release of Information to Former Employees:

The Department of Justice may disclose relevant and necessary information to a former employee of the Department for purposes of: responding to an official inquiry by a federal, state, or local government entity or professional licensing authority, in accordance with applicable Department regulations; or facilitating communications with a former employee that may be necessary for personnel-related or other official purposes where the Department requires information and/or consultation assistance from the former employee regarding a matter within that person's former area of responsibility.

(B) Release of Information to Contractors:

Information from these records may be disclosed to contractors, grantees, experts, consultants, students, and others performing or working on a contract, service, grant, cooperative agreement, or other assignment for the federal government, when necessary to accomplish an agency function related to this system of records.

(C) Release of Information in Proceedings:

Information from these records may be disclosed in an appropriate proceeding before a court, or administrative or adjudicative body, when the Department of Justice determines that the records are arguably relevant to the proceeding; or in an appropriate proceeding before an administrative or adjudicative body when the adjudicator determines the records to be relevant to the proceeding.

(D) Release of Information for Litigation-related Discussions:

Information from these records may be disclosed to an actual or potential party to litigation or the party's authorized representative for the purpose of negotiation or discussion of such matters as settlement, plea bargaining, or in informal discovery proceedings.

(E) Release of Information to Bankruptcy Trustees:

Information from these records may be disclosed to a trustee under chapter 7, 11, 12, or 13 of title 11, U.S. Code, when the United States Trustee determines that the release of such information is necessary to enable the trustee to properly administer a case or to perform the duties and responsibilities of a case trustee under 28 U.S.C. 586, 18 U.S.C. 3057, or 11 U.S.C. 101, et seq., including responding to complaints and inquiries related to a bankruptcy case, submitted to the USTP by interested parties.

(F) Release of Information to Complainants and Victims:

Information from these records may be disclosed to complainants and/or victims to the extent necessary to provide such persons with information and explanations concerning the progress and/or results of the investigation or case arising from the matters of which they complained and/or of which they were a victim.

(G) Release of Information to the News Media:

Information from these records may be disclosed to the news media and the public, including disclosures pursuant to 28 CFR 50.2, unless it is determined that release of the specific information in the context of a particular case would constitute an unwarranted invasion of personal privacy.

(H) Release of Information to Members of Congress:

Information from these records may be disclosed to a Member of Congress or staff acting upon the Member's behalf when the Member or staff requests the information on behalf of, and at the request of, the individual who is the subject of the record.

(Í) Release of Information to National Archives and Records Administration:

A record from this system of records may be disclosed to the National Archives and Records Administration for purposes of records management inspections conducted under the authority of 44 U.S.C. 2904 and 2906.

(J) Release of Information to Law Enforcement or Regulatory Agencies:

With respect to non-law enforcement records, where a record, either alone or in conjunction with other information, indicates a violation or potential violation of law—criminal, civil, or regulatory in nature—the relevant records may be referred to the appropriate federal, state, local, tribal, or foreign law enforcement authority or other appropriate entity charged with the responsibility for investigating or prosecuting such violation or charged with enforcing or implementing such law.

(K) Release of Information to Licensing Agencies:

Information from these records may be disclosed to federal, state, local, tribal, foreign or international licensing agencies or associations which require information concerning the suitability or eligibility of an individual for a license or permit.

(L) Release of Information for Employment, Clearance, Contract, or

Grant Purposes:

Information from these records may be disclosed to appropriate officials and employees of a Federal agency or entity which requires information relevant to a decision concerning the hiring, appointment, or retention of an employee; the issuance, renewal, suspension, or revocation of a security clearance; the execution of a security or suitability investigation; the letting of a contract, or the issuance of a grant or benefit.

(M) Release of Information to Credit/ Consumer Reporting Agencies:

Information from these records may be disclosed to a credit or consumer reporting agency, as such terms are used in the Fair Credit Reporting Act (15 U.S.C. 1681, et seq.) and the Debt Collection Act (31 U.S.C. 3701, et seq.,) when such information is necessary or appropriate to ensure that bankruptcy-related credit information is correct and accurate.

(N) Release of Information related to Investigations and Proceedings:

Information from these records may be disclosed in the course of investigating the potential or actual violation of any law—whether civil, criminal, or regulatory in nature—or for the preparation of a trial or hearing for such violation. Such information may be disclosed to a Federal, state, local, tribal, or foreign agency, or to an individual or organization, if there is reason to believe that such agency, individual, or organization possesses information relating to the investigation,

trial, or hearing, and if the dissemination is reasonably necessary to elicit such information or to obtain the cooperation of a witness or an informant.

(O) Release of Information in connection with Section 341 Meetings:

Information from these records may be disclosed in connection with meetings held under 11 U.S.C. 341 and related proceedings, when the Department of Justice determines that the records are arguably relevant to such meetings or bankruptcy proceedings. Transcripts or other records of such meetings may also be disclosed upon request pursuant to relevant bankruptcy laws or rules.

(P) Release of Information to Law Enforcement Authority:

With respect to law enforcement records, to any criminal, civil, or regulatory law enforcement authority (whether federal, state, local, tribal, or foreign) where the information is relevant to the recipient entity's law enforcement responsibilities.

(Q) Release of Information to USTP Approved Credit Counseling and Debtor

Education Providers:

Information from these records may be disclosed to a USTP approved credit counseling and/or debtor education provider when the EOUST or United States Trustee determines that the release of such information is necessary to enable the approved provider to properly perform the duties and responsibilities of a credit counseling and/or debtor education provider under 11 U.S.C. 101, et seq., and other legal authority, including responding to complaints and inquiries related to the provider, submitted to the USTP by interested parties.

(R) Release of Information to Bankruptcy Examiners:

Information from these records may be disclosed to a bankruptcy examiner appointed in a case under title 11, U.S. Code, when the United States Trustee determines that the release of such information is necessary to enable the bankruptcy examiner to properly perform the duties and responsibilities of an examiner under 11 U.S.C. 101, et seq., and other legal authority, including responding to complaints and inquiries related to a bankruptcy case, submitted to the USTP by interested parties.

(S) Release of Information to Ombudsmen:

Information from these records may be disclosed to an ombudsman appointed in a case under title 11, U.S. Code, when the United States Trustee determines that the release of such information is necessary to enable the ombudsman to properly perform the duties and responsibilities of an ombudsman under 11 U.S.C. 101, et seq., and other legal authority, including responding to complaints and inquiries related to a bankruptcy case, submitted to the USTP by interested parties.

POLICIES AND PRACTICES FOR STORING, RETRIEVING, ACCESSING, RETAINING, AND DISPOSING OF RECORDS IN THE SYSTEM:

STORAGE:

Records in this system, except as specified below, are recorded on paper/cardboard material and maintained in file cabinets, storage containers, electric file/card retrievers, or safes. Certain records in this system are entered into automated information systems and stored on servers and/or magnetic disks for use or reproduction in report form at various times.

RETRIEVABILITY:

In USTP field offices, bankruptcy case records are retrieved by bankruptcy court case numbers, cross-referenced alphabetically by names of debtors. Bankruptcy case records pertaining to case trustees, sureties, depository banks, and to agents representing parties are maintained and retrieved alphabetically. Bankruptcy case records and records of potential candidates for appointment as trustees, examiners, and ombudsmen in the EOUST are maintained and retrieved alphabetically by name of the debtor or the particular person involved. Automated information is retrieved by a variety of key words, including names of individuals.

SAFEGUARDS:

Records contained in this system are unclassified. They are safeguarded and protected in accordance with Departmental rules and procedures governing the handling of office records and computerized information. During duty hours, access to this system is monitored and controlled by USTP personnel. During nonduty hours, offices are locked.

RETENTION AND DISPOSAL:

Chapter 7 no-asset case records may be destroyed six months after the case is closed. Section 341 meeting tapes may be destroyed two years after the date of the 341 meeting. Chapter 7 asset case records may be destroyed three years after the case is closed. Chapter 11 case records may be destroyed three years after the case is dismissed or closed. Chapter 12 and chapter 13 case records may be destroyed six months after the case is dismissed or closed. To prevent unauthorized disclosure, records are destroyed by shredding, burning, or similar methods.

SYSTEM MANAGER(S) AND ADDRESS:

The system managers for this system of records are: (a) the United States Trustees or Assistant United States Trustees, to the extent these records are maintained in their offices; and (b) the General Counsel, to the extent these records are maintained in the EOUST. (Office addresses can be located on the Internet at http://www.usdoj.gov/ust.)

NOTIFICATION PROCEDURE:

Address such inquiries to the Office of the General Counsel (FOIA/Privacy Counsel) at the address listed on the USTP FOIA/Privacy Act Web site (http://www.usdoj.gov/ust). The envelope and letter should be clearly marked "Privacy Act Request" and comply with 28 CFR 16.40, et seq.

RECORD ACCESS PROCEDURES:

Address such inquiries to the Office of the General Counsel (FOIA/Privacy Counsel) at the address listed on the USTP FOIA/Privacy Act Web site (http://www.usdoj.gov/ust). The envelope and letter should be clearly marked "Privacy Act Request" and comply with 28 CFR 16.40, et seq.

CONTESTING RECORD PROCEDURES:

Individuals desiring to contest or amend information maintained in the system should clearly and concisely state what information is being contested, the reasons for contesting it, and the proposed amendment to the information. Address such inquiries to the Office of the General Counsel (FOIA/Privacy Counsel) at the address listed on the USTP FOIA/Privacy Act Web site (http://www.usdoj.gov/ust). The envelope and letter should be clearly marked "Privacy Act Request" and comply with 28 CFR 16.40, et seq.

RECORD SOURCE CATEGORIES:

Sources of information contained in this system generally consist of debtors, creditors, trustees, examiners, auditors, ombudsmen, USTP approved credit counseling and/or debtor education providers, attorneys, and other agents participating in the administration of a case, judges of the bankruptcy courts and other judicial officers, parties in interest, and employees of the USTP.

EXEMPTIONS CLAIMED FOR SYSTEM:

None.

JUSTICE/UST-002

SYSTEM NAME:

Bankruptcy Trustee Oversight Records

SECURITY CLASSIFICATION:

Sensitive But Unclassified

SYSTEM LOCATION:

The Executive Office for United States Trustees (EOUST) and other offices of the United States Trustee Program (USTP) depending upon the judicial district where the bankruptcy case trustee serves or has made application to serve. (Office addresses can be located on the Internet at http://www.usdoj.gov/ust.)

CATEGORIES OF INDIVIDUALS COVERED BY THE SYSTEM:

Persons serving or applying to serve as estate trustees in bankruptcy cases filed under chapter 7, 11, 12, or 13 of the Bankruptcy Code (11 U.S.C. 101, et seq.) and/or subject to USTP oversight pursuant to 28 U.S.C. 586.

CATEGORIES OF RECORDS IN THE SYSTEM:

Records in this system may include: resumes, applications, references, recommendations, and related materials; notes, correspondence, memoranda, messages, and agreements; audits, reviews, evaluations, financial records, transcripts, and security clearance information; Social Security numbers, financial account numbers, and other personal identifiers; and other information provided to USTP by trustees, applicants, and third parties or developed by USTP personnel.

AUTHORITY FOR MAINTENANCE OF THE SYSTEM:

This system is established and maintained pursuant to the bankruptcy oversight and related responsibilities of the USTP under, e.g., 28 U.S.C. 581, et seq., and 11 U.S.C. 101, et seq.

PURPOSE:

These records are used by USTP personnel for determining and reassessing the qualifications and eligibility of persons serving or applying to serve as trustees in bankruptcy cases.

ROUTINE USES OF RECORDS MAINTAINED IN THE SYSTEM, INCLUDING CATEGORIES OF USERS AND THE PURPOSES OF SUCH USES:

(A) Release of Information to Former Employees:

The Department of Justice may disclose relevant and necessary information to a former employee of the Department for purposes of: responding to an official inquiry by a federal, state, or local government entity or professional licensing authority, in accordance with applicable Department regulations; or facilitating communications with a former employee that may be necessary for personnel-related or other official purposes where the Department requires information and/or consultation assistance from the former employee

regarding a matter within that person's former area of responsibility.

(B) Release of Information to Contractors:

Information from these records may be disclosed to contractors, grantees, experts, consultants, students, and others performing or working on a contract, service, grant, cooperative agreement, or other assignment for the federal government, when necessary to accomplish an agency function related to this system of records.

(C) Release of Information in Proceedings:

Information from these records may be disclosed in an appropriate proceeding before a court, or administrative or adjudicative body, when the Department of Justice determines that the records are arguably relevant to the proceeding; or in an appropriate proceeding before an administrative or adjudicative body when the adjudicator determines the records to be relevant to the proceeding.

(D) Release of Information for Litigation-related Discussions:

Information from these records may be disclosed to an actual or potential party to litigation or the party's authorized representative for the purpose of negotiation or discussion of such matters as settlement, plea bargaining, or in informal discovery proceedings.

(E) Release of Information to Bankruptcy Trustees:

Information from these records may be disclosed to a trustee under chapter 7, 11, 12, or 13 of title 11, U.S. Code, when the United States Trustee determines that the release of such information is necessary to enable the trustee to properly administer a case or to perform the duties and responsibilities of a case trustee under 28 U.S.C. 586, 18 U.S.C. 3057, or 11 U.S.C. 101, et seq., including responding to complaints and inquiries related to a bankruptcy case, submitted to the USTP by interested parties.

(F) Release of Information to Complainants and Victims:

Information from these records may be disclosed to complainants and/or victims to the extent necessary to provide such persons with information and explanations concerning the progress and/or results of the investigation or case arising from the matters of which they complained and/or of which they were a victim.

(G) Release of Information to the News Media:

Information from these records may be disclosed to the news media and the public, including disclosures pursuant to 28 CFR 50.2, unless it is determined that release of the specific information in the context of a particular case would constitute an unwarranted invasion of personal privacy.

(H) Release of Information to Members of Congress:

Information from these records may be disclosed to a Member of Congress or staff acting upon the Member's behalf when the Member or staff requests the information on behalf of, and at the request of, the individual who is the subject of the record.

(Í) Release of Information to National Archives and Records Administration:

A record from this system of records may be disclosed to the National Archives and Records Administration for purposes of records management inspections conducted under the authority of 44 U.S.C. 2904 and 2906.

(J) Release of Information to Law Enforcement or Regulatory Agencies:

With respect to non-law enforcement records, where a record, either alone or in conjunction with other information, indicates a violation or potential violation of law—criminal, civil, or regulatory in nature—the relevant records may be referred to the appropriate federal, state, local, tribal, or foreign law enforcement authority or other appropriate entity charged with the responsibility for investigating or prosecuting such violation or charged with enforcing or implementing such law.

(K) Release of Information to Licensing Agencies:

Information from these records may be disclosed to federal, state, local, tribal, foreign, or international licensing agencies or associations which require information concerning the suitability or eligibility of an individual for a license or permit.

(L) Release of Information to Credit/ Consumer Reporting Agencies:

Information from these records may be disclosed to a credit or consumer reporting agency, as such terms are used in the Fair Credit Reporting Act (15 U.S.C. 1681, et seq.) and the Debt Collection Act (31 U.S.C. 3701, et seq.), when such information is necessary or appropriate to ensure that bankruptcy-related credit information is correct and accurate.

(M) Release of Information Related to Investigations and Proceedings:

Information from these records may be disclosed in the course of investigating the potential or actual violation of any law—whether civil, criminal, or regulatory in nature—or for the preparation of a trial or hearing for such violation. Such information may be disclosed to a federal, state, local, tribal, or foreign agency, or to an

individual or organization, if there is reason to believe that such agency, individual, or organization possesses information relating to the investigation, trial, or hearing, and if the dissemination is reasonably necessary to elicit such information or to obtain the cooperation of a witness or an informant.

(N) Release of Information in Connection with Section 341 Meetings:

Information from these records may be disclosed in connection with meetings held under 11 U.S.C. 341 and related proceedings when the Department of Justice determines that the records are arguably relevant to such meetings or proceedings. Transcripts or other records of such meetings may also be disclosed upon request pursuant to relevant bankruptcy laws or rules.

(O) Release of Information to Law Enforcement Authority

With respect to law enforcement records, to any criminal, civil, or regulatory law enforcement authority (whether federal, state, local, tribal, or foreign) where the information is relevant to the recipient entity's law enforcement responsibilities.

POLICIES AND PRACTICES FOR STORING, RETRIEVING, ACCESSING, RETAINING, AND DISPOSING OF RECORDS IN THE SYSTEM:

STORAGE:

Records in this system, except as specified below, are recorded on paper/cardboard material and maintained in file cabinets, storage containers, electric file/card retrievers, or safes. Certain records in this system are entered into automated information systems and stored on servers and/or magnetic disks for use or reproduction in report form at various times.

RETRIEVABILITY:

In USTP field offices, bankruptcy trustee oversight records are filed alphabetically by the trustee's or applicant's name. In EOUST, similar records are maintained alphabetically, organized by region. Automated information is retrieved by a variety of key words, including names of individuals.

SAFEGUARDS:

Records contained in this system are unclassified. They are safeguarded and protected in accordance with Departmental rules and procedures governing the handling of official records and computerized information. During duty hours, access to this system is monitored and controlled by USTP office personnel. During nonduty hours, offices are locked.

RETENTION AND DISPOSAL:

Bankruptcy trustee oversight records may be destroyed after three years except in the following circumstances. If the trustee dies, his/her trustee oversight records may be destroyed after one year. Case Trustee Interim Reports may be destroyed after five years. To prevent unauthorized disclosure, records are destroyed by shredding, burning, or similar methods.

SYSTEM MANAGER(S) AND ADDRESS:

The system managers for this system of records are: (a) the United States Trustees or Assistant United States Trustees, to the extent these records are maintained in their offices; and (b) the Assistant Director, Office of Review and Oversight, to the extent these records are maintained in the EOUST. (Office addresses can be located on the Internet at http://www.usdoj.gov/ust.)

NOTIFICATION PROCEDURE:

Address such inquiries to the Office of the General Counsel (FOIA/Privacy Counsel) at the address listed on the USTP FOIA/Privacy Act Web site (http://www.usdoj.gov/ust). The envelope and letter should be clearly marked "Privacy Act Request" and comply with 28 CFR 16.40, et seq.

RECORD ACCESS PROCEDURE:

Address such inquiries to the Office of the General Counsel (FOIA/Privacy Counsel) at the address listed on the USTP FOIA/Privacy Act Web site (http://www.usdoj.gov/ust). The envelope and letter should be clearly marked "Privacy Act Request" and comply with 28 CFR 16.40, et seq.

CONTESTING RECORD PROCEDURES:

Individuals desiring to contest or amend information maintained in the system should clearly and concisely state what information is being contested, the reasons for contesting it, and the proposed amendment to the information. Address such inquiries to the Office of the General Counsel (FOIA/Privacy Counsel) at the address listed on the USTP FOIA/Privacy Act Web site (http://www.usdoj.gov/ust). The envelope and letter should be clearly marked "Privacy Act Request" and comply with 28 CFR 16.40, et seq.

RECORD SOURCE CATEGORIES:

Sources of information contained in this system generally consist of the applicant, the applicant's references, interested third parties, and/or USTP personnel.

EXEMPTIONS CLAIMED FOR THE SYSTEM:

None.

JUSTICE/UST-003

SYSTEM NAME:

U.S. Trustee Program Timekeeping Records.

SECURITY CLASSIFICATION:

Sensitive But Unclassified.

SYSTEM LOCATION:

The Executive Office for United States Trustees (EOUST) and other offices of the United States Trustee Program (USTP) depending upon where an employee has been assigned for duty. (Office addresses can be located on the Internet at http://www.usdoj.gov/ust.)

CATEGORIES OF INDIVIDUALS COVERED BY THE SYSTEM:

Employees of the USTP field offices, generally to include Assistant United States Trustees, trial attorneys, bankruptcy analysts, paralegal specialists, and clerical support staff.

CATEGORIES OF RECORDS IN THE SYSTEM:

Records in this system may include USTP employees' names, personal identifiers, and a record of their work time.

AUTHORITY FOR MAINTENANCE OF THE SYSTEM:

This system is established and maintained pursuant to the responsibilities of the USTP under, *e.g.*, 28 U.S.C. 581, *et seq.*, and 11 U.S.C. 101, *et seq.*

PURPOSE:

This system consists of records of the work time of employees of the USTP, and is used, *e.g.*, to evaluate workload as a basis for requesting and allocating personnel and other resources.

ROUTINE USES OF RECORDS MAINTAINED IN THE SYSTEM, INCLUDING CATEGORIES OF USERS AND THE PURPOSES OF SUCH USES:

(A) Release of Information to Former Employees:

The Department of Justice may disclose relevant and necessary information to a former employee of the Department for purposes of: responding to an official inquiry by a federal, state, or local government entity or professional licensing authority, in accordance with applicable Department regulations; or facilitating communications with a former employee that may be necessary for personnel-related or other official purposes where the Department requires information and/or consultation assistance from the former employee regarding a matter within that person's former area of responsibility.

(B) Release of Information to Contractors:

Information from these records may be disclosed to contractors, grantees,

experts, consultants, students, and others performing or working on a contract, service, grant, cooperative agreement, or other assignment for the federal government, when necessary to accomplish an agency function related to this system of records.

(C) Release of Information to Members of Congress:

Information from these records may be disclosed to a Member of Congress or staff acting upon the Member's behalf when the Member or staff requests the information on behalf of, and at the request of, the individual who is the subject of the record.

(Ď) Release of Information to National Archives and Records Administration:

A record from this system of records may be disclosed to the National Archives and Records Administration for the purposes of records management inspections conducted under the authority of 44 U.S.C. 2904 and 2906.

(E) Release of Information in

Proceedings:

Information from these records may be disclosed in an appropriate proceeding before a court, or administrative or adjudicative body, when the Department of Justice determines that the records are arguably relevant to the proceeding; or in an appropriate proceeding before an administrative or adjudicative body when the adjudicator determines the records to be relevant to the proceeding.

(F) Release of Information related to Investigations and Proceedings:

Information from these records may be disclosed in the course of investigating the potential or actual violation of any law—whether civil, criminal, or regulatory in nature—or for the preparation of a trial or hearing for such violation. Such information may be disclosed to a federal, state, local, tribal, or foreign agency, or to an individual or organization, if there is reason to believe that such agency, individual, or organization possesses information relating to the investigation, trial, or hearing, and if the dissemination is reasonably necessary to elicit such information or to obtain the cooperation of a witness or an informant.

POLICIES AND PRACTICES FOR STORING, RETRIEVING, ACCESSING, RETAINING, AND DISPOSING OF RECORDS IN THE SYSTEM:

STORAGE

Records in this system, except as specified below, are recorded on paper/cardboard material and maintained in file cabinets, storage containers, electric file/card retrievers, or safes. Certain records in this system are entered into automated information systems and

stored on servers and/or magnetic disks for use or reproduction in report form at various times.

RETRIEVABILITY:

In USTP field offices, USTP timekeeping records are maintained by the name of the employee. In EOUST, such records are maintained and organized by USTP office, job title, and the name of the employee. Automated information is retrieved by a variety of key words.

SAFEGUARDS:

Records contained in this system are unclassified. They are safeguarded and protected in accordance with Departmental rules and procedures governing the handling of official records and computerized information. During duty hours, access to this system is monitored and controlled by USTP office personnel. During nonduty hours, offices are locked.

RETENTION AND DISPOSAL:

These records may be destroyed by shredding, burning, or similar methods after being audited or when three years old.

SYSTEM MANAGER(S) AND ADDRESS:

The system managers for this system of records are: (a) the United States Trustees or Assistant United States Trustees, to the extent these records are maintained in their offices; and (b) the Assistant Director, Office of Research and Planning, to the extent these records are maintained in the EOUST. (Office addresses can be located on the Internet at http://www.usdoj.gov/ust.)

NOTIFICATION PROCEDURE:

Address such inquiries to the Office of the General Counsel (FOIA/Privacy Counsel) at the address listed on the USTP FOIA/Privacy Act Web site (http://www.usdoj.gov/ust). The envelope and letter should be clearly marked "Privacy Act Request" and comply with 28 CFR 16.40, et seq.

RECORD ACCESS PROCEDURE:

Address such inquiries to the Office of the General Counsel (FOIA/Privacy Counsel) at the address listed on the USTP FOIA/Privacy Act Web site (http://www.usdoj.gov/ust). The envelope and letter should be clearly marked "Privacy Act Request" and comply with 28 CFR 16.40, et seq.

CONTESTING RECORD PROCEDURES:

Individuals desiring to contest or amend information maintained in the system should clearly and concisely state what information is being contested, the reasons for contesting it, and the proposed amendment to the information. Address such inquiries to the Office of the General Counsel (FOIA/Privacy Counsel) at the address listed on the USTP FOIA/Privacy Act Web site (http://www.usdoj.gov/ust). The envelope and letter should be clearly marked "Privacy Act Request" and comply with 28 CFR 16.40, et seq.

RECORD SOURCE CATEGORIES:

Sources of information contained in this system generally consist of USTP personnel.

EXEMPTIONS CLAIMED FOR THE SYSTEM:

None.

JUSTICE/UST-004

SYSTEM NAME:

U.S. Trustee Program Case Referral System.

SECURITY CLASSIFICATION:

Sensitive But Unclassified.

SYSTEM LOCATION:

The Executive Office for United States Trustees (EOUST) and other offices of the United States Trustee Program (USTP), depending on where the acts under investigation occurred. (Office addresses can be located on the Internet at http://www.usdoj.gov/ust.)

CATEGORIES OF INDIVIDUALS COVERED BY THE SYSTEM:

Entities and individuals involved in the bankruptcy process who are suspected of having engaged in criminal conduct or of having violated other federal laws, and whose activities have been or may be investigated or reported by the USTP to a United States Attorney or other law enforcement authority for investigation, prosecution, or other action pursuant to 28 U.S.C. 586, 18 U.S.C. 3057, or other legal authority.

CATEGORIES OF RECORDS IN THE SYSTEM:

Records in this system may include information associated with a referral to law enforcement authorities in connection with bankruptcy proceedings or related matters arising under 11 U.S.C. 101, et seq., or 28 U.S.C. 581, et seq. This system may contain information pertaining to the subject of the referral, who may be a debtor, creditor, party in interest, credit counseling and/or debtor education provider, or any other entity associated with the bankruptcy or other proceedings. This system may also contain information about the proceedings with which the subject of the referral is associated. Such information may include the subject's name, address, date of birth, Social Security number, financial account

numbers, or other personal identifiers; a chronological account of the incident(s); the source of the information, including confidential sources, if any; witnesses' names, addresses, and other personal identifiers; the law enforcement agency to which the referral is made; the status or final disposition of the referral; the case number, chapter, and status of any related proceedings; the bankruptcy trustee/examiner's name, address, phone number, and other personal identifiers; the judge assigned to the case; and such other case data as may be furnished to or available in the records of the court or of the USTP.

AUTHORITY FOR MAINTENANCE OF THE SYSTEM:

This system is established and maintained pursuant to the responsibilities of the USTP under, *e.g.*, 28 U.S.C. 581, *et seq.*, 11 U.S.C. 101, *et seq.*, and 18 U.S.C. 3057.

PURPOSE(S):

The purposes of this system are to assist the United States Trustees: (1) in supervising the administration of cases and trustees in cases and proceedings filed under the Bankruptcy Code (11 U.S.C. 101, et seq.); (2) in carrying out their congressional mandate "to serve as bankruptcy watch-dogs to prevent fraud, dishonesty, and overreaching in the bankruptcy arena" (H.R. Rep. No. 595, 95th Cong., 2d Sess. 88 (1978)); and (3) in complying with 18 U.S.C. 3057. which directs trustees to report for investigation any instance where there are reasonable grounds for believing that there has been a violation of federal laws relating to insolvent debtors or reorganization plans. The USTP may inform the appropriate law enforcement authorities when fraud or other violations of federal law are suspected or discovered in a bankruptcy case and will maintain records thereof described under "Categories of Records in the System" (above). The data will be used for Program-wide evaluation purposes, for statistical purposes, and to track the number, type, and outcome of cases referred for investigation.

ROUTINE USES OF RECORDS MAINTAINED IN THE SYSTEM, INCLUDING CATEGORIES OF USERS AND PURPOSES OF SUCH USES:

(A) Release of Information to Former Employees:

The Department of Justice may disclose relevant and necessary information to a former employee of the Department for purposes of: responding to an official inquiry by a federal, state, or local government entity or professional licensing authority, in accordance with applicable Department regulations; or facilitating

communications with a former employee that may be necessary for personnel-related or other official purposes where the Department requires information and/or consultation assistance from the former employee regarding a matter within that person's former area of responsibility.

(B) Release of Information to Contractors:

Information from these records may be disclosed to contractors, grantees, experts, consultants, students, and others performing or working on a contract, service, grant, cooperative agreement, or other assignment for the federal government, when necessary to accomplish an agency function related to this system of records.

(C) Release of Information in Proceedings:

Information from these records may be disclosed in an appropriate proceeding before a court, or administrative or adjudicative body, when the Department of Justice determines that the records are arguably relevant to the proceeding; or in an appropriate proceeding before an administrative or adjudicative body when the adjudicator holds the records to be relevant to the proceeding.

(D) Release of Information for Litigation-related Discussions:

Information from these records may be disclosed to an actual or potential party to litigation or the party's authorized representative for the purpose of negotiation or discussion of such matters as settlement, plea bargaining, or in informal discovery proceedings.

(E) Release of Information to Bankruptcy Trustees:

Information from these records may be disclosed to a trustee under chapter 7, 11, 12, or 13 of title 11, U.S. Code, when the United States Trustee determines that the release of such information is necessary to enable the trustee to properly administer a case or to perform the duties and responsibilities of a case trustee under 28 U.S.C. 586, 18 U.S.C. 3057, or 11 U.S.C. 101, et seq., including responding to complaints and inquiries related to a bankruptcy case, submitted to the USTP by interested parties.

(F) Release of Information to Complainants and Victims:

Information from these records may be disclosed to complainants and/or victims to the extent necessary to provide such persons with information and explanations concerning the progress and/or results of the investigation or case arising from the matters of which they complained and/or of which they were a victim.

(G) Release of Information to the News Media:

Information from these records may be disclosed to the news media and the public, including disclosures pursuant to 28 CFR 50.2, unless it is determined that release of the specific information in the context of a particular case would constitute an unwarranted invasion of privacy.

(H) Release of Information to Members of Congress:

Information from these records may be disclosed to a Member of Congress or staff acting on the Member's behalf when the Member or staff requests the information on behalf of, and at the request of, the individual to whom the records pertain.

(I) Release of Information to National Archives and Records Administration:

These records may be disclosed to the National Archives and Records Administration for purposes of records management inspections conducted under the authority of 44 U.S.C. 2904 and 2906.

(J) Release of Information to Law Enforcement or Regulatory Agencies:

With respect to non-law enforcement records, where a record, either alone or in conjunction with other information, indicates a violation or potential violation of law—criminal, civil, or regulatory in nature—the relevant records may be referred to the appropriate federal, state, local, tribal, or foreign law enforcement authority or other appropriate entity charged with the responsibility for investigating or prosecuting such violation or charged with enforcing or implementing such law.

(K) Release of Information to Licensing Agencies:

Information from these records may be disclosed to federal, state, local, tribal, foreign, or international licensing agencies or associations which require information concerning the suitability or eligibility of an individual for a license or permit.

(L) Release of Information to Judicial Branch:

These records may be disclosed to members of the judicial branch of the federal government where disclosure appears relevant to the authorized function of the recipient judicial office or court system under 18 U.S.C. 3057.

(M) Release of Information to Credit/ Consumer Reporting Agencies:

Information from these records may be disclosed to a credit or consumer reporting agency, as such terms are used in the Fair Credit Reporting Act (15 U.S.C. 1681, et seq.) and the Debt Collection Act (31 U.S.C. 3701, et seq.), when such information is necessary or

appropriate to ensure that bankruptcyrelated credit information is correct and accurate.

(N) Release of Information Related to Investigations and Proceedings:

Information from these records may be disclosed in the course of investigating the potential or actual violation of any law—whether civil, criminal, or regulatory in nature—or for the preparation of a trial or hearing for such violation. Such information may be disclosed to a federal, state, local, tribal, or foreign agency, or to an individual or organization, if there is reason to believe that such agency, individual, or organization possesses information relating to the investigation, trial, or hearing, and if the dissemination is reasonably necessary to elicit such information or to obtain the cooperation of a witness or an informant.

(O) Release of Information in Connection with Section 341 Meetings:

Information from these records may be disclosed in connection with meetings held under 11 U.S.C. 341 and related proceedings, when the Department of Justice determines that the records are arguably relevant to such meetings or proceedings. Transcripts or other records of such meetings may also be disclosed upon request pursuant to relevant bankruptcy laws or rules.

(P) Release of Information to Law Enforcement Authority:

With respect to law enforcement records, to any criminal, civil, or regulatory law enforcement authority (whether federal, state, local, tribal, or foreign) where the information is relevant to the recipient entity's law enforcement responsibilities.

(Q) Release of Information to USTP Approved Credit Counseling and Debtor Education Providers:

Information from these records may be disclosed to a USTP approved credit counseling and/or debtor education provider when the EOUST or United States Trustee determines that the release of such information is necessary to enable the approved provider to properly perform the duties and responsibilities of a credit counseling and/or debtor education provider under 11 U.S.C. 101, et seq., and other legal authority, including responding to complaints and inquiries related to the provider, submitted to the USTP by interested parties.

(R) Release of Information to Bankruptcy Examiners:

Information from these records may be disclosed to a bankruptcy examiner appointed in a case under title 11, U.S. Code, when the United States Trustee determines that the release of such information is necessary to enable the bankruptcy examiner to properly perform the duties and responsibilities of an examiner under 11 U.S.C. 101, et seq., and other legal authority, including responding to complaints and inquiries related to a bankruptcy case, submitted to the USTP by interested parties.

(S) Release of Information to Ombudsmen:

Information from these records may be disclosed to an ombudsman appointed in a case under title 11, U.S. Code, when the United States Trustee determines that the release of such information is necessary to enable the ombudsman to properly perform the duties and responsibilities of an ombudsman under 11 U.S.C. 101, et seq., and other legal authority, including responding to complaints and inquiries related to a bankruptcy case, submitted to the USTP by interested parties.

POLICIES AND PRACTICES FOR STORING, RETRIEVING, ACCESSING, RETAINING, AND DISPOSING OF RECORDS IN THE SYSTEM:

STORAGE:

Records in this system, except as specified below, are recorded on paper/cardboard material and maintained in file cabinets, storage containers, electric file/card retrievers, or safes. Certain records in this system are entered into automated information systems and stored on servers and/or magnetic disks for use or reproduction in report form at various times.

RETRIEVABILITY:

In EOUST and in USTP field offices, case referral records are filed alphanumerically or chronologically. Automated information is retrieved by a variety of key words, including names of individuals or other personal identifiers.

SAFEGUARDS:

Records contained in this system are unclassified but highly sensitive. They are safeguarded and protected in accordance with Departmental rules and procedures governing the handling of official records and computerized information. During duty hours, access to this system is monitored and controlled by USTP office personnel. During nonduty hours, offices are locked. Only those persons with a need to know have access to the records.

RETENTION AND DISPOSAL:

Criminal referral records may be destroyed by shredding, burning, or similar methods five years from the date of the finding of insufficient evidence, declination of prosecution, or the voting of a No True Bill by a Grand Jury. For

criminal referral records in which criminal charges have been brought, such records may be destroyed five years from the date of sentencing or the date of a nonappealable judicial determination, whichever is later (National Archives and Records Administration approval pending).

SYSTEM MANAGER(S) AND ADDRESS:

The system managers for this system of records are: (a) the United States Trustees or Assistant United States Trustees, to the extent these records are maintained in their offices; and (b) Office of the General Counsel and/or Chief of Criminal Enforcement, to the extent these records are maintained in the EOUST. (Office addresses can be located on the Internet at http://www.usdoj.gov/ust.)

NOTIFICATION PROCEDURE:

Address such inquiries to the Office of the General Counsel (FOIA/Privacy Counsel) at the address listed on the USTP FOIA/Privacy Act Web site (http://www.usdoj.gov/ust). The envelope and letter should be clearly marked "Privacy Act Request" and comply with 28 CFR 16.40, et seq.

RECORDS ACCESS PROCEDURE:

Address such inquiries to the Office of the General Counsel (FOIA/Privacy Counsel) at the address listed on the USTP FOIA/Privacy Act Web site (http://www.usdoj.gov/ust). The envelope and letter should be clearly marked "Privacy Act Request" and comply with 28 CFR 16.40, et seq.

CONTESTING RECORD PROCEDURES:

Individuals desiring to contest or amend information maintained in the system should clearly and concisely state what information is being contested, the reasons for contesting it, and the proposed amendment to the information. Address such inquiries to the Office of the General Counsel (FOIA/Privacy Counsel) at the address listed on the USTP FOIA/Privacy Act Web site (http://www.usdoj.gov/ust). The envelope and letter should be clearly marked "Privacy Act Request" and comply with 28 CFR 16.40, et seq.

RECORD SOURCE CATEGORIES:

The records generally contain information obtained by or furnished to the USTP from: (1) Federal or state court records; (2) debtors or debtors' principals, agents or representatives; (3) informants and interested third parties; and (4) other law enforcement sources.

EXEMPTIONS CLAIMED FOR THE SYSTEM:

The Attorney General has exempted this system of records from subsections

(c)(3) and (4); (d); (e)(1), (2), and (3), (e)(4)(G) and (H), (e)(5) and (8); (f) and (g) of the Privacy Act, pursuant to 5 U.S.C. 552a(j)(2) and (k)(2). Rules have been promulgated in accordance with the requirements of 5 U.S.C. 553(b), (c), and (e) and have been published in the Federal Register. See 28 CFR 16.77.

JUSTICE/UST-005

SYSTEM NAME:

Credit Counseling and Debtor Education Files and Associated Records.

SECURITY CLASSIFICATION:

Sensitive But Unclassified

SYSTEM LOCATION:

The Executive Office for U.S. Trustees (EOUST) and other offices of the United States Trustee Program (USTP) depending upon the judicial district(s) where the credit counselor or debtor education provider delivers services or has made application to deliver services under title 11, U.S. Code (11 U.S.C. 101, et seq.). (Office addresses can be located on the Internet at http://www.usdoj.gov/ust.)

CATEGORIES OF INDIVIDUALS COVERED BY THE SYSTEM:

Individuals and entities applying for approval and reapproval by the United States Trustee(s) to provide credit counseling and/or debtor education services under title 11, U.S. Code, including, but not limited to: (a) primary contact persons, agency representatives, principals, owners, counselors, educators, teachers, sole proprietors, managers, supervisors, employees, current and former directors, officers, and trustees; (b) individuals and entities whose approval and reapproval are pending or withdrawn or have been granted, denied, or revoked by the United States Trustee(s); (c) other parties in interest, agents, affiliates, related entities, independent contractors, contract service providers, credit counseling and debtor education clients, students, professionals, debtors, creditors, bankruptcy trustees, attorneys, accountants, auditors, or those otherwise involved in credit counseling and debtor education.

Individuals who have filed complaints or comments with the United States Trustee(s) or EOUST against credit counseling and debtor education providers whose approval and reapproval are pending or withdrawn or have been granted, denied, or revoked by the United States Trustee(s) under title 11, U.S. Code.

CATEGORIES OF RECORDS IN THE SYSTEM:

Records in this system may include: (a) Applications, appendices, and related documents submitted to EOUST or the United States Trustee(s) by credit counseling agencies and debtor education providers; (b) supplemental submissions to applications and related correspondence; (c) data relating to the agencies' and providers' approval status and performance such as memoranda, notes, messages, check lists, reviews, and evaluations; (d) information from federal, state, and local government agencies, including Internal Revenue Service (IRS) release/waiver forms and IRS audit information; (e) Social Security numbers and tax identification numbers; (f) federal and state tax returns; (g) names, addresses, business locations and corresponding judicial districts, email addresses, telephone and fax numbers, resumes, Curriculum Vitae, education, qualifications, and/or experience of primary contact persons, agency representatives, principals, owners, counselors, educators, teachers, sole proprietors, managers, supervisors, employees, current and former directors, officers, and trustees, parties in interest, agents, affiliates, subsidiaries, related entities, independent contractors, contract service providers, professionals, attorneys, accountants, and auditors, including compensation earned or sought by each; (h) names of sureties and amounts of bonds, securities, insurance policies, and letters of credit; (i) general correspondence, forms, contracts, client agreements, schedules, budget analysis forms, training materials, counseling and teaching methods, manuals, procedures, scripts, counseling materials, debtor education curriculum, and Internet information; (j) fee schedules, suggested contributions, and "fair share" contributions made by creditors; (k) bank and financial institution information, including names of depositories and amounts of funds deposited in operating accounts and trust accounts; (1) audits, audited and unaudited financial statements, and cash flow projections (balance sheets, profit and loss statements, and statements of cash flow, and a year-todate budget versus actual comparison, including all underlying assumptions); (m) annual disbursements; (n) business plans; (o) debt management plan servicing agreements; (p) statistics and activity reports; (q) background checks and miscellaneous investigative records; (r) copies of certain pleadings or other papers filed in court, including those filed by the USTP; (s) bond or other claims, arbitrations, and mediations, (t)

tracking and monitoring records and management reports, including information obtained during onsite visits to credit counseling and debtor education providers to monitor quality assurance, such as records, notes, and tape recorded client counseling sessions and debtor education courses; (u) disciplinary and enforcement actions and administrative reviews; (v) licenses, accreditations, and certifications; (w) standards, guidelines, and memberships with associations, (x) credit counseling certificates, debt management plans, debtor education certificates, certificate numbers, certificate issue and completion dates, and bankruptcy case names and numbers, (y) acknowledgments, agreements, and declarations; and (z) names of complainants, complaints, complaint forms, comments, related correspondence, client surveys, client evaluations and forms, and complaint reports and referral information, including records provided to and received from federal, state, and local agencies.

AUTHORITY FOR MAINTENANCE OF THE SYSTEM:

This system is established and maintained pursuant to the bankruptcy oversight and related responsibilities of the USTP under, e.g., 28 U.S.C. 581, et seq., and 11 U.S.C. 101, et seq., and other legal authority.

PURPOSES:

The records in this system will be used to assist the EOUST and United States Trustee(s) to: (a) Determine and reassess the suitability, eligibility, and qualifications of persons providing or applying to provide credit counseling and/or debtor education services under title 11, U.S. Code; (b) maintain the requisite data conveniently; (c) ensure compliance with statutory requirements; (d) monitor credit counseling agencies' and debtor education providers' approval status, compliance with approval standards, and performance of approved providers; (e) monitor the issuance of certificates and detect and deter certificate forgery; and (f) collect and maintain complaints and comments from bankruptcy debtors and the public in order to take appropriate actions, including referrals to other government agencies.

ROUTINE USES OF RECORDS MAINTAINED IN THE SYSTEM, INCLUDING CATEGORIES OF USERS AND THE PURPOSES OF SUCH USES:

(A) Release of Information to Former Employees:

The Department of Justice may disclose relevant and necessary information to a former employee of the Department for purposes of: responding to an official inquiry by a federal, state, or local government entity or professional licensing authority in accordance with applicable Department regulations; or facilitating communications with a former employee that may be necessary for personnel-related or other official purposes where the Department requires information and/or consultation assistance from the former employee regarding a matter within that person's former area of responsibility.

(B) Release of Information to Contractors:

Information from these records may be disclosed to contractors, grantees, experts, consultants, students, and others performing or working on a contract, service, grant, cooperative agreement, or other assignment for the federal government, when necessary to accomplish an agency function related to this system of records.

(C) Release of Information in Proceedings:

Information from these records may be disclosed in an appropriate proceeding before a court, or administrative or adjudicative body, when the Department of Justice determines that the records are arguably relevant to the proceeding; or in an appropriate proceeding before an administrative or adjudicative body when the adjudicator determines the records to be relevant to the proceeding.

(D) Release of Information for Litigation-Related Discussions:

Information from these records may be disclosed to an actual or potential party to litigation or the party's authorized representative for the purpose of negotiation or discussion of such matters as settlement, plea bargaining, or in informal discovery proceedings.

(E) Release of Information to Bankruptcy Trustees:

Information from these records may be disclosed to a trustee under chapter 7, 11, 12, or 13 of title 11, U.S. Code, when the United States Trustee determines that the release of such information is necessary to enable the trustee to properly administer a case or to perform the duties and responsibilities of a case trustee under 28 U.S.C. 586, 18 U.S.C. 3057, or 11 U.S.C. 101, et seq., including responding to complaints and inquiries related to a bankruptcy case, submitted to the USTP by interested parties.

(F) Release of Information to Complainants and Victims:

Information from these records may be disclosed to complainants and/or victims to the extent necessary to provide such persons with information and explanations concerning the progress and/or results of the investigation or case arising from the matters of which they complained and/ or of which they were a victim.

(G) Release of Information to the News Media:

Information from these records may be disclosed to the news media and the public, including disclosures pursuant to 28 CFR 50.2, unless it is determined that release of the specific information in the context of a particular case would constitute an unwarranted invasion of personal privacy.

(H) Release of Information to Members of Congress:

Information from these records may be disclosed to a Member of Congress or staff acting upon the Member's behalf when the Member or staff requests the information on behalf of, and at the request of, the individual who is the subject of the record.

(I) Release of Information to National Archives and Records Administration:

A record from this system of records may be disclosed to the National Archives and Records Administration for purposes of records management inspections conducted under the authority of 44 U.S.C. 2904 and 2906.

(J) Release of Information to Law Enforcement or Regulatory Agencies:

With respect to non-law enforcement records, where a record, either alone or in conjunction with other information, indicates a violation or potential violation of law—criminal, civil, or regulatory in nature—the relevant records may be referred to the appropriate federal, state, local, tribal, or foreign law enforcement authority or other appropriate entity charged with the responsibility for investigating or prosecuting such violation or charged with enforcing or implementing such law.

(K) Release of Information to Licensing Agencies:

Information from these records may be disclosed to federal, state, local, tribal, foreign, or international licensing agencies or associations which require information concerning the suitability or eligibility of an individual for a license or permit.

(L) Release of Information for Employment, Clearance, Contract, or Grant Purposes:

Information from these records may be disclosed to appropriate officials and employees of a federal agency or entity which requires information relevant to a decision concerning the hiring, appointment, or retention of an employee; the issuance, renewal, suspension, or revocation of a security

clearance; the execution of a security or suitability investigation; the letting of a contract; or the issuance of a grant or benefit.

(M) Release of Information to Credit/ Consumer Reporting Agencies:

Information from these records may be disclosed to a credit or consumer reporting agency, as such terms are used in the Fair Credit Reporting Act (15 U.S.C. 1681, et seq.) and the Debt Collection Act (31 U.S.C. 3701, et seq.), when such information is necessary or appropriate to ensure that bankruptcy-related credit information is correct and accurate.

(N) Release of Information Related to Investigations and Proceedings:

Information from these records may be disclosed in the course of investigating the potential or actual violation of any law—whether civil, criminal, or regulatory in nature—or for the preparation of a trial or hearing for such violation. Such information may be disclosed to a federal, state, local, tribal, or foreign agency, or to an individual or organization, if there is reason to believe that such agency, individual, or organization possesses information relating to the investigation, trial, or hearing, and if the dissemination is reasonably necessary to elicit such information or to obtain the cooperation of a witness or an informant.

(O) Release of Information in Connection with Section 341 Meetings:

Information from these records may be disclosed in connection with meetings held under 11 U.S.C. 341 and related proceedings, when the Department of Justice determines that the records are arguably relevant to such meetings or bankruptcy proceedings. Transcripts or other records of such meetings may also be disclosed upon request pursuant to relevant bankruptcy laws or rules.

(P) Release of Information to Law Enforcement Authority

With respect to law enforcement records, to any criminal, civil, or regulatory law enforcement authority (whether federal, state, local, tribal, or foreign) where the information is relevant to the recipient entity's law enforcement responsibilities.

(Q) Release of Information in Connection with USTP Decisions to Grant, Deny, or Revoke Approval or Reapproval of Credit Counseling and Debtor Education Applicants and Providers:

Information from these records may be disclosed to appropriate third parties to the extent necessary to collect or verify information pertinent to the USTP's decision to grant, deny, or revoke approval or reapproval of a provider of credit counseling or debtor education services under title 11, U.S. Code, including to a federal, state, local, tribal, or foreign agency, or an individual or organization, if there is reason to believe that such agency, individual, or organization possesses information that the USTP needs to make a determination related to the granting, denial, or revocation of approval or reapproval of an applicant, and if the dissemination is reasonably necessary to elicit such information or to obtain the cooperation of any third party.

(R) Release of Information to USTP Approved Credit Counseling and Debtor Education Providers:

Information from these records may be disclosed to a USTP approved credit counseling and/or debtor education provider when the EOUST or United States Trustee determines that the release of such information is necessary to enable the approved provider to properly perform the duties and responsibilities of a credit counseling and/or debtor education provider under 11 U.S.C. 101, et seq., and other legal authority, including responding to complaints and inquiries related to the provider, submitted to the USTP by interested parties.

POLICIES AND PRACTICES FOR STORING, RETRIEVING, ACCESSING, RETAINING, AND DISPOSING OF RECORDS IN THE SYSTEM:

STORAGE

Records in this system, except as specified below, are recorded on paper/cardboard material and maintained in file cabinets, storage containers, electric file/card retrievers, or safes. Certain records in this system are entered into automated information systems and stored on servers and/or magnetic disks for use or reproduction in report form at various times.

RETRIEVABILITY:

In EOUST, records are maintained and organized alphanumerically by assigned number and alphabetically by name. In USTP field offices, credit counseling and debtor education records are filed alphabetically by the applicant's name and assigned number. Automated information is retrieved by a variety of key words, including names of individuals and other personal identifiers.

SAFEGUARDS:

Records contained in this system are unclassified. They are safeguarded and protected in accordance with Departmental rules and procedures governing the handling of official records and computerized information. During duty hours, access to this system is monitored and controlled by USTP office personnel. During nonduty hours, offices are locked.

RETENTION AND DISPOSAL:

Credit counseling and debtor education applications and related records may be destroyed three years after the date of the USTP's final dispositive decision or final agency action or three years from the date of a nonappealable judicial determination, except in the following circumstances. If the provider dies or withdraws an initial application for a six-month approval period before a final decision by the UST is made to approve or disapprove the application, the records may be destroyed after one year. Complaints filed with the USTP may be destroyed two years from the date of receipt. To prevent unauthorized disclosure, records are destroyed by shredding, burning, or similar methods. (National Archives and Records Administration approval pending).

SYSTEM MANAGER(S) ADDRESS:

The system managers for this system of records are (a) the Chief, Credit Counseling and Debtor Education Unit, to the extent these records are maintained in the EOUST; and (b) the United States Trustee(s) or Assistant United States Trustee(s) to the extent these records are maintained in their offices. (Office addresses can be located on the Internet at http://www.usdoj.gov/ust).

NOTIFICATION PROCEDURE:

Address such inquiries to the Office of the General Counsel (FOIA/Privacy Counsel) at the address listed on the USTP FOIA/Privacy Act Web site (http://www.usdoj.gov/ust). The envelope and letter should be clearly marked "Privacy Act Request" and comply with 28 CFR 16.40, et seq.

RECORD ACCESS PROCEDURES:

Address such inquiries to the Office of the General Counsel (FOIA/Privacy Counsel) at the address listed on the USTP FOIA/Privacy Act Web site (http://www.usdoj.gov/ust). The envelope and letter should be clearly marked "Privacy Act Request" and comply with 28 CFR 16.40, et seq.

CONTESTING RECORD PROCEDURES:

Individuals desiring to contest or amend information maintained in the system should clearly and concisely state what information is being contested, the reason for contesting it, and the proposed amendment to the information. Address such inquiries to the Office of the General Counsel (FOIA/Privacy Counsel) at the address listed on the USTP FOIA/Privacy Act Web site (http://www.usdoj.gov/ust). The envelope and letter should be clearly marked "Privacy Act Request" and comply with 28 CFR 16.40, et seq.

RECORD SOURCE CATEGORIES:

Sources of information contained in this system generally consist of the credit counseling and/or debtor education provider applicants, and those whose applications for approval or reapproval have been withdrawn by the applicant or granted, denied, or revoked by the United States Trustee(s); the applicants' references; interested third parties; federal and state agencies; and/or USTP personnel.

EXEMPTIONS CLAIMED FOR THE SYSTEM:

None.

[FR Doc. E6–16814 Filed 10–10–06; 8:45 am] BILLING CODE 4410–40–P

DEPARTMENT OF JUSTICE

Drug Enforcement Administration

Gregg Brothers Wholesale Co., Inc.; Denial of Application

On April 26, 2005, the Deputy
Assistant Administrator, Office of
Diversion Control, Drug Enforcement
Administration (DEA), issued an Order
To Show Cause to Gregg Brothers
Wholesale Co., Inc., (Respondent) of
Powell, Tennessee. The Show Cause
Order proposed to deny Respondent's
application for registration as a
distributor of the List I chemicals
ephedrine, pseudoephedrine, and
phenylpropanolamine on the ground
that its registration would be
inconsistent with the public interest as
that term is defined in 21 U.S.C. 823(h).
See Show Cause Order at 1.

The Show Cause Order specially alleged that methamphetamine production "continues unabated within the Tennessee region," that the State "has a large number of independent methamphetamine producers," and that the State leads DEA's southeast region in the number of clandestine laboratory seizures. *Id.* at 2. The Show Cause Order also alleged that "several distributors in Tennessee were selling pseudoephedrine and ephedrine products to many of the same retail customers." *Id.* at 3.

The Show Cause Order alleged that Respondent's owner, Mr. Thomas Gregg, told DEA Diversion Investigators (DIs) that he intended to distribute both traditional pseudoephedrine products and non-traditional or "gray market"

products, including products that have been found during seizures of clandestine laboratories. Id. at 4. The Show Cause Order further alleged that "during the pre-registration inspection, the DIs found that Respondent had several pseudoephedrine products in its possession and that Mr. Gregg "did not realize that these products contained pseudoephedrine." Id. The Show Cause Order also alleged that between 2002 and 2005, Respondent had made "about 17 purchases of various pseudoephedrine products," and that '[b]etween 2002 and 2004, [Respondent] sold about 200 orders of pseudoephedrine products to various convenience stores and similar retail establishments." Id. at 5.

The Show Cause Order next alleged that Respondent expected to sell List I chemical products "to about 190 various convenience stores and similar retail establishments." *Id.* at 5. Finally, the Show Cause Order alleged that Respondent's owner had indicated that "ephedrine 2-way products would be the largest volume" List 1 chemical product. *Id.* at 5–6. The Show Cause Order also notified Respondent of its right to a hearing.

The Show Cause Order was served by certified mail, return receipt requested, and on May 4, 2005, Respondent acknowledged receipt. Thereafter, Respondent, in a letter dated June 1, 2005, but which was not received until June 9, 2005, requested a hearing; the matter was initially assigned to Administrative Law Judge (ALJ) Mary Ellen Bittner.

On June 16, 2005, the Government moved to deny Respondent a hearing on the ground that Respondent had not timely filed its request. See 21 CFR 1301.43(a). On June 28, 2005, the ALJ issued a memorandum offering Respondent the opportunity to respond to the Government's motion by 4 p.m. on July 21, 2005. When, by August 26, 2005, no response had been received, the ALI granted the government's motion. See Order Terminating Proceedings at 1. The ALJ also found that Respondent had not timely requested a hearing and thus concluded that it had waived its right to a hearing. See id. The ALI then ordered that the proceeding be terminated. See id. at 2.

Thereafter, the investigative file was forwarded to me for final agency action. I adopt the ALJ's finding that Respondent has waived its hearing right and hereby enter this final order based on relevant material in the investigative file.

Findings

Respondent is a Tennessee Corporation which is located in Powell, Tennessee. Mr. Thomas Gregg is Respondent's President and owns all of its shares. Respondent distributes bait, groceries, candy, snack food, health and beauty items and novelty items to convenience stores and gas stations in East Tennessee, Virginia, Kentucky, and North Carolina. On August 15, 2002, Respondent applied for a registration to distribute the List I chemicals pseudoephedrine, ephedrine, and phenylpropanolamine (PPA).

While ephedrine and pseudoephedrine have therapeutic uses, they are easily extracted from lawful over-the-counter products and used in the illicit manufacture of methamphetamine, a schedule II controlled substance. See 21 U.S.C. 802(34); 21 CFR 1308.12(d). PPA can also be used to manufacture methamphetamine. In November 2000, the FDA issued a public health advisory regarding PPA based on a study that found that the use of PPA increases the risk of hemorrhagic stroke.¹

Methamphetamine is a powerful and addictive central nervous system stimulant, see A-1 Distribution Wholesale, 70 FR 28573 (2005), and is a schedule II controlled substance. 21 CFR 1308.12(d). The illegal manufacture and abuse of methamphetamine pose a grave threat to this country. Methamphetamine abuse had destroyed numerous lives and families and has ravaged communities. The manufacture of methamphetamine also causes serious environmental harms because of

to make the drug.

The problem of methamphetamine abuse is especially serious in Tennessee. In 2004, law enforcement agencies seized 939 clandestine methamphetamine labs in the State.

These seizures were the second largest per-state total in the nation.

the toxic nature of the chemicals used

On September 1, 2004, two DEA Diversion Investigators (DIs) visited Respondent at its proposed registered location to conduct a pre-registration investigation. The DIs met with Mr. Gregg, who told them that he intended to sell both traditional and non-traditional List I chemical products and that his suppliers included Sessions Specialty Company of Lewisville, North

¹More recently, on December 22, 2005, the FDA issued a notice of proposed rulemaking, which proposed to reclassify over-the-counter PPA products as "not generally recognized as safe and effective." U.S. FDA, Center for Drug Evaluation and Research, Phenylpropanolamine (PPA) Information Page http://www.fda.gov/cder/drug/infopage/ppa/ (visited June 15, 2006).

Carolina, and Proactive Labs of Lithin Springs, Georgia. Among the nontraditional products which Respondent intended to sell were 2-way ephedrine products including bottles containing 48 tablets manufactured by Body Dynamics, Inc. (BDI). Of note, DEA has issued numerous warning letters to both BDI and ProActive Labs advising them that their products have been found at illegal methamphetamine labs. See D &S Sales, 71 FR 37607, 37608 (2006).

During the course of the investigation, the DIs found that Respondent had obtained several pseudoephedrine products (3 boxes of Tylenol Sinus Tablets and 1 box of Advil Cold and Sinus Tablets) from the Sessions Specialty Company. Mr. Gregg further told the DIs that he had sold some pseudoephedrine products to his customers. Respondent did not, however, have a DEA registration to distribute the products.

When told by the DIs that Respondent could not lawfully sell these products, Mr. Gregg told the DIs that he did not know that the products contained List I chemicals. According to the DIs, Mr. Gregg returned the List I products to the distributor. There is, however, an invoice dated October 11, 2004, documenting the sale of Tylenol Sinus Geltabs to a food market; this was a product which Respondent was required to return to its distributor because it contained pseudoephedrine.

A review of Respondent's purchase records shows that Respondent purchased pseudoephedrine products sixteen times between January 2002 and June 2004. Respondent's sales records further show that Respondent sold List I chemical products containing pseudoephedrine on approximately 160 occasions during the 2002 through 2004 time period.2

The DIs evaluated Respondent's security measures; the physical security of its premises appeared to be adequate. Mr. Gregg further told the DIs that he did not allow merchandise to be stored on trucks overnight. When the DIs discussed with Mr. Gregg the problem of List I chemical diversion into the illicit manufacture of methamphetamine, Mr. Gregg told the DIs that he was not responsible because he did not make methamphetamine himself and could not control what other people did.

Mr. Gregg provided the DIs with a customer list. The DIs determined that Respondent's customer list included seventeen establishments that were also customers of another firm (Rite, Inc.), which was then under investigation and ultimately surrendered its registration.

The DIs determined that Respondent did not have a current business license. Finally, the DIs conducted background checks on Mr. Gregg and his employees. The backgrounds checks found no adverse information on any of these individuals.

Discussion

Under 21 U.S.C. 823(h), an applicant to distribute List I chemicals is entitled to be registered unless the registration would be "inconsistent with the public interest." In making this determination, Congress directed that I consider the following factors:

- (1) Maintenance by the applicant of effective controls against diversion of listed chemicals into other than legitimate channels:
- (2) Compliance by the applicant with applicable Federal, State, and local law;
- (3) Any prior conviction record of the applicant under Federal or State laws relating to controlled substances or to chemicals controlled under Federal or State law;
- (4) Any past experience of the applicant in the manufacture and distribution of chemicals: and
- (5) Such other factors as are relevant to and consistent with the public health and safety.

"These factors are considered in the disjunctive." Joy's Ideas, 70 FR 33195, 33197 (2005). I may rely on any one or a combination of factors, and may give each factor the weight I deem appropriate in determining whether an application for registration should be denied. See, e.g., David M. Starr, 71 FR 39367 (2006); Energy Outlet, 64 FR 14269 (1999). Moreover, I am "not required to make findings as to all of the factors." Hoxie v. DEA, 419 F.3d 477, 482 (6th Cir. 2005); Morall v. DEA, 412 F.3d 165, 173–74 (D.C. Cir. 2005). In this case, I conclude that factors one, two, and four are dispositive. Moreover, because the record establishes that Respondent has a substantial history of non-compliance with the registration provisions and that this provides ample reason for denying its application, I do not make any findings on factor five.

Factor One—Maintenance of Effective Controls Against Diversion

The investigative file does not establish that Respondent would fail to provide effective physical security to protect List I chemicals from theft. Moreover, Respondent appears capable

of maintaining the required records. I have serious reservations, however, as to whether Respondent would report suspicious transactions.

During his discussions with the DIs regarding the diversion of List I chemicals, Mr. Gregg made statements to the effect that he was not responsible because he did not make methamphetamine himself and could not control what other people did. In light of the well documented problem of methamphetamine abuse in Tennessee, I find this statement extremely disturbing.

Recently, I ordered the revocation of a List I chemical distributor's registration in part because the registrant's attitude was that he was not responsible for diversion of his products into the illicit manufacture of methamphetamine after he delivered them to his customers. See D & S Sales, 71 FR 37607, 37610 (2006). In D & S Sales, the registrant had failed to report any suspicious sales notwithstanding that he clearly had reason to know that many of his customers were purchasing products in amounts that far exceeded legitimate demand. As I noted in D & SSales, a registrant's attitude that it is not responsible for what happens to its product after delivery "is fundamentally inconsistent with the obligations of a registrant." Id. Moreover, "[t]his attitude is highly relevant in assessing the adequacy of [an applicant's] systems for monitoring the disposition of List I chemicals." *Id.*

As DEA has learned in cases such as D & S Sales, the effectiveness of our regulation which requires the reporting of suspicious transactions is dependent on registrants taking seriously their obligation to report. In short, Mr. Gregg's comments do not inspire confidence in his willingness to report sales of excessive quantities. I therefore conclude that Respondent would not maintain effective controls against diversion and that this factor supports a finding that Respondent's registration would be inconsistent with the public interest.

Factor Two—Compliance With Applicable Laws

The investigative file establishes that between 2002 and 2004, Respondent repeatedly violated the Controlled Substances Act when it engaged in approximately 160 distributions of List I chemical products without being registered to do so.3 See 21 U.S.C.

Continued

² Approximately thirty-six of the invoices documented the sale of Alka-Seltzer Plus Cold. The invoices did not, however, specify whether these were in tablet or gelcap form. According to the manufacturer's web site, while Alka-Seltzer Plus Cold Liqui-Gels contain pseudoephedrine, the tablets do not. Because the investigative file does not establish the specific product sold, I do not count these sales as instances in which Respondent violated the CSA

³ Respondent's sales records indicate that it frequently sold several pseudoephedrine products on a single invoice. The 160 figure counts each

823(h); id. section 843(a)(9). Furthermore, according to Respondent's records, it sold List I chemical products even after the DIs conducted the on-site inspection and told Mr. Gregg that Respondent could not distribute these products without a registration. I thus conclude that Respondent's numerous and repeated violations of the CSA demonstrate that its registration would be inconsistent with the public interest and are reason alone to deny its application. I further note that Respondent did not produce a valid business license during the on-site inspection.

Factor Three—The Applicant's Prior Record of Relevant Criminal Convictions

There is no evidence that Respondent's owner, or any of its employees, has been convicted of a crime relating to controlled substances or chemicals under either Federal or State law. This factor ordinarily supports a finding that Respondent's registration would not be inconsistent with the public interest. But in this case, I decline to give the factor any weight because of the evidence establishing Respondent's non-compliance with the CSA.

Factor Four—The Applicant's Past Experience in the Distribution of Listed Chemicals

According to a letter from Mr. Gregg, Respondent previously distributed ephedrine and pseudoephedrine during some unspecified period prior to these products becoming regulated. I do not, however, consider this to be relevant experience as it occurred before the adoption of the current regulatory scheme and thus does not address whether Respondent would comply with federal regulations. Furthermore, for the reasons discussed under Factor Two, Respondent's past experience in distributing List I chemicals involved approximately 160 distributions over a nearly three year period without being registered and Respondent sold pseudoephedrine even after the DIs expressly told Mr. Gregg that Respondent could not distribute pseudoephedrine products without a registration.

As I noted in *Sato Pharmaceutical*, *Inc.*, 71 FR 52165, 52166 (2006), there is simply no excuse for Respondent to have engaged in the repeated distribution of List I chemical products without a registration, or for

invoice as a single distribution even if the invoice documented the sale of several pseudoephedrine products.

Respondent's owner or employees to be unaware that several of the products it was distributing contained List I chemicals. Because Respondent's past experience in distributing List I chemicals manifests a lengthy failure of non-compliance with the CSA's registration requirements, I therefore conclude that granting Respondent's application would be inconsistent with the public interest. Finally, because of the seriousness and duration of these violations, I deem them dispositive of the ultimate issue and need not make findings on the remaining factor. See Hoxie v. DEA, 419 F.3d 477, 482 (2005); Morall v. DEA, 412 F.3d 165, 173 (2005).

Order

Accordingly, pursuant to the authority vested in me by 21 U.S.C. 823(h), and 28 CFR 0.100(b) and 0.104, I hereby order that the previously submitted application of Gregg Brothers Wholesale, Co., Inc., for a DEA Certificate of Registration as a distributor of List I chemicals be, and it hereby is, denied. This order is effective November 13, 2006.

Dated: September 29, 2006.

Michele M. Leonhart,

Deputy Administrator.
[FR Doc. E6–16758 Filed 10–10–06; 8:45 am]
BILLING CODE 4410–09–P

DEPARTMENT OF JUSTICE

Drug Enforcement Administration

Integrity Wholesale, Inc.; Denial of Application

On July 12, 2005, the Deputy
Assistant Administrator, Office of
Diversion Control, Drug Enforcement
Administration, issued an Order to
Show Cause to Integrity Wholesale, Inc.,
(Respondent) of Fairview, Tennessee.
The Show Cause Order proposed to
deny Respondent's application for a
DEA Certificate of Registration as a
distributor of the List I chemical
pseudoephedrine, on the ground that
issuance of a registration would be
inconsistent with the public interest.
See 21 U.S.C. 823(h); Show Cause Order
at 1

The Show Cause Order specifically alleged that Respondent is a wholesale distributor of various products including batteries, disposable cameras, film, household goods and health and beauty aids, and that in September 2003, Respondent had applied for a registration to distribute pseudoephedrine products from its Tennessee location. Show Cause Order at 1–2. The Show Cause Order alleged

that Respondent's owner, Mr. Andrew Splendorio, had informed DEA investigators that Respondent distributes products to all fifty states and that approximately eighty percent of the orders it receives are made by telephone or the Internet. *Id.* at 2.

The Show Cause Order alleged that Respondent provided DEA investigators with a list that included several hundred proposed customers. See id. at 2. The Show Cause Order alleged that the list included numerous nontraditional retailers of over-the-counter drug products including dive shops, paintball shops, gun shops, rafting and kayak shops, photo shops, audio stores, wildlife centers and zoos, publishing companies, and a theatre. See id. The Show Cause Order further alleged that the list included numerous individuals who were not listed as being affiliated with any particular business. Id.

The Show Cause Order alleged that the proposed customers "have zero expectation of sales of over the counter drug products." *Id.* The Show Cause Order also alleged that only "[a]n extremely small amount of face-to-face purchases" of pseudoephedrine products occur in non-traditional retailers, and that DEA has found that these establishments "purchase inordinate amounts of these products and become conduits for the diversion" of these products into the illicit manufacture of methamphetamine. *Id.*

Finally, the Show Cause Order alleged that the illicit manufacture of methamphetamine continues unabated in Tennessee. See id. at 2. The Show Cause Order further alleged that DEA had noted a trend towards smaller capacity laboratories and that these laboratories often obtain precursor chemicals from non-traditional retailers. See id. at 2-3. The Show Cause Order also alleged that some non-traditional retailers obtain List I chemicals from multiple distributors and that these products are then diverted into the illicit manufacture of methamphetamine. See id.

The Show Cause Order was served on Respondent by certified mail, return receipt requested. On July 22, 2005, Respondent received the Show Cause Order as evidenced by the signed return receipt card. Notwithstanding that the Show Cause Order clearly stated that Respondent's failure to request a hearing within 30 days after the date of receipt of the Order would be deemed a waiver of its right to a hearing, Respondent did not request a hearing until September 27, 2005. In response, on October 5, 2005, the Government moved for summary disposition

contending that Respondent had failed to timely file its request for a hearing.

On October 7, 2005, the Administrative Law Judge (ALJ) issued a memorandum directing that Respondent file a response to the Government's motion. Thereafter, on October 13, 2005, Respondent filed a response stating that it had failed to timely file a request for a hearing because it was "extremely busy and a little under staffed." Mr. Splendorio further admitted that he had failed to give the matter "my immediate attention."

On October 25, 2005, the ALJ issued an Order terminating the proceeding and directing that the investigative file be forwarded to me for final agency action. The ALJ specifically noted that Respondent had neither filed a timely request for a hearing nor a timely request for an extension of time to file a request for a hearing. The ALJ further found that Respondent had not presented sufficient grounds for failing to file a timely request and that Respondent had waived its right to a hearing.

Having reviewed the record as a whole, I concur with the ALJ's findings that Respondent has not presented a sufficient reason to excuse its failure to timely request a hearing and that Respondent has waived its right to a hearing. I therefore enter this final order without a hearing based on relevant material contained in the investigative file and make the following findings.

Findings

Pseudoephedrine is a List I chemical that, while having therapeutic uses, can be extracted from lawful nonprescription products and used to manufacture methamphetamine, a schedule II controlled substance. See 21 U.S.C. 802(34); 21 CFR 1308.12(d). As noted in numerous prior DEA orders, "methamphetamine is an extremely potent central nervous system stimulant." Sujak Distributors, 71 FR 50102, 50103 (2006), A-1 Distribution Wholesale, 70 FR 28573 (2005). Methamphetamine abuse has destroyed lives and families, ravaged communities, and caused serious environmental harms. Sujak, 71 FR at

Respondent, which is registered as a Colorado Corporation, is located at 7905 Pinecrest Lane, Fairview, Tennessee. On September 24, 2003, Respondent's president, Mr. Andrew Splendorio, submitted an application on behalf of Respondent for a registration as a distributor of the List I chemical pseudoephedrine.

On March 10, 2004, a DEA Diversion Investigator (DI) conducted an on-site inspection at Respondent's proposed registered location and met with Mr. Splendorio. The firm is located in the basement and garage area of a two-story brick home. Access to the area is gained through a wooden door which has a dead-bolt lock. The building also has an electronic alarm system.

Mr. Splendorio informed the DI that Respondent is a wholesale distributor of assorted products including cameras, film, batteries, household items, health and beauty aids, and other items. The DI determined that Respondent's sales territory includes all fifty states, as well as Puerto Rico, the U.S. Virgin Islands, and American Samoa. Mr. Splendorio further told the DI that eighty percent of the orders Respondent receives are are placed by telephone, five percent are placed over the internet, and the remaining fifteen percent are placed with the firm's three salespersons who are located in Florida, Nevada, and Alaska.¹ Respondent's salespersons do not, however, handle products. Rather, Respondent uses the United Parcel Service (UPS) to ship its products.

According to the investigative file, Respondent proposed to distribute such products as Tylenol Sinus, Tylenol Allergy Sinus, Tylenol Cold, Advil Cold and Sinus, Sudafed, Claritin and Benadryl. According to a letter provided by Mr. Splendorio, Respondent would initially carry products that are packaged in single dose pouches of 1-2 tablets with 12 pouches in a sleeve. The letter further stated, however, that Respondent intended to eventually also sell "the 2 smallest multiple dose [packages] offered by each brand." Respondent's intended supplier was Lil' Drug Stores Products, Inc.

The DI inspected Respondent's recordkeeping system and found it to be adequate. The DI also obtained a list of proposed List I chemical customers from Mr. Splendorio. The list included dive shops, paintball facilities, camera shops, photo labs, canoe and kayak businesses, pools and waterparks, several museums and zoos, several markets, and numerous individuals who were not listed as owning any particular business. Moreover, the customers were located throughout the United States.

The DI contacted several of the potential customers; the DI verified that Respondent was a supplier of each firm and uncovered no other adverse information. The DI also conducted background checks on Respondent's officers and employees; the checks

found no derogatory information on any individual.

Discussion

Under 21 U.S.C. 823(h), an applicant to distribute List I chemicals is entitled to be registered unless the registration would be "inconsistent with the public interest." In making this determination, Congress directed that I consider the following factors:

(1) Maintenance by the applicant of effective controls against diversion of listed chemicals into other than legitimate channels;

(2) Compliance by the applicant with applicable Federal, State, and local law;

- (3) Any prior conviction record of the applicant under Federal or State laws relating to controlled substances or to chemicals controlled under Federal or State law:
- (4) Any past experience of the applicant in the manufacture and distribution of chemicals; and
- (5) Such other factors as are relevant to and consistent with the public health and safety.

"These factors are considered in the disjunctive." Joy's Ideas, 70 FR 33195, 33197 (2005). I may rely on any one or a combination of factors, and may give each factor the weight I deem appropriate in determining whether an application for registration should be denied. See, e.g., David M. Starr, 71 FR 39367, 39368 (2006); Energy Outlet, 64 FR 14269 (1999). Moreover, I am "not required to make findings as to all of the factors." Hoxie v. DEA, 419 F.3d 477, 482 (6th Cir. 2005); *Morall* v. *DEA*, 412 F.3d 165, 173-74 (D.C. Cir. 2005). In this case, I conclude that factors one and five are dispositive and establish that Respondent's application should be denied.

Factor One—Maintenance of Effective Controls Against Diversion

I acknowledge that Respondent would provide adequate physical security to protect List I chemical products in its possession from theft. I further acknowledge that Respondent's recordkeeping system appears adequate.

Respondent's proposed method of distributing pseudoephedrine does not, however, provide adequate controls to protect against diversion. As found above, most of Respondent's business is derived from telephone and internet orders and Respondent sells its goods to all fifty states, as well as Puerto Rico, the U.S. Virgin Islands, and American Samoa. Moreover, the orders are then shipped by UPS, a commercial carrier.

Under Federal law and DEA regulations, a distributor who uses a

¹Respondent also employs an administrative assistant and a warehouse manager.

commercial carrier to distribute to a non-regulated person nine grams or more of pseudoephedrine in the course of a calendar month engages in a regulated transaction. See 21 U.S.C. 802(39)(A)(iv), id. section 830(b)(3); 21 CFR 1310.03(c), id. 1310.04(f). Federal law further provides that "[i]t is the duty of each regulated person who engages in a regulated transaction to identify each other party to the transaction." 21 U.S.C. 830(a)(3); see also 21 CFR 1310.07. Under DEA's regulations, "[f]or sales to individuals * * * the type of documents and other evidence of proof must consist of at least a signature of the purchaser, a driver's license and one other form of

identification." 21 CFR 1310.07(d).² It seems highly likely that Respondent's sales would frequently exceed the threshold. Most significantly, Respondent does not appear to have in place any procedures to verify the identity of its customers, most of which are located outside of Tennessee and at a great distance from Respondent's three salespersons. I thus find that Respondent lacks effective controls to prevent diversion. While this factor is reason alone to conclude that granting Respondent's application would be inconsistent with the public interest, a discussion of factor five is also warranted.

Factor Five—Other Factors That Are Relevant to and Consistent With Public Health and Safety

The record establishes that Respondent's proposed customers are not participants in the traditional retail market for pseudoephedrine products. See, e.g. D & S Sales, 71 FR 37607 37608-09 (2006); Joy's Ideas, 70 FR at 33197. Indeed, dive shops and paint ball facilities seem to be an even less likely source for legitimate consumer purchases of pseudoephedrine than convenience stores and gas stations, establishments which DEA has repeatedly found to be "sources for the diversion of listed chemical products. Joey Enterprises, 70 FR 76866, 76867 (2005). Moreover, Respondent's customer list included numerous individuals with no listed business affiliation. Why these individuals would need to purchase pseudoephedrine from a wholesaler rather than a retailer is not clear.

DEA final orders have repeatedly recognized that "there is a substantial risk of diversion of List I chemicals into the illicit manufacture of methamphetamine when these products are sold by non-traditional retailers." Tri-County Bait Distributors, 71 FR 52160, 52164 (2006). See also Joy's Ideas, 70 FR at 33199 (finding that the risk of diversion was "real, substantial and compelling"); *Jay Enterprises*, 70 FR at 24621 (noting "heightened risk of diversion" should application be granted). Under DEA precedents, an applicant's proposal to sell into the nontraditional market weighs heavily against the granting of a registration under factor five. So too here.

I acknowledge that Respondent proposed to sell only name brand pseudoephedrine products in lower dosage counts. While these products have not been preferred by illicit methamphetamine manufacturers, they have nonetheless been subject to diversion. See, e.g., TNT Distributors, 70 FR 12729, 12730 (2005). Indeed, in light of recently enacted restrictions on the sale of List I chemical products imposed by both Congress and numerous state legislatures, it is reasonable to expect that methamphetamine traffickers will resort to using increasing amounts of name-brand products.

As I recently explained, "[b]ecause of the methamphetamine epidemic's devastating effects, DEA has repeatedly denied an application when an applicant proposed to sell into the nontraditional market and analysis of one of the other statutory factors supports the conclusion that granting the application would create an unacceptable risk of diversion." Tri-County Bait, 71 FR at 52164. Thus, even though Respondent proposes to distribute only name-brand pseudoephedrine products, the fact that its proposed customers are primarily non-traditional retailers (and also include individuals with no known business affiliation) and that it has no effective measures to identify its customers and determine whether their purchases would be to meet legitimate consumer demand, creates an unacceptable risk that its products would be diverted. Therefore, while I acknowledge that none of Respondent's officers or employees has a record of criminal convictions (factor three) and that the investigative file does not otherwise establish that Respondent would fail to comply with applicable laws (factor two), I conclude that granting Respondent's application would be inconsistent with the public interest. See Joy's Ideas, 70 FR at 33199 (registrant's "lack of a criminal record, previous general compliance with the

law and regulations and willingness to comply with regulations and guard against diversion, are far outweighed by [registrant's] intent to continue selling * * * pseudoephedrine exclusively in the gray market').

Order

Accordingly, pursuant to the authority vested in me by 21 U.S.C. 823(h), and 28 CFR 0.100(b) and 0.104, I hereby order that the application of Integrity Wholesale, Inc., for a DEA Certificate of Registration as a distributor of List I chemicals be, and it hereby is, denied. This order is effective November 13, 2006.

Dated: September 29, 2006.

Michele M. Leonhart,

Deputy Administrator.

[FR Doc. E6–16757 Filed 10–10–06; 8:45 am]

BILLING CODE 4410-09-P

DEPARTMENT OF JUSTICE

Drug Enforcement Administration

Premier Holdings, Inc.; Denial of Application

On October 20, 2005, the Acting Deputy Assistant Administrator, Office of Diversion Control, Drug Enforcement Administration, issued an Order to Show Cause to Premier Holdings, Inc. (Respondent), d/b/a/ Filmart, of Brooklyn, New York. The Show Cause Order proposed to deny Respondent's application for a DEA Certificate of Registration as a distributor of List I chemicals, on the ground that issuance of a registration would be inconsistent with the public interest. See 21 U.S.C. 823(h); Show Cause Order at 1.

The Show Cause Order specifically alleged that Respondent was proposing to distribute List I chemical products containing pseudoephedrine to various firms including convenience stores. See Show Cause Order at 3. The Show Cause Order alleged that DEA has determined that convenience stores constitute a non-traditional or "gray market" for products containing pseudoephedrine and that there is "a high incidence of diversion" of these products from these retailers into the illicit manufacture of methamphetamine, a Schedule II controlled substance. *Id.* at 2. The Show Cause Order also alleged that even traditional cold and cough products have been diverted into the illicit manufacture of methamphetamine. Id.

The Show Cause Order further alleged that Respondent's owner, Mr. Eugene Lefkowitz, told DEA investigators that

² For sales to a new customer that is "not an individual * * *, the regulated person shall establish the identity of the authorized purchasing agent or agents and have on file that person's signature, electronic password, or other identification." ²¹ CFR 1310.07(e). A regulated person must also "verify the existence and apparent validity of a business entity." *Id.* at 1310.07(b).

his firm, which sells film, phone cards, batteries, and health and beauty products, was seeking registration because it was "losing business." *Id.* at 3. The Show Cause Order alleged that Mr. Lefkowitz estimated that his sales of List I chemicals products would amount to approximately 10 percent of his firm's total annual sales of \$25 million. *See id.*

The Show Cause Order also alleged that Mr. Lefkowitz provided investigators with a list of potential suppliers and a list of products which Respondent intended to distribute. See id. The Show Cause Order alleged that while the product list included "predominately traditional pseudoephedrine products * * *. these products were not consistent with the known product lines of several suppliers." See id.

The Show Cause Order alleged that Respondent provided the investigators with a list of 25 prospective customers for List I chemicals of which only 2 were located in New York State. *Id.* at 3. The Show Cause Order alleged that investigators conducted verifications with 17 of the prospective customers, and that while all of the customers acknowledged having bought film from Respondent, 15 of them informed the investigators "that they had never discussed purchasing listed chemical products from" Respondent. *Id.*

The Show Cause Order further alleged that many of these customers were large distributors who were "capable of purchasing products directly from the manufacturers." *Id.* The Show Cause Order also alleged that Mr. Lefkowitz subsequently claimed to investigators that he was "losing money" because his customers were requesting that he sell them List I chemical products and lacked a registration to do so. Id. Finally, the Show Cause Order alleged that Respondent "and its principals * * failed to provide truthful and accurate information about the nature of their business * * * and cannot be expected to properly discharge the duties of a registrant." Id.

The Show Cause Order was sent by certified mail to Respondent's business address as listed on its application. According to United States Postal Service records, Respondent received the Show Cause Order on October 31, 2005.

Since the effectuation of service, neither Respondent, nor anyone purporting to represent it, has responded. Because (1) more than 30 days have passed since Respondent received the Show Cause Order, and (2) no request for a hearing has been received, I conclude that Respondent has waived its right to a hearing. See 21 CFR 1309.53(c). I therefore enter this final order without a hearing based on relevant material contained in the investigative file and make the following findings.

Findings

Pseudoephedrine is a List I chemical that, while having therapeutic uses, can be extracted from lawful nonprescription products and used to manufacture methamphetamine, a schedule II controlled substance. See 21 U.S.C. 802(34); 21 CFR 1308.12(d). As noted in numerous prior DEA orders, "methamphetamine is an extremely potent central nervous system stimulant." Sujak Distributors, 71 FR 50102, 50103 (2006); A-1 Distribution Wholesale, 70 FR 28573 (2005). Methamphetamine abuse has destroyed lives and families, ravaged communities, and caused serious environmental harms. Sujak, 71 FR at

Respondent is a corporation which is located at 4111 Glenwood Road, Brooklyn, New York. On June 8, 2004, Respondent submitted an application for a Certificate of Registration to distribute pseudoephedrine.

On October 19, 2004, two DEA Diversion Investigators (DIs) visited Respondent at its proposed registered location to conduct a pre-registration investigation. The DIs met with Mr. Eugene Lefkowitz, Respondent's President, and Mr. Aron Kohn, its General Manager. The DIs presented their credentials, discussed the nature of their visit, inspected the facility and interviewed Mssrs. Lefkowitz and Kohn regarding the firm's business.

Respondent is located in an industrial area of Brooklyn and occupies a warehouse built of brick and cinderblock. According to the investigative file, the warehouse has motion detectors, cameras, and an alarm system. All visitors are screened and warehouse access is limited to certain employees. The List I chemicals would be stored on shelves located near the warehouse manager's desk. The investigative file indicates that only four employees would have access to List I chemicals. Moreover, the investigation did not uncover any adverse information as to any of these employees or the firm's officers. Finally, Respondent's recordkeeping practices apparently would comply with DEA regulations.

During the interview, the DIs were informed that Respondent had total annual sales of approximately \$25 million and that the firm had been in business for approximately 10 years.

Respondent sells film, batteries, and health and beauty products to drug stores, supermarkets, wholesalers, and convenience stores throughout the United States.

Most significantly, Respondent had no experience in distributing List I chemicals. Mssrs. Kohn and Lefkowitz told the DIs that the firm intended to distribute name brand, over-the-counter, cold and flu medications containing pseudoephedrine. Mssrs. Kohn and Lefkowitz also stated to the DIs that their customers frequently requested name brand cold and flu remedies.

Mr. Kohn provided the DIs with a list of the products Respondent intended to distribute. The List contained only traditional name brand products. Mr. Kohn also provided the DIs with a list of suppliers. Several of the firms were, however, under investigation for supplying products that have been diverted into the illicit manufacture of methamphetamine.

Mr. Kohn also provided the DIs with a list of twenty-five potential customers. All but two of these customers were located outside of New York State. The customer list included large grocery and drug store chains, as well as large wholesalers who supply grocery and drug store chains and convenience stores. Most of the firms already had DEA registrations authorizing them to distribute List I chemicals.

Thereafter, a DI contacted five of the firms. Three of the firms told the DI that they were no longer buying products from Respondent.

On March 23, 2005, Mr. Lefkowitz called Ms. Margaret Brophy, the Diversion Program Manager for the New York Field Division to inquire about the status of his application. During the conversation, Mr. Lefkowitz related that

¹ The customer list included Winn Dixie Stores, Inc., which owns approximately 920 grocery and drug stores in the southeastern U.S.; Wakefern Food Corp., a cooperative of independent grocers who operate more than 200 Shop Rite Supermarkets (more than half of which have pharmacies) throughout the northeastern U.S.; and Brookshire Grocery, which operates more than 150 stores in Texas and adjacent states. The list also included USA Drugs, which distributes health and beauty products to more than 1,000 grocery, drug, and discount stores, and which operates more than 170 drug stores in Arkansas and adjacent states; and Discount Drug Mart, Inc., which operates more than 60 stores in Ohio. The list further included Eby Brown Co., the largest privately owned wholesale distributor of various products to convenience stores in the U.S. with more than 25,000 customers in the midwestern and southeastern U.S.; Spartan Stores, which owns and operates 68 supermarkets and 19 drugstores in Michigan and Ohio, and which also distributes products to more than 350 independent grocery stores in the midwestern U.S.; and Grocery Supply Co., which supplies more than 15,000 independently-owned supermarkets, convenience stores, wholesale houses, discount stores and other retailers.

he was losing business because he could not fully service his customers by selling them pseudoephedrine products and that his customers had told him that if his firm could not provide them with all the items they required, they would take their business to a firm that would. Mr. Lefkowitz further claimed that he was being forced to offer deep discounts to maintain his customer base.

Ms. Brophy asked Mr. Lefkowitz why most of Respondent's customers were located outside of New York. Mr. Lefkowitz stated that he had lost New York customers because his firm could not supply them with all the products they required. Mr. Lefkowitz further related that his non-New York based customers were less demanding with respect to purchasing all of their

products from one source.

Thereafter, in May 2005, a DI conducted additional inquiries of the firms listed on Respondent's customer list and contacted seventeen of the firms. While all of the firms verified that they had purchased film from Respondent, fifteen of the firms informed the DI that they had never discussed with Respondent the purchase of List I chemical products from it.2

Discussion

Under 21 U.S.C. 823(h), an applicant to distribute List I chemicals is entitled to be registered unless I determine that the registration would be "inconsistent with the public interest." In making this determination, Congress directed that I consider the following factors:

(1) Maintenance by the applicant of effective controls against diversion of listed chemicals into other than

legitimate channels;

(2) Compliance by the applicant with applicable Federal, State, and local law;

- (3) Any prior conviction record of the applicant under Federal or State laws relating to controlled substances or to chemicals controlled under Federal or State law:
- (4) Any past experience of the applicant in the manufacture and distribution of chemicals; and
- (5) Such other factors as are relevant to and consistent with the public health and safety.
- Id. "These factors are considered in the disjunctive." Joy's Ideas, 70 FR 33195, 33197 (2005). I may rely on any one or a combination of factors, and may give each factor the weight I deem appropriate in determining whether an application for registration should be denied. See, e.g., David M. Starr, 71 FR

39367, 39368 (2006); Energy Outlet, 64 FR 14269, 14271 (1999). In this case, I conclude that factors four and five are dispositive and establish that Respondent's application should be denied.

Factor One—Maintenance of Effective Controls Against Diversion

The investigative file does not establish that Respondent would fail to maintain effective controls against the theft and diversion of listed chemicals. Respondent's facility appears to meet DEA's regulations pertaining to physical security. See 21 CFR 1309.71(b)(1)–(7). Moreover, it appears that Respondent has an adequate system "for monitoring the receipt, distribution, and disposition of List I chemicals." Id. § 1309.71(b)(8). I thus conclude that this factor supports a finding that Respondent's registration would be consistent with the public interest.

Factors Two and Three—Compliance With Applicable Law and the Applicant's Prior Record of Relevant Criminal Convictions

The investigative file does not establish that Respondent has failed to comply with applicable Federal, State, and local laws. Moreover, there is no evidence establishing that Respondent, any of its officers, or any employee with access to List I chemicals has been convicted of a criminal offense related to controlled substances or chemicals. Both factors thus support a finding that Respondent's registration would be consistent with the public interest.

Factor Four—The Applicant's Past Experience In Distributing Chemicals

The investigative file establishes that Respondent has no experience distributing List I chemicals. Moreover, Respondent did not provide evidence to the DIs that any of its employees have experience in distributing List I chemicals. Because of the high risk of diversion, DEA has repeatedly held that an applicant's (and its employees') lack of experience in distributing List I chemicals is a factor that weighs heavily against granting an application for a registration. Sujak Distributors, 71 FR at 50104; Jay Enterprises, 70 FR 24620, 24621 (2005); ANM Wholesale, 69 FR 11652, 11653 (2004). This factor thus supports a finding that Respondent's registration would be inconsistent with the public interest.

Factor Five—Other Factors That Are Relevant To and Consistent With Public Health and Safety

Numerous DEA cases recognize that the sale of List I chemical products by

non-traditional retailers such as convenience stores is an area of particular concern in preventing diversion of these products into the illicit manufacture of methamphetamine. See, e.g., Joey Enterprises, 70 FR 76866, 76867 (2005). As Joey Enterprises explains, "[w]hile there are no specific prohibitions under the Controlled Substances Act regarding the sale of listed chemical products to [convenience stores], DEA has nevertheless found that [these entities] constitute sources for the diversion of listed chemical products." Id. See also TNT Distributors, 70 FR 12729, 12730 (2005) (special agent testified that "80 to 90 percent of ephedrine and pseudoephedrine being used [in Tennessee] to manufacture methamphetamine was being obtained from convenience stores"); OTC Distribution Co., 68 FR 70538, 70541 (2003) (noting "over 20 different seizures of [gray market distributor's] pseudoephedrine product at clandestine sites," and that in an eight month period distributor's product "was seized at clandestine laboratories in eight states, with over 2 million dosage units seized in Oklahoma alone."); MDI Pharmaceuticals, 68 FR 4233, 4236 (2003) (finding that "pseudoephedrine products distributed by [gray market distributor| have been uncovered at numerous clandestine methamphetamine settings throughout the United States and/or discovered in the possession of individuals apparently involved in the illicit manufacture of methamphetamine").

Respondent's list of potential customers included wholesale distributors to convenience stores. Moreover, during the on-site inspection, the DIs determined that Respondent sells various products to convenience stores. DEA final orders recognize that there is a substantial risk of diversion of List I chemicals into the illicit manufacture of methamphetamine when these products are sold by these nontraditional retailers. See, e.g., Joy's Ideas, 70 FR at 33199 (finding that the risk of diversion was "real, substantial and compelling"); Jay Enterprises, 70 FR at 24621 (noting "heightened risk of diversion" should application be granted).

I acknowledge that Respondent's list of potential customers included grocery chains, drug store chains, and wholesale distributors to these firms. DEA has found that these firms constitute the traditional market for pseudoephedrine products. See, e.g., D & S Sales, 71 FR 37607, 37608-09 (2006); Joy's Ideas, 70 FR at 33196-97.

² Two of the firms had discussed purchasing List I chemicals from Respondent.

There is, however, substantial reason to question the validity of the customer information Respondent provided to DEA. In DEA's experience, many of the firms listed as potential customers are of large enough size that they are able to purchase List I chemical products either directly from manufacturers or from large wholesalers. See John Vanags, 71 FR 39365, 39366 (2006). Indeed, it seems unlikely that Respondent could offer prices that are competitive with those offered by the manufacturers of List I products or large wholesalers.

Most significantly, the investigative file establishes that Mr. Lefkowitz represented to DEA investigators that Respondent's customers had requested List I chemical products from his firm and that he had lost business and was forced to offer deep discounts to keep other customers. Yet all but two of the firms contacted by the DI told her that they had never discussed the purchase of List I products with Respondent. Moreover, several of the firms told the DI that they were no longer purchasing products from Respondent.

That the overwhelming majority of the customers told the DI that they had never discussed purchasing List I products from Respondent (and that some of the firms no longer bought any products from it) raises a serious question as to the validity of Mr. Lefkowitz's statements to DEA personnel. Indeed, the information uncovered by the customer verifications suggests that Respondent may have provided the customer list (which contains legitimate businesses) to induce DEA to grant it a registration, which it would then use to distribute List I products into the non-traditional market, the principle supply source of mom-and-pop methamphetamine labs. Whether this was the intent of Respondent's officers I need not decide because DEA will not grant any application when there is reason to question the validity of the information an applicant has provided.

As it is, it is indisputable that Respondent's customers include convenience stores. Under DEA precedents, an applicant's proposal to sell List I products into the non-traditional market weighs heavily against the granting of a registration under factor five. So too here.

DEA has repeatedly denied an application when an applicant proposed to sell into the non-traditional market and the analysis of one of the other statutory factors supports the conclusion that granting the application would create an unacceptable risk of diversion. Thus, in Xtreme Enterprises, 67 FR 76195, 76197 (2002), my

predecessor denied an application, observing that the respondent's "lack of criminal record, compliance with the law and willingness to upgrade her security system are far outweighed by her lack of experience with selling List I chemicals and the fact that she intends to sell ephedrine almost exclusively in the gray market."

More recently, I denied an application, observing that the respondent's "lack of a criminal record and any intent to comply with the law and regulations are far outweighed by his lack of experience and the company's intent to sell ephedrine and pseudoephedrine exclusively to the gray market." Jay Enterprises, 70 FR at 24621. Accord Prachi Enterprises, 69 FR 69407, 69409 (2004). Consistent with these precedents, and considering the serious concern raised by the investigation as to Respondent's intended customers, I conclude that granting Respondent's application for a registration would be inconsistent with the public interest.

Order

Accordingly, pursuant to the authority vested in me by 21 U.S.C. 823(h), as well as 28 CFR 0.100(b) and 0.104, I hereby order that the application of Premier Holdings, Inc., d/b/a/ Filmart, for a DEA Certificate of Registration as a distributor of List I chemicals be, and it hereby is, denied. This order is effective November 13, 2006.

Dated: September 29, 2006.

Michele M. Leonhart,

Deputy Administrator.

[FR Doc. E6–16756 Filed 10–10–06; 8:45 am]

BILLING CODE 4410-09-P

NATIONAL ARCHIVES AND RECORDS ADMINISTRATION

Information Security Oversight Office

Public Interest Declassification Board (PIDB); Notice of Meeting

Pursuant to Section 1102 of the Intelligence Reform and Terrorism Prevention Act of 2004 which extended and modified the Public Interest Declassification Board (PIDB) as established by the Public Interest Declassification Act of 2000 (Pub. L. 106–567, title VII, December 27, 2000, 114 Stat. 2856), announcement is made for the following committee meeting:

Name of Committee: Public Interest Declassification Board (PIDB).

Date of Meeting: Friday, October 13, 2006. Time of Meeting: 9 a.m. to 12:30 p.m.

Place of Meeting: National Archives and Records Administration, 700 Pennsylvania Avenue, NW., Archivist's Reception Room, Room 105, Washington, DC 20408.

Purpose: To discuss declassification program issues.

This meeting will be open to the public. However, due to space limitations and access procedures, the name and telephone number of individuals planning to attend must be submitted to the Information Security Oversight Office (ISOO) no later than Wednesday, October 11, 2006. ISOO will provide additional instructions for gaining access to the location of the meeting.

For Further Information Contact: J. William Leonard, Director Information Security Oversight Office, National Archives Building, 700 Pennsylvania Avenue, NW., Washington, DC 20408, telephone number (202) 357–5250.

Dated: October 4, 2006.

J. William Leonard,

Director, Information Security Oversight Office.

[FR Doc. E6–16749 Filed 10–10–06; 8:45 am] **BILLING CODE 7515–01–P**

NATIONAL COUNCIL ON DISABILITY

Cultural Diversity Advisory Committee Meetings (Teleconferences)

Times and Dates:

November 16, 2006, 3 p.m. Eastern. February 16, 2007, 3 p.m. Eastern. May 17, 2007, 3 p.m. Eastern. July 19, 2007, 3 p.m. Eastern. September 20, 2007, 3 p.m. Eastern. Place: NCD, 1331 F Street, NW., Suite 850, Washington, DC.

AGENCY: NCĎ.

Status: All parts of these conference calls will be open to the public for observation only. Those interested in observing on conference calls should contact the appropriate staff member listed below. Due to limited resources, only a few telephone lines will be available for each conference call.

Agenda: Roll call, announcements, reports, new business, adjournment.

FOR FURTHER INFORMATION CONTACT:

Gerrie Drake Hawkins, Ph.D., Senior Program Analyst, NCD, 1331 F Street, NW., Suite 850, Washington, DC 20004; 202–272–2004 (voice), 202–272–2074 (TTY), 202–272–2022 (fax), cultural-diversity@ncd.gov (e-mail).

Cultural Diversity Advisory
Committee Mission: The purpose of
NCD's Cultural Diversity Advisory
Committee is to provide advice and
recommendations to NCD on issues
affecting people with disabilities from
culturally diverse backgrounds.
Specifically, the committee will help
identify issues, expand outreach, infuse
participation, and elevate the voices of

underserved and unserved segments of this nation's population that will help NCD develop federal policy that will address the needs and advance the civil and human rights of people from diverse cultures.

Accommodations: Those needing reasonable accommodations should notify NCD at least two weeks before this meeting.

Language Translation: In accordance with Executive Order 13166, Improving Access to Services for Persons with Limited English Proficiency, those people with disabilities who are limited English proficient and seek translation services for this meeting should notify NCD at least two weeks before this meeting.

Dated: October 3, 2006.

Martin Gould,

Acting Executive Director.

[FR Doc. E6–16710 Filed 10–10–06; 8:45 am]

BILLING CODE 6820-MA-P

NATIONAL COUNCIL ON DISABILITY

Youth Advisory Committee Meetings (Teleconferences)

Times and Dates:

November 14, 2006, 3:30 p.m. Eastern. January 23, 2007, 3:30 p.m. Eastern. April 24, 2007, 3:30 p.m. Eastern. July 24, 2007, 3:30 p.m. Eastern. September 18, 2007, 3:30 p.m. Eastern.

Place: National Council on Disability, 1331 F Street, NW., Suite 850, Washington, DC.

AGENCY: National Council on Disability (NCD).

Status: All parts of these conference calls will be open to the public for observation only. Those interested in observing on conference calls should contact the appropriate staff member listed below. Due to limited resources, only a few telephone lines will be available for each conference call.

Agenda: Roll call, announcements, reports, new business, adjournment.

FOR FURTHER INFORMATION CONTACT:

Gerrie Drake Hawkins, Ph.D., Senior Program Analyst, National Council on Disability, 1331 F Street, NW., Suite 850, Washington, DC 20004; 202–272– 2004 (voice), 202–272–2074 (TTY), 202– 272–2022 (fax), youth@ncd.gov (e-mail).

Accommodations: Those needing reasonable accommodations should notify NCD at least two weeks before this meeting.

Language Translation: In accordance with Executive Order 13166, Improving Access to Services for Persons with Limited English Proficiency, those people with disabilities who are limited English proficient and seek translation services for this meeting should notify NCD at least two weeks before this meeting.

Youth Advisory Committee Mission: The purpose of NCD's Youth Advisory Committee is to provide input into NCD activities consistent with the values and goals of the Americans with Disabilities Act.

Dated: October 3, 2006.

Martin Gould,

Acting Executive Director.

[FR Doc. E6–16711 Filed 10–10–06; 8:45 am] **BILLING CODE 6820–MA–P**

NATIONAL INSTITUTE FOR LITERACY

National Institute for Literacy Advisory Board

AGENCY: National Institute for Literacy. **ACTION:** Notice of an open meeting.

SUMMARY: This notice sets forth the schedule and a summary of the agenda for an upcoming meeting of the National Institute for Literacy Advisory Board (Board). The notice also describes the functions of the Board. Notice of this meeting is required by section 10(a)(2) of the Federal Advisory Committee Act. This document is intended to notify the general public of their opportunity to attend the meeting. Individuals who will need accommodations for a disability in order to attend the meeting (e.g., interpreting services, assistive listening devices, or materials in alternative format) should notify Liz Hollis at telephone number (202) 233-2072 no later than October 18, 2006. We will attempt to meet requests for accommodations after this date but cannot guarantee their availability. The meeting site is accessible to individuals with disabilities.

DATE AND TIME: *Open sessions*—October 25, 2006, from 8:30 a.m. to 6 p.m.; and October 26, 2006, from 8:30 a.m. to 2 p.m.

ADDRESSES: The National Institute for Literacy, 1775 I Street, NW., Suite 730, Washington, DC 20006.

FOR FURTHER INFORMATION CONTACT: Liz Hollis, Special Assistant to the Director; National Institute for Literacy, 1775 I Street, NW., Suite 730, Washington, DC 20006; telephone number: (202) 233–2072: e-mail: ehollis@nifl.gov.

SUPPLEMENTARY INFORMATION: The Board is established under section 242 of the Workforce Investment Act of 1998, Pub. L. 105–220 (20 U.S.C. 9252). The Board consists of ten individuals appointed by

the President with the advice and consent of the Senate. The Board advises and makes recommendations to the Interagency Group that administers the Institute. The Interagency Group is composed of the Secretaries of Education, Labor, and Health and Human Services. The Interagency Group considers the Board's recommendations in planning the goals of the Institute and in implementing any programs to achieve those goals. Specifically, the Board performs the following functions: (a) Makes recommendations concerning the appointment of the Director and the staff of the Institute; (b) provides independent advice on operation of the Institute; and (c) receives reports from the Interagency Group and the Institute's Director.

The National Institute for Literacy Advisory Board will meet on October 25–26, 2006. On October 25, 2006 from 8:30 a.m. to 6 p.m.; and October 26, 2006 from 8:30 a.m. to 2 p.m., the Board will meet in open session to discuss the Institute's future and current program priorities; status of on-going Institute work; other relevant literacy activities and issues; and other Board business as necessary.

Records are kept of all Advisory Board proceedings and are available for public inspection at the National Institute for Literacy, 1775 I Street, NW., Suite 730, Washington, DC 20006, from 8:30 a.m. to 5 p.m.

Dated: October 4, 2006.

Sandra L. Baxter,

Director.

[FR Doc. E6–16731 Filed 10–10–06; 8:45 am] $\tt BILLING\ CODE\ 6055-01-P$

NATIONAL SCIENCE FOUNDATION

Advisory Committee for Education and Human Resources; Notice of Meeting

In accordance with Federal Advisory Committee Act (Pub. L. 92–463, as amended), the National Science Foundation announces the following meeting:

Name: Advisory Committee for Education and Human Resources (#1119).

Date/Time: November 1, 2006; 8:30 a.m. to 5 p.m.; November 2, 2006; 8:30 a.m. to 12 p.m.

Place: The Westin Arlington Gateway Hotel, Conference Room "D", Second Floor, 801 North Glebe Road, Arlington, VA 22202. Type of Meeting: Open.

Contact Person: James Colby, National Science Foundation, 4201 Wilson Boulevard, Arlington, VA 22230, (703) 292–5331. If you are attending the meeting and need access to the NSF, please contact the individual listed above so your name may be added to the building access list.

Purpose of Meeting: To provide advice with respect to the Foundation's education and human resources programming.

Agenda

Wednesday, November 1

Assistant Director's Report.

Critical Junctures in STEM, K–16; Beyond Professional Development—Workforce Productivity Continuum or Sustaining Competitiveness in the Transformation of Undergraduate STEM Education.

COV Reports.

Director of NSF's Office of Cyberinfrastructure (CI).

Thursday, November 2, 2006

Discussion of NSB Commission on K–16 Education for 21st C.

Meet with Director Bement.

Possible items for Spring 2007 Meeting. Reports on current efforts of Working Group on Broadening Participation and Working Group on Undergraduate Education.

Dated: October 4, 2006.

Susanne Bolton,

Committee Management Officer. [FR Doc. 06–8577 Filed 10–10–06; 8:45 am] BILLING CODE 7555–01–M

NATIONAL SCIENCE FOUNDATION

Proposal Review Panel for Materials Research; Notice of Meeting

In accordance with the Federal Advisory Committee Act (Pub. L. 92– 463 as amended), the National Science Foundation announces the following meeting:

Name: Proposal Review Panel for Materials Research (1203).

Dates & Times: November 13, 2006; 7:30 a.m.-9 p.m.; November 14, 2006; 7:45 a.m.-3:30 p.m.

Place: University of Southern Mississippi, Hattiesburg, MS

Type of Meeting: Part-open.

Contact Person: Dr. Thomas Rieker, Program Director, Materials Research Science and Engineering Centers Programs, Division of Materials Research, Room 1065, National Science Foundation, 4201 Wilson Boulevard, Arlington, VA 22230, Telephone (703) 292– 4914.

Purpose of Meeting: To provide advice and recommendations concerning further support of the Materials Research Science and Engineering Center.

Agenda

Monday, November 13, 2006

7:45 a.m.-8:45 a.m.

Closed—Executive session.

8:45 a.m.-4:30 p.m.

Open—Review of the Materials Research Science and Engineering Center at the University of Southern Mississippi.

4:30 p.m.–5:45 p.m. Closed—Executive session.

7 p.m.-9 p.m.

Open—Dinner.

Tuesday, November 14, 2006

8 a.m.-9 a.m.

Closed—Executive session.

9 a.m.-10 a.m.

Open—Review of the Materials Research Science and Engineering Center at the University of Southern Mississippi. 10 a.m.—3:30 p.m.

Closed—Executive Session, Draft and Review Report.

Reason for Closing: The work being reviewed may include information of a proprietary or confidential nature, including technical information; financial data, such as salaries and personal information concerning individuals associated with the proposals. These matters are exempt under 5 U.S.C. 552b(c), (4) and (6) of the Government in the Sunshine Act.

Dated: October 4, 2006.

Susanne Bolton,

Committee Management Officer.

[FR Doc. 06-8576 Filed 10-10-06; 8:45 am]

BILLING CODE 7555-01-M

NATIONAL TRANSPORTATION SAFETY BOARD

Sunshine Act Meeting

Agenda

TIME AND DATE: 9:30 a.m., Tuesday, October 17, 2006.

PLACE: NTSB Conference Center, 429 L'Enfant Plaza, SW., Washington, DC 20594

STATUS: The two items are open to the public.

MATTERS TO BE CONSIDERED: 7835— Railroad Accident Brief and Safety Recommendation Letters—Collision of Two Union Pacific Railroad Freight Trains, Texarkana, Arkansas, October 15, 2005

7836—Railroad Accident Brief and Safety Recommendation Letters— Derailment of Amtrak Passenger Train No. 27, Home Valley, Washington, April 3, 2005.

NEWS MEDIA CONTACT: The Office of Public Affairs, Telephone: (202) 314–6100.

Individuals requesting specific accommodations should contact Chris Bisett at (202) 314–6305 by Friday, October 13, 2006.

The public may view the meeting via a live or archived webcast by accessing a link under "News & Events" on the NTSB home page at www.ntsb.gov.

FOR FURTHER INFORMATION CONTACT:

Vicky D'Onofrio, (202) 314-6410.

Dated: October 6, 2006.

Vicky D'Onofrio,

Federal Register Liaison Officer.

[FR Doc. 06–8644 Filed 10–6–06; 8:45 am]

BILLING CODE 7533-01-M

NUCLEAR REGULATORY COMMISSION

[DOCKET NO. 030-29288]

Notice of Availability of Environmental Assessment and Finding of No Significant Impact for License Amendment to Byproduct Materials License No. 37–17860–02, to Incorporate Revision Four of the Decommissioning Plan for the Pennsylvania Department of Environmental Protection, Bureau of Radiation Protection's Quehanna Facility in Karthaus, PA

AGENCY: Nuclear Regulatory Commission.

ACTION: Issuance of Environmental Assessment and Finding of No Significant Impact for License Amendment.

FOR FURTHER INFORMATION CONTACT:

James Kottan, Senior Health Physicist, Decommissioning Branch, Division of Nuclear Materials Safety, Region I, 475 Allendale Road, King of Prussia, PA 19406; telephone (610) 337–5214; fax number (610) 337–5269; or by e-mail: jjk@nrc.gov.

SUPPLEMENTARY INFORMATION:

I. Introduction

The U.S. Nuclear Regulatory Commission (NRC) is considering the issuance of a license amendment to Byproduct Materials License No. 37-17860-02. This license is held by the Pennsylvania Department of Environmental Protection, Bureau of Radiation Protection (PADEP, BRP) (the Licensee), for its Quehanna Facility (the Facility), located in Karthaus, Pennsylvania. Issuance of the amendment would incorporate revision four of the Decommissioning Plan (DP) into the license to allow completion of decommissioning activities at the site and eventual unrestricted release of the Facility.

The Quehanna Facility is located near Karthaus, Clearfield County, Pennsylvania, in the Quehanna Wild Area of the Moshannon State Forest. The site is approximately seven acres in size, and the area is heavily wooded and sparsely populated. The land in the vicinity of the Facility is used for recreational activities, including hiking, camping, and hunting. The site contains one large building, several smaller buildings, asphalt parking lots and driveways, a septic system leach field used for sanitary sewer waste, and an approximately one acre pond. The main building was constructed to house a pool reactor and associated laboratories,

hot cells, and offices. Auxiliary buildings included the waste water treatment building with associated underground tanks and piping and the water storage building.

The Facility was constructed in 1957 after the Commonwealth of Pennsylvania enacted legislation for the location of a research facility at the Quehanna site. The Commonwealth of Pennsylvania anticipated that the project would be a contributor to the economy in the area. The facility was to be operated by Curtiss-Wright Corporation. Plans for the facility included development of nuclear jet engines, and research in nucleonics, metallurgy, and other areas. In 1958, the AEC issued a license to the Curtiss-Wright Corporation to operate a pool reactor at the facility. The license also included use of the hot cells and laboratories.

In September 1960, Curtiss-Wright Corporation donated the Facility to the Pennsylvania State University (PSU). PSU planned to use the reactor for training and research and leased the hot cells to Martin-Marietta Corporation. Beginning in 1962 Martin-Marietta Corporation used the hot cells to manufacture thermoelectric generators, known as SNAP generators. The SNAP generators contained Sr-90, with as much as 80,000 Curies per generator. In 1967, Martin-Marietta Corporation terminated its lease for use of the hot cells after performing a partial decontamination. However, licensable quantities of Sr-90 contamination remained in the hot cells and associated facilities. Martin-Marietta Corporation was the last user of Sr-90 at the facility.

Also in 1967, PSU returned the site back to the Commonwealth of Pennsylvania. The Commonwealth then leased the site to NUMEC, a subsidiary of the Atlantic-Richfield Corporation. NUMEC used the reactor pool, after removal and shipment of the reactor components and nuclear fuel, as a storage pool for a large (approximately one million Curies) Co-60 irradiator. The irradiator was used for various projects, including food irradiation, sterilization, and irradiation of polymerimpregnated hardwood.

In 1978, a group of Atlantic-Richfield Corporation employees purchased the wood irradiation process, including the Co-60 pool irradiator. The new company was named Permagrain Products Corporation (Permagrain), and this company was issued NRC Byproduct Materials License No. 37–17860–01. Permagrain also assumed responsibility for the radioactive material left on site by the previous tenants. In 1998 NRC Byproduct Materials License No. 37–

17860–02 was issued to Permagrain for the radioactive material remaining on site from past operations. In December 2002, Permagrain initiated bankruptcy proceedings, and NRC Byproduct Materials License No. 37–17860–02 was transferred to PADEP, BRP. In 2003, the Co-60 in the irradiator was removed from the pool and shipped to a licensed disposal site, and in 2004 Permagrain's NRC Byproduct Materials License No. 37–17860–01 was terminated.

No information is available regarding decontamination of the site by previous tenants, Martin-Marietta Corporation, and Atlantic-Richfield Corporation. In the early 1990s, the Commonwealth of Pennsylvania contracted with Canberra, Inc. to perform a site characterization. The characterization determined that the radioactive contaminants of concern were Co-60 and Sr-90. In 1998, a DP for the site was submitted to the NRC, and decommissioning of the site began. A revision to the DP was submitted to the NRC in 2003, and decommissioning of the site continued under this revision to the DP. In February 2005 a Final Status Survey Report (FSSR) was submitted to the NRC for review. The FSSR indicated that the site met the release criteria specified in the NRC approved DP.

A subsequent confirmatory survey by the NRC in May 2005 indicated that the site did not meet the release criteria specified in the NRC approved DP. An investigation by the licensee determined that the site failed to meet the release criteria, because Sr-90 had leached to the surface of the concrete resulting in contamination levels in excess of the release limits. This finding indicated that concrete thought to contain only surface contamination was volumetrically contaminated. Therefore, the previous criteria for release of the site for unrestricted use, which were based on surface contamination only, were no longer applicable.

In a letter dated March 9, 2006, the Licensee submitted revision four of the DP which included dose based criteria for unrestricted release of the site in accordance with 10 CFR 20, Subpart E, taking into account the volumetrically contaminated concrete. The Licensee's March 9, 2006 license amendment request was noticed in the Federal **Register** on May 22, 2006 (71 FR 29357). This **Federal Register** notice also provided an opportunity for a hearing on this licensing action. No hearing requests were received. The NRC has prepared an Environmental Assessment (EA) in support of this proposed action in accordance with the requirements of Title 10, Code of Federal Regulations (CFR), Part 51 (10 CFR Part 51). Based on the EA, the NRC has concluded that

a Finding of No Significant Impact (FONSI) is appropriate with respect to the proposed action. The amendment will be issued to the Licensee following the publication of this FONSI and EA in the **Federal Register**.

II. Environmental Assessment

Identification of Proposed Action

The proposed action would approve the Licensee's March 9, 2006 license amendment request to incorporate revision four of the DP into the license resulting in final decommissioning of the Facility and subsequent release of the Facility and surrounding site for unrestricted use. In addition to granting the licensee's license amendment request, the proposed action would also grant, pursuant to 10 CFR 30.11(a), an exemption to the Onyx Greentree Landfill, LLC (located in Kersey, Pennsylvania) from 10 CFR Part 30 licensing requirements. This disposal facility will receive the lowcontaminated above-grade demolition material generated during the Facility and site remediation activities. 10 CFR 30.11(a) provides that the Commission may, upon application by an interested person, "or upon its own initiative, grant such exemptions" from the 10 CFR Part 30 requirements "as it determines are authorized by law and will not endanger life or property or the common defense and security and are otherwise in the public interest." Under the exemption granted to the Onyx Greentree Landfill, any lowcontaminated demolition material from the Facility and site would, upon its receipt at the Onyx Greentree Landfill, no longer be subject to NRC regulation and would no longer be NRC licensed material.

Need for the Proposed Action

The proposed action is to approve revision four of the DP so that the Licensee may complete Facility decommissioning activities. Completion of decommissioning activities will reduce residual radioactivity at the Quehanna site and Facility. NRC regulations require licensees to begin timely decommissioning of their sites, or any separate buildings that contain residual radioactivity, upon cessation of licensed operational activities, in accordance with 10 CFR 30.36(d). Additionally, due to the fact that the site is located in the Quehanna Wild Area of the Moshannon State Forest, the Licensee plans to eventually restore and return the land to beneficial unrestricted use. The proposed licensing action will support such an ultimate goal. NRC is fulfilling its responsibilities under the

Atomic Energy Act and the National Environmental Policy Act to make a decision on a proposed license amendment for decommissioning that ensures protection of the public health and safety and the environment.

Environmental Impacts of the Proposed Action

The affected environment was described in the Introduction section of this EA. The NRC staff has reviewed the license amendment request for the PADEP, BRP Quehanna site in Karthaus, Pennsylvania and examined the impacts of this license amendment request. Potential impacts include water resource impact (e.g., water may be used for dust control), air quality impacts from dust emissions, temporary local traffic impacts resulting from transporting demolition debris to a landfill, beneficial local economic effects due to the creation of jobs to perform the decommissioning, human health impacts, noise impacts from equipment operation, scenic quality impacts, and waste management impacts. The resultant dose arising from granting the related exemption would be less than one mrem per year.

Based on its review, the staff has determined that no surface water or ground water impacts are expected from the dismantlement, deconstruction, and decontamination activities. Additionally, the staff has determined that significant air quality, noise, land use, and off-site radiation exposure impacts are also not expected. No significant air quality impacts are anticipated because of the contamination controls that will be implemented by PADEP, BRP during dismantlement and deconstruction. In addition, the environmental impacts associated with dismantlement and deconstruction and the decontamination activities are bounded by impacts evaluated by NUREG-0586, "Final Generic Environmental Impact Statement on the Decommissioning of Nuclear Facilities," (GEIS). Generic impacts for this type of dismantlement and deconstruction and decontamination process were previously evaluated and described in the GEIS, which concludes that the environmental consequences are small. The risk to human health from the transportation of all radioactive material in the U.S. was evaluated in NUREG-0170, "Final Environmental Statement on the Transportation of Radioactive Materials by Air and Other Modes." The principal radiological environmental impact during normal transportation is direct radiation exposure to nearby persons from radioactive material in the

package. The average annual individual dose from all radioactive material transportation in the U.S. was calculated to be approximately 0.5 mrem, well below the 10 CFR 20.1301 limit of 100 mrem for a member of the public. Additionally, PADEP, BRP estimates that approximately 2,800 cubic yards of low-contaminated demolition material waste will leave the site over the course of the decommissioning project for disposal at Onyx Greentree Landfill (a non-NRC licensed landfill). The trucks will travel on local roads then on Commonwealth highways to their intended destinations. This proposed action will not significantly increase the probability or consequences of accidents, no changes are being made in the types of any effluents that may be released off site, and there is no significant increase in occupational or public radiation exposure. Thus, waste management and transportation impacts from the building dismantlement and deconstruction will not be significant.

Occupational health was also considered in the "Final Environmental Impact Statement on the Transportation of Radioactive Material by Air and Other Modes." The Department of Transportation (DOT) regulations in 49 CFR 177.842(g) require that the radiation dose may not exceed 0.02 mSv (2 mrem) per hour in any position normally occupied by an individual in a motor vehicle. Shipment of these materials would not affect the assessment of environmental impacts or the conclusions in the "Final Environmental Impact Statement on the Transportation of Radioactive Material by Air and Other Modes."

The Staff also finds that the proposed license amendment will meet the radiological criteria for unrestricted release as specified in 10 CFR 20.1402. The Licensee demonstrated this through the development of derived concentration guideline limits (DCGLs) for its Facility. The Licensee conducted site specific dose modeling using parameters specific to the Facility that adequately bounded the potential dose. This included dose modeling for three scenarios: building surfaces, remaining concrete, and soil. The building surface scenario was based on the disposal of the above-grade structure demolition debris in an industrial landfill, and the concrete and soil dose modeling were based on a hunting camp scenario.

PADEP, BRP will maintain an appropriate level of radiation protection staff, procedures, and capabilities, and, through its Radiation Safety Officer, will implement an acceptable program to keep exposure to radioactive materials

as low as reasonably achievable (ALARA). Work activities are not anticipated to result in radiation exposures to the public in excess of 10 percent of the 10 CFR 20.1301 limits.

The NRC also evaluated whether cumulative environmental impacts could result from an incremental impact of the proposed action when added to other past, present, or reasonably foreseeable future actions in the area. The proposed NRC approval of the license amendment request, when combined with known effects on resource areas at the site, including further site remediation, are not anticipated to result in any cumulative impacts at the site.

Environmental Impacts of the Alternatives to the Proposed Action

The only alternative to the proposed action of decommissioning the Facility is no action. The no action alternative is not acceptable because it conflicts with 10 CFR 30.36(d) which requires that decommissioning of byproduct material facilities be completed and approved by the NRC after licensed activities cease. The no action alternative would keep radioactive material on site without disposal. Maintaining the buildings on site would provide negligible, if any, environmental benefit, but would greatly reduce options for future use of the site, including restoring the site to its wild state.

Conclusion

The NRC staff has concluded that the proposed action is consistent with NRC guidance and regulations. Because the proposed action will not significantly impact the quality of the human environment, the NRC staff concludes that the proposed action is the preferred alternative.

Agencies and Persons Consulted

The NRC staff prepared this EA with input from the U.S. Fish and Wildlife Service in its letter dated August 22, 2006. The Fish and Wildlife Service indicated, in its letter, that on the basis of current information, no current Federally identified or proposed threatened or endangered species under U.S. Fish and Wildlife Service jurisdiction are known to occur in the site project area. Additionally, NRC had contacted the Pennsylvania Historical and Museum Commission, Bureau for Historical Preservation, in June 2003 regarding preparation of an EA for a previous licensing action for this Facility. At that time the Pennsylvania Historical and Museum Commission, Bureau for Historical Preservation stated that "there are no National Register eligible or listed historical or archaeological properties in the area of the proposed project and your responsibility for consultation with the State Historic Preservation Office for this project, under Section 106, is complete." Therefore, no further consultation is required under Section 106 of the National Historic Preservation Act for this EA.

NRC provided a draft of this EA to PADEP, BRP for review. On July 27, 2006, PADEP, BRP responded by e-mail. PADEP, BRP agreed with the conclusions of the EA, and otherwise had no substantive comments.

III. Finding of No Significant Impact

The NRC staff has prepared this EA in support of the proposed action. On the basis of this EA, the NRC finds that there are no significant environmental impacts from the proposed action, and that preparation of an environmental impact statement is not warranted. Accordingly, the NRC has determined that a FONSI is appropriate.

IV. Further Information

Documents related to this action, including the application for license amendment and supporting documentation, are available electronically at the NRC's Electronic Reading Room at http://www.nrc.gov/reading-rm/adams.html. From this site, you can access the NRC's Agencywide Document Access and Management System (ADAMS), which provides text and image files of NRC's public documents. The documents related to this action are listed below, along with their ADAMS accession numbers.

- 1. Amendment request with revision four of the DP (ML060790152);
- 2. The Licensee's March 9, 2006, license amendment request was noticed in the **Federal Register** on May 22, 2006 (71 FR 29357). This **Federal Register** notice also provided an opportunity for a hearing on this licensing action;
- 3. NUREG-0170, "Final Environmental Impact Statement on the Transportation of Radioactive Material by Air and Other Modes;"
- 4. NUREG-0586, "Final Generic Environmental Impact Statement on the Decommissioning of Nuclear Facilities;"
- 5. NUREG-1748, "Environmental Review Guidance for Licensing Actions Associated with NMSS Programs;"
- 6. NUREG–1757, "Consolidated NMSS Decommissioning Guidance;"
- 7. Title 10 Code of Federal Regulations, Part 20, Subpart E, "Radiological Criteria for License Termination;"

- 8. Title 10, Code of Federal Regulations, Part 51, "Environmental Protection Regulations for Domestic Licensing and Related Regulatory Functions;"
- 9. NUREG-1496, "Generic Environmental Impact Statement in Support of Rulemaking on Radiological Criteria for License Termination of NRC-Licensed Nuclear Facilities"

If you do not have access to ADAMS, or if there are problems in accessing the documents located in ADAMS, contact the NRC Public Document Room (PDR) Reference staff at 1–800–397–4209, 301–415–4737, or by e-mail to pdr@nrc.gov. These documents may also be viewed electronically on the public computers located at the NRC's PDR, O 1 F21, One White Flint North, 11555 Rockville Pike, Rockville, MD 20852. The PDR reproduction contractor will copy documents for a fee.

Dated at King of Prussia, Pennsylvania this 29th day of September 2006.

For the Nuclear Regulatory Commission.

James Kottan,

Acting Chief, Decommissioning Branch, Division of Nuclear Materials Safety, Region I

[FR Doc. E6–16738 Filed 10–10–06; 8:45 am]

NUCLEAR REGULATORY COMMISSION

Sunshine Act Federal Register Notice

AGENCY HOLDING THE MEETINGS: Nuclear Regulatory Commission.

DATE: Weeks of October 9, 16, 23, 30, November 6, 13, 2006.

PLACE: Commissioner' Conference Room, 11555 Rockville Pike, Rockville, Maryland.

STATUS: Public and Closed.
MATTERS TO BE CONSIDERED:

Week of October 9, 2006

Tuesday, October 10, 2006

12:55 p.m.

Affirmation Sessions (Public Meeting)
(Tentative), a. Entergy Nuclear
Vermont Yankee, LLC and Entergy
Nuclear Operations, Inc., (Pilgrim
Nuclear Power Station and Vermont
Yankee Nuclear Power Station),
Massachusetts Attorney General's
Petition for Backfit Order
(Tentative).

Week of October 16, 2006—Tentative

Monday, October 16, 2006 9:30 a.m.

Briefing on Status of New Reactor Issues—Combined Operating

Licenses (COLS) (morning session). 1:30 p.m.

Briefing on Status of New Reactor Issues—Combined Operating Licenses (COLS) (afternoon session). (Public Meetings) (Contact: Dave Matthews, 301–415–1199).

These meetings will be Webcast live at the Web address—http://www.nrc.gov.

Friday, October 20, 2006

2:30 p.m.

Meeting with Advisory Committee on Reactor Safeguards (ACRS) (Public Meeting) (Contact: John Larkins, 301–415–7360).

This meeting will be Webcast live at the Web address—http://www.nrc.gov.

Week of October 23, 2006—Tentative

Tuesday, October 24, 2006

9:30 a.m.

Briefing on Transshipment and Domestic Shipment Security of Radioactive Material Quantities of Concern (RAMQC) (Closed—Ex. 3) (morning session).

1:30 p.m.

Briefing on transshipment and Domestic Shipment Security of Radioactive Material Quantities of Concern (RAMQC) (Closed—Ex. 3 & 9) (afternoon session).

Wednesday, October 25, 2006 9:30 a.m.

Briefing on Institutionalization and Integration of Agency Lessons Learned (Public Meeting) (Contact: John Lamb, 301–415–1727).

This meeting will be Webcast live at the Web address—http://www.nrc.gov. 1:30 p.m.

Briefing on Resolution of GSI–191, Assessment of Debris Accumulation on PWR Sump Performance (Public Meeting) (Contact: Michael L. Scott, 301–415–0565).

This meeting will be Webcast live at the Web address—http://www.nrc.gov.

Week of October 30, 2006—Tentative

There are no meetings scheduled for the week of October 30, 2006.

Week of November 6, 2006—Tentative

Wednesday, November 8, 2006

Briefing on Digital Instrumentation and Control (Public Meeting) (Contact: Paul Rebstock, 301–415– 3295).

This meeting will be Webcast live at the Web address—http://www.nrc.gov.

Thursday, November 9, 2006 9:30 a.m. Briefing on Draft Final Rule—Part 52 (Early Site permits/Standard Design Certification/Combined Licenses) (Public Meeting) (Contact: Dave Matthews, 301–415–1199).

This meeting will be Webcast live at the Web address—http://www.nrc.gov.

Week of November 13, 2006—Tentative

There are no meetings scheduled for the week of November 13, 2006.

* The schedule for Commission meetings is subject to change on short notice. To verify the status of meetings call (recording)—(301) 415–1292. Contact person for more information: Michelle Schroll, (301) 415–1662.

The NRC Commission Meeting Schedule can be found on the Internet at: http://www.nrc.gov/what-we-do/policy-making/schedule.html.

The NRC provides reasonable accommodation to individuals with disabilities where appropriate. If you need a reasonable accommodation to participate in these public meetings, or need this meeting notice or the transcript or other information from the public meetings in another format (e.g., braille, large print), please notify the NRC's Disability Program Coordinator, Deborah Chan, at 301–415–7041, TDD: 301–415–2100, or by e-mail at DLC@nrc.gov. Determinations on requests for reasonable accommodation will be made on a case-by-case basis.

This notice is distributed by mail to several hundred subscribers; if you no longer wish to receive it, or would like to be added to the distribution, please contact the Office of the Secretary, Washington, DC 20555 (301–415–1969). In addition, distribution of this meeting notice over the Internet system is available. If you are interested in receiving this Commission meeting schedule electronically, please send an electronic message to dkw@nrc.gov.

Dated: October 5, 2006.

R. Michelle Schroll,

Office of the Secretary.

[FR Doc. 06–8623 Filed 10–6–06; 10:00 am]

BILLING CODE 7590-01-M

OVERSEAS PRIVATE INVESTMENT CORPORATION

No FEAR Act Notice

On May 15, 2002, Congress enacted the "Notification and Federal Employee Antidiscrimination and Retaliation Act of 2002," commonly known as the No FEAR Act. One purpose of the Act is to "require that Federal agencies be accountable for violations of antidiscrimination and whistleblower protection laws." Public Law 107–174, Summary. In support of this purpose, Congress found that "agencies cannot be run effectively if those agencies practice or tolerate discrimination." Public Law 107–174, Title I, General Provisions, Section 101(1).

The Act also requires the Overseas Private Investment Corporation (OPIC) to provide this notice to OPIC employees, former OPIC employees and applicants for OPIC employment to inform you of the rights and protections available to you under Federal antidiscrimination, whistleblower protection and retaliation laws.

Federal Antidiscrimination Laws

OPIC cannot discriminate against an employee or applicant with respect to the terms, conditions or privileges of employment on the basis of race, color, religion, sex, national origin, age, disability, marital status or political affiliation. Discrimination on these bases is prohibited by one or more of the following statutes: 5 U.S.C. 2302(b)(1), 29 U.S.C. 206(d), 29 U.S.C. 631, 29 U.S.C. 663a, 29 U.S.C. 791 and 42 U.S.C. 2000e–16.

If you believe that you have been the victim of unlawful discrimination on the basis of race, color, religion, sex, national origin or disability, you must contact an OPIC Equal Employment Opportunity (EEO) Counselor within 45 calendar days of the alleged discriminatory action, or, in the case of a personnel action, within 45 calendar days of the effective date of the personnel action, before you can file a formal complaint of discrimination with OPIC., 29 CFR 1614.105(a).

If you believe that you have been the victim of unlawful discrimination on the basis of age, you must either contact an EEO Counselor as noted above or give notice of intent to file a civil action in a United States District Court within 180 days of the alleged discriminatory action. 29 CFR 1614.201. The notice of intent to sue must be provided to the U.S. Equal Employment Opportunity Commission (EEOC) at least 30 days before actually filing the civil action. The notice must be sent to: Director, Office of Federal Operations, EEOC, P.O. Box 19848, Washington, DC 20036.

Federal agencies also are prohibited from discriminating against employees because of their marital status or political affiliation, and employees who raise such allegations may file a written complaint with the U.S. Office of Special Counsel (OSC). This right does not extend to OPIC employees or applicants for OPIC employees or applicants for OPIC employment because OPIC is a Federal corporation and is thus excluded by statute. 5 U.S.C.

2302(a)(2)(C)(i). However, as an alternative, if you are alleging discrimination based on marital status or political affiliation, you may file a grievance through OPIC's administrative or negotiated grievance procedures, to the extent such procedures apply and are available.

Whistleblower Protection Laws

An OPIC employee with authority to take, direct others to take, recommend or approve any personnel action must not use that authority to take or fail to take, or threaten to take or fail to take, a personnel action against an employee or applicant because of disclosure of information by that individual that is reasonably believed to evidence violations of law, rule or regulation; gross mismanagement; gross waste of funds; an abuse of authority; or a substantial and specific danger to public health or safety, unless disclosure of such information is specifically prohibited by law and such information is specifically required by Executive Order to be kept secret in the interest of national defense or the conduct of foreign affairs.

Additionally, the statute protects any disclosure to the Special Counsel, or to the Inspector General of an agency or another employee designated by the head of the agency to receive such disclosures, of information which the employee or applicant reasonably believes evidences—(i) a violation of any law, rule, or regulation, or (ii) gross mismanagement, a gross waste of funds, an abuse of authority, or a substantial and specific danger to public health or safety.

Retaliation against an employee or applicant for making a protected disclosure is prohibited by 5 U.S.C. 2302(b)(8). If you believe that you have been the victim of whistleblower retaliation, you may file a written complaint (Form OSC–11) with the U.S. Office of Special Counsel at 1730 M Street, NW., Suite 218, Washington, DC 20036–4505 or online through the OSC Web site—http://www.osc.gov.

Retaliation for Engaging in Protected Activity

OPIC cannot retaliate against an employee or applicant because the individual exercises his or her rights under any of the Federal antidiscrimination or whistleblower protections laws listed above, except as otherwise noted with respect to marital status and political affiliation discrimination. If you believe that you are the victim of retaliation for engaging in protected activity, you must follow, as appropriate, the procedures described

in the Antidiscrimination Laws and Whistleblower Protection Laws sections or, if applicable, the administrative or negotiated grievance procedures in order to pursue any legal remedy.

Disciplinary Actions

Under the existing laws, OPIC retains the right, where appropriate, to discipline a Federal employee who has engaged in discriminatory or retaliatory conduct, up to and including removal. If the Office of Special Counsel has initiated an investigation under 5 U.S.C. 1214 ("Investigation of prohibited personnel practices; corrective action"), however, according to 5 U.S.C. 1214(f), OPIC must seek approval from the Special Counsel to discipline employees for, among other activities, engaging in prohibited retaliation. Nothing in the No FEAR Act alters existing laws or permits an agency to take unfounded disciplinary action against a Federal employee or to violate the procedural rights of a Federal employee who has been accused of discrimination.

Additional Information

For further information regarding the No FEAR regulations, refer to OPIC's EEO Office, Human Resources Management or the Department of Legal Affairs. Additional information regarding Federal antidiscrimination, whistleblower protection and retaliation laws can be found at the EEOC Web site—http://www.eeoc.gov and the OSC Web site—http://www.osc.gov.

Existing Rights Unchanged

Pursuant to section 205 of the No FEAR Act, neither the Act nor this notice creates, expands or reduces any rights otherwise available to any employee, former employee or applicant under the laws of the United States, including the provisions of law specified in 5 U.S.C. 2302(d).

William L. Garrett,

EEO Director.

[FR Doc. 06–8588 Filed 10–10–06; 8:45 am] BILLING CODE 3210–01–M

SECURITIES AND EXCHANGE COMMISSION

[Release No. 34–54561; File No. SR–ISE–2006–54]

Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and Immediate Effectiveness of Proposed Rule Change Relating to ISE Stock Exchange Fees

October 2, 2006.

Pursuant to Section 19(b)(1) of the Securities Exchange Act of 1934 ("Act") and Rule 19b-4 thereunder,2 notice is hereby given that on September 6, 2006, the International Securities Exchange, LLC ("ISE" or "Exchange") filed with the Securities and Exchange Commission ("Commission") the proposed rule change as described in Items I, II, and III below, which Items have been prepared by the Exchange. The ISE has designated this proposal as one changing a fee imposed by the ISE under Section 19(b)(3)(A)(ii) of the Act 3 and Rule 19b-4(f)(2) thereunder,4 which renders the proposal effective upon filing with the Commission. The Commission is publishing this notice to solicit comments on the proposed rule change from interested persons.

I. Self-Regulatory Organization's Statement of the Terms of Substance of the Proposed Rule Change

The ISE proposes to amend its Schedule of Fees to adopt fees related to the ISE Stock Exchange, LLC ("ISE Stock"). The text of the proposed rule change is available on the Exchange's Web site at http://www.iseoptions.com, at the principal office of the Exchange, and at the Commission's Public Reference Room.

II. Self-Regulatory Organization's Statement of the Purpose of, and Statutory Basis for, the Proposed Rule Change

In its filing with the Commission, the ISE included statements concerning the purpose of and basis for the proposed rule change and discussed any comments it received on the proposed rule change. The text of these statements may be examined at the places specified in Item IV below. The ISE has prepared summaries, set forth in Sections A, B, and C below, of the most significant aspects of such statements.

A. Self-Regulatory Organization's Statement of the Purpose of, and Statutory Basis for, the Proposed Rule Change

1. Purpose

The ISE states that the purpose of the proposed rule change is to adopt fees related to the trading of equity securities on ISE Stock, a facility of the Exchange. The proposed fee schedule includes execution fees, access fees, and regulatory fees for trading of equity securities, as well as changes to existing language to clarify the application of certain fees that are specific to options trading only. With regard to the execution fees, the Exchange proposes to charge fees based on a member's average daily shares executed, with the average daily volume ("ADV") calculated on a monthly basis. This fee would be charged on a tiered basis (e.g., a member that executes 9.600,000 shares in a 20-day month would have an ADV of 480,000 shares and would be charged as follows: \$0.0025 for the first 200,000 shares ADV (4,000,000 shares) and \$0.0020 for the remaining 280,000 shares ADV (5.600.000 shares)). Further, a member that transacts more than 3,000,000 shares on a daily basis would be charged a fee of \$0.0010 per share for all of its monthly volume instead of being charged on a tiered basis.⁵ Additionally, in an effort to promote ISE Stock, the Exchange proposes to waive all execution fees until December 1, 2006.

With regard to access fees, the Exchange states that it currently charges an Electronic Access Member ("EAM") that trades options an access fee of \$500 per month. Access fees for these EAMs will remain unchanged if they also trade equities on ISE Stock. For an EAM that trades equities only, the Exchange proposes a monthly access fee of \$200. Finally, the Exchange states that it currently charges an EAM that trades options a regulatory fee of \$5,000 per year. For EAMs that trade equities only, the Exchange proposes an annual regulatory fee of \$5,000. For EAMs that trade both equities and options, the

¹ 15 U.S.C. 78s(b)(1).

^{2 17} CFR 240.19b-4.

^{3 15} U.S.C. 78s(b)(3)(A)(ii).

^{4 17} CFR 240.19b–4(f)(2).

 $^{^{5}\,\}mathrm{The}$ tiers are as follows:

A.D.V. Up to 200,000 shares—\$0.0025 per share. A.D.V. From 200,001 to 500,000 shares—\$0.0020 per share.

A.D.V. From 500,001 to 2,000,000 shares— \$0.0015 per share.

A.D.V. From 2,000,001 to 3,000,000 shares— \$0.0010 per share.

A.D.V. Over 3,000,000 shares—\$0.0010 per share (applied to all volume).

Telephone conversation between Michou H.M. Nguyen, Special Counsel, Division of Market Regulation, Commission, and Samir Patel, Assistant General Counsel, Exchange, on September 27, 2006.

Exchange proposes an annual regulatory fee of \$6,000.6

The Exchange also proposes to amend (1) the Notes for the cancellation fee to clarify that the fee is applicable to options orders only; and (2) language to the EAM / Trade Review Terminal fee and the Order Routing Service Connection Fee to clarify that these fees are options fees and are applicable to EAMs that trade options. The Exchange states that both these fees currently appear as Session/API Fee in the current fee schedule.

Finally, the Exchange also proposes to charge EAMs that trade equity securities certain administrative fees. These would include fees related to the registration of Form U4 as well as a CRD fee. The Exchange states that these administrative fees currently appear under the Legal & Regulatory section of the current fee schedule.

2. Statutory Basis

The Exchange believes that its proposal is consistent with Section 6(b) of the Act ⁸ in general, and furthers the objectives of Section 6(b)(4) of the Act ⁹ in particular, in that it provides for an equitable allocation of reasonable dues, fees, and other charges among ISE members.

B. Self-Regulatory Organization's Statement on Burden on Competition

The Exchange does not believe that the proposed rule change will impose any burden on competition that is not necessary or appropriate in furtherance of the purposes of the Act.

C. Self-Regulatory Organization's Statement on Comments on the Proposed Rule Change Received From Members, Participants, or Others

The Exchange has not solicited nor received any written comments on the proposed rule change.

III. Date of Effectiveness of the Proposed Rule Change and Timing for Commission Action

The foregoing proposed rule change has been designated as a fee change pursuant to Section 19(b)(3)(A)(ii) of the Act ¹⁰ and Rule 19b–4(f)(2) ¹¹ thereunder, because it establishes or changes a due, fee, or other charge imposed by the Exchange. Accordingly, the proposal will take effect upon filing with the Commission. At any time within 60 days of the filing of such proposed rule change, the Commission may summarily abrogate such rule change if it appears to the Commission that such action is necessary or appropriate in the public interest, for the protection of investors, or otherwise in furtherance of the purposes of the Act.

IV. Solicitation of Comments

Interested persons are invited to submit written data, views, and arguments concerning the foregoing, including whether the proposed rule change is consistent with the Act. Comments may be submitted by any of the following methods:

Electronic Comments

- Use the Commission's Internet comment form (http://www.sec.gov/rules/sro.shtml); or
- Send an e-mail to *rule-comments@sec.gov*. Please include File Number SR–ISE–2006–54 on the subject line.

Paper Comments

• Send paper comments in triplicate to Nancy M. Morris, Secretary, Securities and Exchange Commission, 100 F Street, NE., Washington, DC 20549–1090.

All submissions should refer to File Number SR-ISE-2006-54. This file number should be included on the subject line if e-mail is used. To help the Commission process and review your comments more efficiently, please use only one method. The Commission will post all comments on the Commission's Internet Web site (http://www.sec.gov/ rules/sro.shtml). Copies of the submission, all subsequent amendments, all written statements with respect to the proposed rule change that are filed with the Commission, and all written communications relating to the proposed rule change between the Commission and any person, other than those that may be withheld from the public in accordance with the provisions of 5 U.S.C. 552, will be available for inspection and copying in the Commission's Public Reference Room. Copies of such filing also will be available for inspection and copying at the principal office of the ISE. All

comments received will be posted without change; the Commission does not edit personal identifying information from submissions. You should submit only information that you wish to make available publicly. All submissions should refer to File Number SR–ISE–2006–54 and should be submitted on or before November 1, 2006.

For the Commission, by the Division of Market Regulation, pursuant to delegated authority. 12

Nancy M. Morris,

Secretary.

[FR Doc. E6–16729 Filed 10–10–06; 8:45 am] BILLING CODE 8011–01–P

SECURITIES AND EXCHANGE COMMISSION

[Release No. 34-54562; File No. SR-NASD-2006-111]

Self Regulatory Organizations; National Association of Securities Dealers, Inc.; Notice of Filing and Immediate Effectiveness of Proposed Rule Change Relating to Amending the Citation to Section 19 of the Securities Exchange Act in NASD Rule 9559

October 3, 2006.

Pursuant to section 19(b)(1) of the Securities Exchange Act of 1934 ("Act") 1 and Rule 19b–4 thereunder,2 notice is hereby given that on September 25, 2006, the National Association of Securities Dealers, Inc. ("NASD") filed with the Securities and Exchange Commission ("SEC" or "Commission") the proposed rule change as described in Items I and II below, which Items have been prepared by NASD. NASD has designated the proposed rule change as constituting a "non-controversial" rule change under section 19(b)(3)(A) of the Act 3 and Rule 19b-4(f)(6) thereunder,4 which renders the proposal effective upon receipt of this filing by the Commission. The Commission is publishing this notice to solicit comments on the proposed rule change from interested persons.

I. Self-Regulatory Organization's Statement of the Terms of Substance of the Proposed Rule Change

NASD is proposing to amend NASD Rule 9559(s), to amend the citation to section 19 of the Act. Below is the text

⁶ The Exchange represents that there exists overlap in the costs associated with the regulatory fee for trading options and for trading equities. Therefore, if an EAM trades both, the EAM is only charged \$6,000 instead of \$10,000. *Id.*

⁷ The Exchange represents that the Trade Review Terminal and the related Order Routing Service are used exclusively for the trading of options. Therefore, the Trade Review Terminal fee and the associated Order Routing Service Connection Fee would only be charged to EAMs trading options. Id.

^{8 15} U.S.C. 78f(b).

^{9 15} U.S.C. 78f(b)(4).

^{10 15} U.S.C. 78s(b)(3)(A)(ii).

^{11 17} CFR 240.19b-4(f)(2).

^{12 17} CFR 200.30-3(a)(12).

¹ 15 U.S.C. 78s(b)(1).

^{2 17} CFR 240.19b-4.

³ 15 U.S.C. 78s(b)(3)(A).

⁴¹⁷ CFR 240.19b-4(f)(6).

of the proposed rule change. Proposed deletions are in [brackets].

* * * * *

9559. Hearing Procedures for Expedited Proceedings Under the Rule 9550 Series

(a) through (r) No Change.

(s) Application to Commission for Review

The right to have any action pursuant to this Rule reviewed by the Securities and Exchange Commission is governed by Section 19[(f)] of the Securities Exchange Act. The filing of an application for review by the Securities and Exchange Commission shall not stay the effectiveness of final NASD action, unless the Securities and Exchange Commission otherwise orders.

II. Self-Regulatory Organization's Statement of the Purpose of, and Statutory Basis for, the Proposed Rule Change

In its filing with the Commission, NASD included statements concerning the purpose of and basis for the proposed rule change and discussed any comments it received on the proposed rule change. The text of these statements may be examined at the places specified in Item IV below. NASD has prepared summaries, set forth in sections A, B, and C below, of the most significant aspects of such statements.

A. Self-Regulatory Organization's Statement of the Purpose of, and Statutory Basis for, the Proposed Rule Change

1. Purpose

The Rule 9550 Series of NASD's procedural rules establishes the procedures for expedited proceedings brought against NASD members or associated persons for certain types of actions. These actions include proceedings initiated for failure to pay NASD dues, fees, and other charges;5 failure to comply with an arbitration award or related settlement;6 and failure to comply with temporary cease and desist orders.7 The hearing procedures for all expedited proceedings initiated under the NASD Rule 9550 Series are set forth in NASD Rule 9559. Although most of the provisions in NASD Rule 9559 relate to the procedural requirements of the hearing and NASD's written decisions, paragraph (s) notes that respondents have the right to appeal any decision issued after an expedited proceeding to the

Commission and cites section 19(f) of the Act. Other provisions of NASD's procedural rules refer more broadly to the Commission's review of NASD decisions under section 19 of the Act without specifying a particular paragraph of the section.⁸ The proposed rule change would amend the reference to the Commission's review of NASD decisions in expedited proceedings pursuant to section 19 of the Act by deleting the specific reference to paragraph (f) of section 19 and replacing it with a broad reference to section 19.

NASD has filed the proposed rule change for immediate effectiveness. The effective date and the implementation date will be the date of filing, September 25, 2006.

2. Statutory Basis

NASD believes that the proposed rule change is consistent with the provisions of section 15A of the Act,9 in general, and with section 15A(b)(6) of the Act,10 in particular, which requires, among other things, that NASD rules must be designed to prevent fraudulent and manipulative acts and practices, to promote just and equitable principles of trade, and, in general, to protect investors and the public interest and with section 15A(b)(8) of the Act,11 which requires, among other things, that NASD rules must provide a fair procedure for the disciplining of members and persons associated with members. NASD believes that the proposed rule change will clarify the citation to the Act with respect to the appeal of expedited proceedings to the Commission.

B. Self-Regulatory Organization's Statement on Burden on Competition

NASD does not believe that the proposed rule change will result in any burden on competition that is not necessary or appropriate in furtherance of the purposes of the Act.

C. Self-Regulatory Organization's Statement on Comments on the Proposed Rule Change Received From Members, Participants or Others

Written comments were neither solicited nor received.

III. Date of Effectiveness of the Proposed Rule Change and Timing for Commission Action

Because the foregoing proposed rule change does not:

(i) Significantly affect the protection of investors or the public interest;

- (ii) Impose any significant burden on competition; and
- (iii) Become operative for 30 days from the date on which it was filed, or such shorter time as the Commission may designate if consistent with the protection of investors and the public interest, it has become effective pursuant to section 19(b)(3)(A) of the Act $-^{12}$ and Rule 19b-4(f)(6)thereunder.13 As required under Rule 19b-4(f)(6)(iii),14 NASD provided the Commission with written notice of NASD's intent to file the proposed rule change along with a brief description and text of the proposed rule change, at least five business days prior to the filing date of the proposed rule change.

A proposed rule change filed under Rule 19b-4(f)(6) normally may not become operative for 30 days after the date of its filing.¹⁵ However, Rule 19b-4(f)(6)(iii) 16 permits the Commission to designate a shorter time if such action is consistent with the protection of investors and the public interest. NASD has requested that the Commission waive the 30-day operative delay based upon a representation that the proposed rule change merely clarifies a citation to section 19 of the Act. In light of the foregoing, the Commission believes such waiver is consistent with the protection of investors and the public interest. Accordingly, the Commission designated the proposal to be effective and operative upon filing with the Commission.17

At any time within 60 days of the filing of the proposed rule change, the Commission may summarily abrogate such rule change if it appears to the Commission that such action is necessary or appropriate in the public interest, for the protection of investors, or otherwise in furtherance of the purposes of the Act.

IV. Solicitation of Comments

Interested persons are invited to submit written data, views and arguments concerning the foregoing, including whether the proposed rule change is consistent with the Act. Comments may be submitted by any of the following methods:

⁵ See NASD Rule 9553.

⁶ See NASD Rule 9554.

⁷ See NASD Rule 9556.

⁸ See e.g. NASD Rule 9870.

^{9 15} U.S.C. 78o-3.

^{10 15} U.S.C. 78o-3(b)(6).

^{11 15} U.S.C. 78o-3(b)(8).

¹² 15 U.S.C. 78s(b)(3)(A).

^{13 17} CFR 240.19b-4(f)(6).

¹⁴ 17 CFR 240.19.6–4(P)(6)(iii).

^{15 17} CFR 240.19b-4(f)(6).

¹⁶ 17 CFR 240.19b–4(f)(6)(iii).

¹⁷ For purposes only of waiving the 30-day operative delay of this proposal, the Commission has considered the proposed rule's impact on efficiency, competition, and capital formation. 15 U.S.C. 78c(f).

Electronic Comments

- Use the Commission's Internet comment form (http://www.sec.gov/rules/sro.shtml); or
- Send an e-mail to *rule-comments@sec.gov*. Please include File Number SR–NASD–2006–111 on the subject line.

Paper Comments

• Send paper comments in triplicate to Nancy M. Morris, Secretary, Securities and Exchange Commission, 100 F Street, NE., Washington, DC 20549–1090.

All submissions should refer to File Number SR-NASD-2006-111. This file number should be included on the subject line if e-mail is used. To help the Commission process and review your comments more efficiently, please use only one method. The Commission will post all comments on the Commission's Internet Web site (http://www.sec.gov/rules/sro.shtml). Copies of the submission, all subsequent amendments, all written statements with respect to the proposed rule change that are filed with the

Commission, and all written communications relating to the proposed rule change between the Commission and any person, other than those that may be withheld from the public in accordance with the provisions of 5 U.S.C. 552, will be available for inspection and copying in the Commission's Public Reference Room. Copies of such filing also will be available for inspection and copying at the principal office of NASD.

All comments received will be posted without change; the Commission does not edit personal identifying information from submissions. You should submit only information that you wish to make available publicly. All submissions should refer to File Number SR–NASD–2006–111 and should be submitted on or before November 1, 2006.

For the Commission, by the Division of Market Regulation, pursuant to delegated authority. 18

Nancy M. Morris,

Secretary.

[FR Doc. E6–16717 Filed 10–10–06; 8:45 am]

DEPARTMENT OF STATE

[Public Notice 5577]

Determination on the Use of FY 2005 Supplemental Peacekeeping Operations Funds To Support the Global War on Terrorism

The Secretary of State, pursuant to the Emergency Supplemental Appropriations Act for Defense, the Global War on Terror, and Tsunami Relief (P.L. 109–13) and the President's delegation of his authority to make the necessary determination on the use of these funds, determined on September 9th that the use of the \$30 million in FY 2005 supplemental peacekeeping operations funds in Lebanon and Kyrgyz Republic will support the global war on terrorism.

Dated: September 29, 2006.

Michael W. Coulter,

Deputy Assistant Secretary, Bureau of Political-Military Affairs, Department of State.

BILLING CODE 4710-27-P

DETERMINATION ON THE USE OF FY 2005 SUPPLEMENTAL PEACEKEEPING OPERATIONS FUNDS TO SUPPORT THE GLOBAL WAR ON TERRORISM

Pursuant to the Emergency Supplemental Appropriations Act for Defense, the Global War on Terror, and Tsunami Relief (P.L. 109-13) and the President's delegation to me of his authority to make the necessary determination on the use of these funds, I hereby determine that the use of the \$30 million in FY 2005 supplemental peacekeeping operations funds in Lebanon and Kyrgyz Republic will support the global war on terrorism.

This determination shall be reported to Congress promptly and published in the *Federal Register*.

SEP - 9 2006	Condoly Py
Date	Condoledzza Rice
	Secretary of State

^{18 17} CFR 200.30-3(a)(12).

MEMORANDUM OF JUSTIFICATION

THAT THE USE OF PEACEKEEPING OPERATIONS FUNDS WILL SUPPORT THE GLOBAL WAR ON TERRORISM CONSISTENT WITH THE EMERGENCY SUPPLEMENTAL APPROPRIATIONS ACT FOR DEFENSE, THE GLOBAL WAR ON TERROR, AND TSUNAMI RELIEF ACT, 2005 (P.L. 109-13)

Pursuant to the "Peacekeeping Operations" section of the Emergency Supplemental Appropriations Act for Defense, the Global War on Terror (GWOT), and Tsunami Relief Act, 2005 (P.L. 109-13), \$30 million in Peacekeeping Operations (PKO) funds appropriated by this Emergency Supplemental may be used pursuant to a Presidential Determination that such use will support the GWOT after consultations with the Committees on Appropriations. On May 25, 2006, the President delegated to the Secretary of State the authority to make the determination on these funds.

The Secretary has determined that the intended use of the \$30 million in FY 2005 supplemental PKO funds supports the GWOT.

The assistance to Lebanon (\$27.95 million) will support the Lebanese Armed Forces' efforts to regain control of their national territory from Hizballah, a U.S.-designated terrorist organization. In addition, this funding will support the efforts of the Lebanese Armed Forces (LAF) and the Lebanese Internal Security Forces (ISF) to secure Lebanon's borders, airport, and harbors and prevent the shipment of illicit arms. Support for the LAF and the ISF is a key component to the successful implementation of UNSCRs 1559 and 1701, and to put an end to the violence that Hizballah and its sponsors imposed on the people of Lebanon and Israel, while laying the framework for a lasting peace.

The assistance to the Kyrgyz Republic (\$2.05 million) will be used towards the purchase of one Mi-8MTV utility helicopter to complement Kyrgyzstan's three other Mi-8MTV helicopters. The aircraft are used to enhance border surveillance, improve interdiction of illicit cross-border activity, and generally support ground security operations in remote mountainous areas with known terrorist transit activity. Also, the assistance is a component of the compensation package negotiated with the Kyrgyz Government for maintaining the Manas Coalition Airbase, which supports coalition operations in Afghanistan and is a strategically critical component of the global war on terrorism.

[FR Doc. 06–8609 Filed 10–10–06; 8:45 am] BILLING CODE 4710–27–C

DEPARTMENT OF STATE

Notice of Intent To Prepare an Environmental Impact Statement and To Conduct Scoping Meetings and Notice of Floodplain and Wetland Involvement; Transcanada Keystone Pipeline, L.P.

AGENCY: Department of State. **ACTION:** Notice of Intent to Prepare an Environmental Impact Statement (EIS) and to Conduct Public Scoping

Meetings. Notice of Floodplain and

Wetlands Involvement.

SUMMARY: TransCanada Keystone Pipeline, L.P. has applied to the United States Department of State for a Presidential Permit for the proposed construction, connection, operation, or maintenance, at the border of the United States of facilities for the importation of petroleum from a foreign country. The Department of State receives and considers applications for Presidential Permits for such energy-related pipelines pursuant to authority delegated to it by the President under Executive Order 13337 of April 30, 2004 (69 FR 25299). To issue a Permit, the Department of State must find that issuance would serve the national interest. It consults extensively with concerned Federal and State agencies, and invites public comment in arriving at its determination. With respect to the application submitted by TransCanada Keystone Pipeline, L.P., the Department of State has concluded that the issuance of the Presidential Permit would constitute a major Federal action that may have a significant impact upon the environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). For this reason, Department of State intends to prepare an environmental impact statement (EIS) to address reasonably foreseeable impacts from the proposed action and alternatives, to include the proposed Cushing extension.

The purpose of this Notice of Intent is to inform the public about the proposed action, announce plans for scoping meetings, invite public participation in the scoping process, and solicit public comments for consideration in establishing the scope and content of the EIS. As the proposed project may involve an action in a floodplain or wetland, the EIS will include a floodplain and wetlands assessment and floodplain statement of findings.

DATES: Department of State invites interested agencies, organization, and members of the public to submit comments or suggestions to assist in identifying significant environmental issues and in determining the appropriate scope of the EIS. The public scoping period starts with the publication of this Notice in the Federal Register and will continue until November 30, 2006. Written, electronic and oral comments will be given equal weight and State will consider all comments received or postmarked by November 30th in defining the scope of this EIS. Comments received or postmarked after that date will be considered to the extent practicable.

During this public scoping period, the Department of State plans to use the scoping process to help identify consulting parties and historic preservation issues for consideration under Section 106 of the National Historic Preservation Act and its implementing regulations (36 CFR Part 800).

Dates and locations for the public scoping meetings are:

- 1. October 24, 2006, 7 to 10 p.m., Michigan, North Dakota, Michigan Civic Center, 113 Broadway N., Michigan.
- 2. October 24, 2006, 7 to 10 p.m., Yankton, South Dakota, Minerva Convention Centre at the Best Western, Kelley Inn, 1607 East Highway 50, Yankton.
- 3. October 25, 2006, 7 to 10 p.m., Lisbon, North Dakota, Commons Room, Lisbon High School, 502 Ash Street, Lisbon.
- 4. October 25, 2006, 7 to 10 p.m., Stanton, Nebraska, VFW Meeting Hall, 1106 Veteran's Avenue, Stanton.
- 5. October 28, 2006, 7 to 10 p.m., Clark, South Dakota, Clark Community Center, 120 N. Commercial Street, Clark.
- 6. October 28, 2006, 7 to 10 p.m., Seward, Nebraska, Seward Civic Center, Auditorium, 616 Bradford St., Seward.
- 7. November 1, 2006, 7 to 10 p.m., St. Charles, Missouri, Commons Area, Orchard Farm High School, 2165 Highway V, St. Charles.
- 8. November 2, 2006, 7 to 10 p.m., Collinsville, Illinois, Gateway Center Marquette Room, One Gateway, Drive (Highway 157 & Eastport Plaza Drive), Collinsville.
- 9. November 8, 2006, 7 to 10 p.m., Carrollton, Missouri, Rupe Community Building (Behind Fire Station, park on north side of building, do not block fire station) 710 Harvest Hills Road, Carrollton.
- 10. November 9, 2006, 7 to 10 p.m., Seneca, Kansas, Nemaha Community Center, 1500 Community Drive, Seneca.

- 11. November 14, 2006, 7 to 10 p.m., Abilene, Kansas, Abilene Convention & Visitor's Bureau, Historical Train Depot, 210 NW 2nd Street, Abilene.
- 12. November 15, 2006, 7 to 10 p.m., El Dorado, Kansas, El Dorado Civic Center, Main Meeting Room, 210 E. Central, El Dorado.
- 13. November 16, 2006, 7 to 10 p.m., Morrison, Oklahoma, Morrison Park Pavillion, Hwy 64 & Casey Trail, (One block from 7th Street), Morrison.

The scoping meetings will be conducted in a workshop style. A court reporter will be present and will accept comments for the record.

ADDRESSES: Written comments or suggestions on the scope of the EIS should be addressed to: Elizabeth Orlando, OES/ENV Room 2657, U.S. Department of State, Washington, DC 20520. Comments may be submitted electronically to keystoneeis@state.gov. Public comments will be posted on the Web site identified below.

FOR FURTHER INFORMATION CONTACT: For information on the proposed project or to receive a copy of the Draft EIS when it is issued, contact Elizabeth Orlando at the address listed in the ADDRESSES section of this notice by electronic or regular mail as listed above, or by telephone (202) 647–4284, or by fax at (202) 647–5947.

More information on the TransCanada Keystone Pipeline application for a Presidential Permit, including associated maps and drawings will be downloadable in its entirety from a Web site that is being established for this purpose: http://www.keystonepipeline.state.gov (hosted by Entrix, Department of State's contractor to perform the EIS study). This Web site is expected to be operational on or about October 20, 2006. This Web site will accept public comments for the record.

Department of State Presidential Permit information and process can also be found at the above internet address.

A TransCanada hosted project Web site is also available at: http://www.transcanada.com/keystone/index.html. The Keystone Project toll-free number is: 1 (866) 717–7473 (United States and Canada).

SUPPLEMENTARY INFORMATION:

Background and Need for Agency Action

TransCanada Keystone Pipeline, LP (Keystone) proposes to construct and operate an interstate crude oil pipeline and related facilities from an oil supply hub near Hardisty, Alberta, in Canada, to destinations in the United States. The proposed project, known as the

Keystone Pipeline Project, initially would have the nominal capacity to deliver 435,000 barrels per day (bpd) of crude oil from the oil supply hub near Hardisty to existing terminals at Wood River (Madison County) and Patoka (Marion County), Illinois. Additional pumping capacity could be added to increase the average throughput to 591,000 bpd if market conditions warrant expansion in the future. Keystone is considering the construction of two pipeline extensions to take crude oil from terminals at Fort Saskatchewan, Alberta, and deliver it to Cushing (Payne County), Oklahoma.

As initially proposed, the Keystone Pipeline Project would consist of approximately 1,845 miles of pipeline, including about 767 miles in Canada and 1.078 miles within the United. States traversing the States of North Dakota, South Dakota, Nebraska, Missouri, Kansas and Illinois. The project is proposed to be located primarily in rural areas, with more populated areas occurring around Troy and St. Louis, Missouri and Wood River and Edwardsville, Illinois. These distances would increase if the proposed pipeline were extended to Fort Saskatchewan, Alberta, and/or Cushing, Oklahoma. U.S. counties that could possibly be affected by construction of the proposed pipeline, including the proposed Cushing extension are:

North Dakota: Pembina, Cavalier, Walsh, Nelson, Steele, Barnes, Ransom,

and Sargent.

South Dakota: Marshall, Day, Clark, Beadle, Kingsbury, Miner, Hanson, McCook, Hutchinson, and Yankton; Nebraska: Cedar, Wayne, Stanton, Platte, Colfax, Butler, Seward, Saline, Jefferson, and Gage;

Kansas: Marshall, Nemaha, Brown, Washington, Clay, Dickinson, Marion, Butler, Cowley and Doniphan;

Missouri: Buchanan, Clinton, Caldwell, Carroll, Chariton, Randolph, Audrain, Montgomery, Lincoln, and St. Charles;

Illinois: Madison, Bond, Fayette, Marion: and

Oklahoma (under a possible future extension): Kay, Noble and Payne.

In Canada, the project as proposed would involve the transfer to Keystone of an existing 530 mile, 34-inch-diameter pipeline currently owned by TransCanada and conversion of that line to crude oil service; construction of a new 237-mile pipeline extension from Hardisty to the existing pipeline; and construction of a pipeline extension from the existing pipeline to the U.S.-Canada border. Appropriate regulatory authorities in Canada will conduct an

independent environmental review process for the Canadian facilities.

In the United States, the proposed Keystone pipeline consists of 1,023 miles of 30-inch pipe between the U.S.-Canada border in Cavalier County, North Dakota, and Wood River, Illinois, and a 55-mile segment of 24-inch pipeline between Wood River and Patoka, Illinois. In addition, Keystone may construct a 292-mile 36-inch pipeline, referred to as the "Cushing Extension", commencing in Platte County near the Nebraska-Kansas border and terminating at existing crude oil terminals in Cushing (Payne County), Oklahoma.

Keystone proposes to construct the 30- and 36-inch pipelines within a 110foot-wide corridor, consisting of both a temporary 60-foot-wide construction right-of-way (ROW) and a 50-foot permanent ROW. In Illinois, where a portion of the Keystone Pipeline is proposed to be 24-inch pipeline, the proposed project would be constructed within a 95-foot-wide corridor, consisting of both a temporary 45-footwide construction ROW and a 50-foot permanent ROW. Extra temporary workspace would be required in some locations, including stream, wetland and road crossings.

Above ground facilities for the proposed Keystone pipeline include an initial 23 pump stations and 45 mainline valves located within the ROW. The pump stations would enable Keystone to maintain the pressure required to make crude oil deliveries. Valves are proposed to be installed and located as dictated by the hydraulic characteristics of the pipeline and as required by Federal regulations. Construction of delivery metering and other facilities at Wood River, Patoka, and Cushing would measure the amount of product transported and delivered to terminals.

Above ground facilities for the proposed Cushing Extension include facilities at Ponca City and 12 mainline valves within the ROW. The delivery facility is proposed to be located adjacent to existing operational tanks in Ponca City and Cushing, Oklahoma.

It is estimated that approximately 163 perennial waterbody crossings could occur during the proposed construction of the Keystone mainline and 81 perennial waterbody crossings could occur on the proposed Cushing extension. Proposed major river crossings include but are not limited to the Missouri, Platte, Chariton, Cuivre and Mississippi Rivers. Wetlands may be crossed by the proposed route of the main pipeline and the Cushing extension.

New pump stations and remotely activated valves proposed to be located along the pipeline route require electrical transmission power lines and facility upgrades in multiple locations along its route. These proposed electrical components would be constructed and operated by local power providers, not Keystone. The construction and operation of these facilities are considered connected actions under the National Environmental Policy Act (NEPA) and, therefore, will be evaluated within the EIS.

Keystone proposes to begin construction of the pipeline in early 2008. Proposed construction would occur over an approximately 18-month period. Construction of the proposed Cushing Extension, if undertaken, is anticipated to commence in 2009 and require a 12-month period.

Land Requirements

It is estimated that construction of the project as proposed would cause approximately 16,272 acres of land to be disturbed as temporary construction workspace; which would be restored after construction is complete. In addition, approximately 6,565 acres of land would be required as permanent ROW. Of that total, approximately 6,512 acres are proposed to be restored and returned to their previous use after construction. As proposed, approximately 53 acres of permanent ROW would not be restored but would serve to provide adequate space for above-ground facilities, including pump stations, valves, etc. for the life of the pipeline. As currently proposed, no federally owned lands appear to be implicated; however, some federally managed lands would be affected.

If the proposed Cushing Extension were constructed as proposed, it is estimated that approximately 4,580 acres of additional land would be disturbed as temporary construction workspace, which would be restored after construction is complete.

Approximately 1,789 acres of land would be required as permanent ROW. Of that total, approximately 1,778 acres are proposed to be restored and returned to their previous use after construction.

The EIS Process

NEPA requires the Department of State to take into account the environmental impacts that could result from the approval of a Presidential Permit authorizing construction, operation, and maintenance of pipeline facilities for the importation of crude oil to be located at the international border of the United States and Canada. The Department of State will use the EIS to assess the environmental impact that could result if the Keystone Pipeline Project is granted a Presidential Permit.

NEPA also requires Department of State to identify concerns the public may have about proposals under consideration by the Department of State. This process is referred to as "scoping." The main goal of the scoping process is to focus the analysis in the EIS on the important environmental issues. With this Notice of Intent, the Department of State is requesting public comments on the scope of the issues to be addressed in the EIS. All comments received during the scoping period will be considered during preparation of the EIS. Comments received after the close of the comment period will be considered to the extent practicable.

In the EIS, Department of State will discuss impacts that could occur as a result of the construction and operation of the proposed project under these general headings:

- · Geology and soils;
- Water resources;
- Fish, wildlife, and vegetation;
- Threatened and endangered species;
 - Cultural resources;
- Land use, recreation and special interest areas; visual resources;
 - · Air quality and noise;
 - Socioeconomics; and
 - · Reliability and safety.

In the EIS, Department of State will also evaluate reasonable alternatives to the proposed project or portions of the project and make recommendations on how to lessen or avoid impacts on affected resources. In addition, a "no action alternative" will be considered.

The Department of State's independent analysis of the issues will be included in a draft EIS. The draft EIS will be published and mailed to relevant Federal, State and local government agencies, elected officials, environmental and public interest groups, Native American tribes, affected landowners, commentors, local libraries, newspapers and other interested parties. A 45-day comment period will be allotted for review of the draft EIS. We will consider all timely comments on the draft EIS and revise the document, as necessary, before issuing a final EIS. We will consider all comments on the final EIS before reaching a conclusion on whether to grant Keystone a Presidential Permit authorizing construction, operation, and maintenance of pipeline facilities for the importation of crude oil to be located at the international border of the United States and Canada.

Currently Identified Environmental Issues

The EIS will discuss impacts that could occur as a result of the construction, operation and maintenance of the proposed project. We have already identified several issues that we think deserve attention. This preliminary list of issues may be changed based on public comments and analysis.

- The minimization of construction rights-of-way and associated construction impacts.
- Potential effects on prime farmland and soils with a high potential for compaction.
- Potential impacts to existing land uses, including residences, agricultural and managed forested lands.
- Potential impacts to perennial and intermittent waterbodies, including waterbodies with Federal and/or State designations.
- Evaluation of the potential for temporary and permanent impacts on wetlands.
- Potential impacts to fish and wildlife habitat, including potential impacts to federally and State-listed threatened and endangered species.
- Potential impacts to wildlife management areas.
- Potential impacts and benefits of construction workforce on local housing, infrastructure, public services and economy.
- Public safety and potential hazards associated with the transport of crude oil.
- Alternative alignments for the pipeline route.
- Assessment of the effect of the proposed project when combined with other past, present, or reasonably foreseeable future actions in the project
 - Public Participation.

You are encouraged to become involved in this process and provide your specific comments or concerns about the proposed project. By becoming a commentor, your concerns will be addressed in the EIS and considered by the Department of State. Your comments should focus on the potential environmental impacts, reasonable alternatives (including alternative facility sites and alternative pipeline routes), and measures to avoid or lessen environmental impacts. The more specific your comments, the more useful they will be.

The public scoping meetings identified above are designed to provide another opportunity to offer comments on the proposed project. Interested individuals and groups are encouraged

to attend these meetings and to present comments on the environmental issues they believe should be addressed in the EIS. Again, written comments are considered with equal weight in the process relative to those received in public scoping meetings.

Issued in Washington, DC on October 4, 2006.

David Brown,

Director, Bureau of Oceans and International Environmental and Scientific Affairs/Office of Environmental Policy, U.S. Department of State.

[FR Doc. E6–16807 Filed 10–10–06; 8:45 am] BILLING CODE 4710–05-P

DEPARTMENT OF TRANSPORTATION

Federal Highway Administration [Docket No. FHWA-2006-25976]

Agency Information Collection Activities: Request for Comments for a New Information Collection

AGENCY: Federal Highway Administration (FHWA), DOT. **ACTION:** Notice and request for comments.

SUMMARY: The FHWA invites public comments about our request for the Office of Management and Budget's (OMB) approval for a new information collection, which is summarized below under **SUPPLEMENTARY INFORMATION.** We are required to publish this notice in the **Federal Register** by the Paperwork Reduction Act of 1995.

DATES: Please submit comments by November 13, 2006.

ADDRESSES: You may send comments within 30 days to the Office of Information and Regulatory Affairs, Office of Management and Budget, 725 17th Street, NW., Washington, DC 20503, Attention: DOT Desk Officer. You are asked to comment on any aspect of this information collection, including: (1) Whether the proposed collection is necessary for the FHWA's performance; (2) the accuracy of the estimated burden; (3) ways for the FHWA to enhance the quality, usefulness, and clarity of the collected information; and (4) ways that the burden could be minimized, including the use of electronic technology, without reducing the quality of the collected information. All comments should include the Docket number FHWA-2006-25976.

FOR FURTHER INFORMATION CONTACT: James March, 202–366–9237, or William Linde, 202–366–9637, Office of Transportation Policy Studies, Federal

Highway Administration, Department of Transportation, 400 Seventh Street, SW., Washington, DC 20590. Office hours are from 8 a.m. to 5 p.m., Monday through Friday, except Federal holidays.

SUPPLEMENTARY INFORMATION: *Title:* National Evaluation of a

Mileage-Based Road User Charge. Background: Section 1919 of The Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users of 2005 (SAFETEA-LU) requires the Secretary of the Department of Transportation to submit annual reports and a final report to the Secretary of the Treasury, the Committee on Transportation and Infrastructure and the Committee on Ways and Means of the House of Representatives; the Committee on Environment and Public Works and the Committee on Finance of the Senate on the results of an analysis of highway vehicle mileage data collected to assess a mileage-based approach to collecting highway use fees. Specifically, the Act requires:

SEC. 1919. Road User Fees.

(a) STUDY.—The Secretary shall enter into an agreement with the Public Policy Center of the University of Iowa for an analysis and report to the Secretary and the Secretary of the Treasury on a long-term field test of an approach to assessing highway use fees based upon actual mileage driven by a specific vehicle on specific types of highways by use of an onboard computer—

(1) Which is linked to satellites to calculate highway mileage traversed;

(2) Which computes the appropriate highway use fees for each of the Federal, State, and local governments as the vehicle makes use of the highways;

(3) The data from which is periodically downloaded by the vehicle owner to a collection center for an assessment of highway use fees due in each jurisdiction traversed; and

(4) Which includes methods of ensuring privacy of road users.

The Secretary has assigned the execution and management of the agreement with the University of Iowa to the Office of Policy of the Federal Highway Administration. This study will include 200 participants in the first year and 250 participants in the second year in each of six geographic regions of the country who have been recruited through radio, television, and print media. Persons selected to participate in the field-testing will have agreed to have the necessary on-board computer technology installed in their personal vehicles for testing the mileage data collection technology. Field-testing will be conducted over 2 years with a new

set of participants in each year, 1,200 in the first year and 1,500 in the second. The participants will be asked to provide information every 2 months over the course of their participation in the field test in order to collect data that provides for an analysis of participant opinion on different aspects of the field test, such as privacy of data, level of detail of data transmitted to collection center, billing transmittal, among others. The participants will have a choice of providing their information by means of telephone, internet, or printed survey.

The FHWA published notice of this new information collection and requested comments on the bi-monthly survey component of the study in the **Federal Register** [71 FR 38206, July 5, 2006]. This notice includes information on the recruitment and Global Positioning System installation that was omitted in the initial notice, as well as the information on the survey collection that was included in the initial notice.

In order to meet the requirements of the Study, the Public Policy Center must recruit and select field test participants. The recruitment effort will include advertising in radio, television, and print media seeking individuals to participate in the study. It is expected that in order to achieve the University of Iowa's goal of selecting a total of 2,700 individuals, 1,200 in the first year and 1,500 in the second, to participate in two field tests of 1 year each, the number of individuals responding to the recruitment effort will be 15,000. Of these, an estimated 12,000 will pass through the first qualification screen and therefore be eligible to become candidates for participating in the field study. Those eligible candidates selected to participate in the study will receive training on the study and their participation in it. It will be necessary to install on-board computer systems in the vehicles of those individuals selected to participate, and to remove the systems at the end of the individuals' participation in the study.

The transfer of data from the on-board computer system to the data collection center will be done remotely and require no action on the part of the field

test participant.

The individuals selected to participate in the field testing will be asked to provide information every 2 months over the course of their participation in the field test in order to collect data that provides for an analysis of participant opinion on different aspects of the field test, such as privacy of data, level of detail of data transmitted to the collection center, billing transmittal, among others. The participants will have a choice of

providing their information by means of telephone, internet, or printed survey.

Respondents: Approximately 6,625 respondents to the multi-media recruitment campaign are expected for the first year's effort and approximately 8,375 for the second year's effort—a total of approximately 15,000 for the two recruitment efforts.

Of the respondents to the recruitment campaigns, approximately 5,300 are expected to pass through the initial qualification screening in the first year, and therefore eligible to participate in the field testing, and approximately 6,700 in the second year, a total of approximately 12,000 over the 2-year field-testing period.

Approximately 1,200 field test participants in the first year of field testing and 1,500 in the second year for a total of approximately 2,700 over the 2-year field testing period will receive training on study participation prior to their entrance into the field-testing phase. They will have on-board computer systems installed in their vehicles at the beginning of their participation and removed at the conclusion of their participation. Over the course of the field-testing, participants will be surveyed once every 2 months, for a total of six collections from each over the course of their participation in the study.

Frequency: Each field test year's recruitment, selection, and training efforts will occur once, for a total of two efforts over the course of the study.

Each participant will have on-board computer systems installed in their vehicle once at the beginning of their participation and removed once from their vehicle at the conclusion of their participation.

Each participant will be surveyed once every 2 months, for a total of six collections over the course of their participation in the study.

Estimated Average Burden per Response: The average amount of time spent by a prospective field-test participant in responding to the multimedia recruitment campaign is expected to be 5 minutes. The average time for individuals proceeding to additional screening for inclusion in the study is expected to be 15 minutes. The total amount of time for each individual spent in the recruitment process for participants in the study is expected to be 20 minutes.

Respondents selected for inclusion in the study will spend 5 minutes on average scheduling the training session and the training session itself will last 60 minutes. The total amount of time for each individual spent in the training phase of the study is expected to be 65 minutes.

The average amount of time required for participants to make their vehicle available for installation of the on-board computer system is expected to be 90 minutes. The average amount of time for removal is expected to be 60 minutes. The total amount of time for each individual spent making their vehicle available for on-board system installation and removal is 150 minutes.

The average amount of time to respond to the first five bi-monthly survey collections over the course of the field study is 15 minutes. The average amount of time to respond to the exit survey collection at the end of the field study is 30 minutes. The average total time spent responding to surveys for participants over their involvement in the study is 105 minutes.

The total amount of time for a respondent not selected to participate in the study is expected to be 5 minutes.

The total amount of time spent by a field-test participant who completes the study is expected to be 340 minutes.

Estimated Total Annual Burden Hours: Approximately 552 hours in the first year and 698 in the second year for a total of 1,250 hours over the course of the study for the response to the recruitment campaign.

Approximately 1,325 hours in the first year and 1,675 in the second year for a total of 3,000 over the course of the study for the additional screening to be selected for inclusion in the study.

Approximately 1,300 hours in the first year and 1,625 in the second year for a total of 2,925 hours over the course of the study for participant training.

Approximately 3,000 hours in the first year and 3,750 in the second year for a total of 6,750 hours over the course of the study for the installation and removal of the on-board computer systems to and from the participants' vehicles.

Approximately 2,100 hours in the first year and 2,625 hours in the second year for a total of 4,725 hours over the course of the study for the survey collections.

Total annual burden hours in the first year are expected to be 8,277. Total annual burden hours in the second year are expected to be 10,373 for a total of 18,650 hours over the course of the study.

Electronic Access: Internet users may access all comments received by the U.S. DOT Dockets, Room PL-401, by using the universal resource locator (URL): http://dms.dot.gov, 24 hours each day, 365 days each year. Please follow the instructions online for more information and help.

Authority: The Paperwork Reduction Act of 1995; 44 U.S.C. Chapter 35, as amended; and 49 CFR 1.48.

Issued On: October 3, 2006.

James R. Kabel,

Chief, Management Programs and Analysis Division.

[FR Doc. E6–16683 Filed 10–10–06; 8:45 am] BILLING CODE 4910–22–P

DEPARTMENT OF TRANSPORTATION

Federal Transit Administration

[Docket Number: FTA-2006-25471]

Notice of Proposed Safety and Security Management Circular

AGENCY: Federal Transit Administration (FTA), DOT.

ACTION: Notice of proposed circular and request for comment.

SUMMARY: The Federal Transit Administration (FTA) proposes to issue a Circular on Safety and Security Management Guidance for FTA-funded major capital projects. The proposed circular is for those FTA-funded projects that involve: (1) The construction of a new fixed guideway or extension of an existing fixed guideway; (2) the rehabilitation or modernization of an existing fixed guideway with a total project cost in excess of \$100 million; or (3) projects designated as major capital projects by the Administrator. The Circular, which is located on the DMS Web site, identifies the safety and security management activities to be performed by grantees and the criteria for documenting these activities in the Safety and Security Management Plan (SSMP). FTA is also developing a manual of effective practices to accompany the circular.

DATES: Comments must be received by December 11, 2006. Late filed comments will be considered to the extent practicable.

ADDRESSES: You may submit comments identified by the Document Management System (DMS) Docket Number FTA-2006-25471 by any of the following methods:

- Web site: http://dms.dot.gov. Follow the instructions for submitting comments on the DOT electronic docket site;
 - *Fax:* 202–493–2251;
- *Mail:* Docket Management Facility; U.S. Department of Transportation, 400 Seventh Street, SW., Nassif Building, PL-401, Washington, DC 20590-0001; or
- Hand Delivery: Room PL-401 on the plaza level of the Nassif Building,

400 Seventh Street, SW., Washington, DC, between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays.

Instructions: You must include the agency name (Federal Transit Administration) and the Docket Number (FTA-2006-25471). You should submit two copies of your comments if you submit them by mail. If you wish to receive confirmation that FTA received your comments, you must include a self-addressed, stamped postcard. Note that all comments received will be posted without change to the Department's DMS Web site located at http://dms.dot.gov. This means that if your comment includes any personal identifying information, such information will be made available to users of DMS.

FOR FURTHER INFORMATION CONTACT: For issues regarding safety and security in FTA's project development phases, contact Carlos M. Garay, Office of Engineering, 400 Seventh Street, SW., Washington, DC, 20590, (202) 366-6471; or Carlos.Garay@dot.gov. For issues regarding specific safety and security management activities, contact Levern McElveen, Office of Safety and Security, 400 Seventh Street, SW., Washington, DC, 20590, (202) 366-1651; or Levern.McElveen@dot.gov. For legal issues, contact Bruce Walker, Office of Chief Counsel, Federal Transit Administration, 400 Seventh Street. SW., Room 9316, Washington, DC 20590, (202) 366–4011; or Bruce.Walker@dot.gov.

SUPPLEMENTARY INFORMATION:

Background

FTA's Full Funding Grant Agreement (FFGA) Circular 5200.1A, Chapter II, Section 6, Safety and Security Management Plan, issued on December 5, 2002, contains recommended guidance for grantees with FFGA projects. The guidance identifies specific safety and security management activities that must be performed and documented by the grantee in a Safety and Security Management Plan (SSMP) and submitted to FTA for review and conditional approval with application for FFGA.

Section 3026 of the Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users (SAFETEA-LU), [Pub. L. 109–59, August 10, 2005] now requires "safety and security management" as an element of the Project Management Plan (PMP) to be submitted by grantees for major capital projects. FTA is in the process of developing a proposed rulemaking to fully implement this provision of SAFETEA-LU. In the interim, this

proposed circular identifies specific safety and security management activities to be performed for all major capital projects, as defined in 49 CFR part 633. The circular also proposes guidance regarding how these activities may be documented in the SSMP, which would be submitted as part of the PMP.

I. What is FTA proposing for the SSMP?

For certain major capital projects, commonly referred to as "New Starts," that involve the construction or extension of rail transit, commuter rail. or certain bus service in dedicated lanes, FTA is proposing that the initial version of the SSMP will be submitted with the grantee's request to enter Preliminary Engineering. As part of the PMP, the SSMP will be updated regularly, and evaluated for conditional approval by FTA prior to entry into subsequent project development phases. For other major capital projects, including modernization of existing fixed guideway systems and the purchase of bus and bus-related equipment and facilities, FTA proposes that the SSMP be submitted and updated whenever the PMP is required.

The proposed circular also includes a description of each section to be included in the SSMP and a listing of the evaluation criteria FTA proposes to use in assessing the grantee's development and implementation of the SSMP.

The SSMP will document the grantee's approach to developing management structures and work programs to effectively plan and implement safety and security related elements of major capital projects. The SSMP should also explain how the grantee expects to manage required coordination with external agencies, including the State Safety Oversight Agency (SSOA)—for rail transit projects affected by 49 CFR Part 659, Rail Fixed Guideway Systems; State Safety Oversight; the Federal Railroad Administration (FRA)—for commuter rail projects and rail transit projects with shared use track, limited connections to the general railroad system, and common corridors; and the Transportation Security Administration (TSA)—for projects affected by Security Directives and other TSA requirements and programs.

The proposed circular references other FTA regulations, including 49 CFR Part 633, Project Management Oversight; 49 CFR Part 611, Major Capital Investment Projects; and 49 CFR Part 659, Rail Fixed Guideway Systems; State Safety Oversight. In all cases, when using the proposed circular, the most current regulation will supersede any references to rules that have been cancelled or revised. FTA reserves the right to make page changes to proposed and final circulars regarding updates to other provisions, without subjecting the entire circular to public comment. The Circular can be found on the DMS Web site: http://dms.dot.gov. Please refer to docket number FTA-2006-25471.

II. Why Is FTA Developing the Circular?

This proposed circular is the initial step in providing guidance in meeting the criteria of section 3026 of SAFETEA-LU which amends 49 U.S.C. 5327(a) to require "safety and security management" as an element of the PMP. Historically, grantees for FTA-funded major capital projects have described project safety and security management strategies and controls as sub-elements of other required PMP sections. However, the level to which safety and security were addressed and the specific approaches to ensure safety and security during each phase of project development varied greatly among grantees. As such, it became increasingly difficult for FTA to ensure a consistent approach to safety and security in each major capital project. Likewise, since the publication of Circular 5200.1A in December 2002, grantees have indicated that they do not have sufficient guidance for the consistent implementation of safety and security management activities, nor do they have a clear understanding of the criteria FTA used to evaluate implementation of safety and security activities.

The proposed circular describes specific safety and security activities to be identified and performed for each major capital project, and how these activities should be documented in the SSMP. FTA will then assess the development and implementation of the SSMP as part of the PMP. By describing these activities, the proposed circular will provide guidance for strengthening safety and security management in major capital projects.

III. What Factors Guided FTA's Development of the Circular?

A. Results From Previous Experience With SSMPs for FFGA Projects.

FTA reviewed SSMP submissions made for FFGA projects since December 2002. FTA also evaluated the results of in-depth assessments performed by project management oversight consultants (PMOCs) regarding SSMP development and implementation by grantees with FFGA projects.

FTA found that previously developed SSMPs did not clearly explain the project's organization responsible for managing safety and security. In many instances, staff and contractors assigned to the organization were not identified by name, title, and department. Committees established to support the organization were not clearly identified by name and acronym, and membership was not always listed by title and affiliation. For specific authorities delegated to contractors, grantee staff members or committees were not always clearly identified as responsible for oversight. Organization charts were not always provided, and budgets and schedules were not always developed for safety and security activities.

FTA also determined that by not specifically encouraging the referencing of other safety and security plans and procedures, grantees copied large amounts of text from these other plans into their SSMPs. The resulting documents were much more voluminous than necessary and, in some instances, were difficult to follow and implement. In some cases, it was hard to distinguish the specific activities being performed as part of the SSMP from the grantee's other safety and security programs.

Finally, FTA found that grantees did not always clearly address how the project's existing design and construction verification programs should be used to support safety and security management. For example, grantees did not always explain how their safety and security functions were working with their quality control/ quality assurance functions to obtain verification that safety and security requirements established for their projects were, in fact, addressed in technical specifications and contract documents and in the as-built facilities, installed systems, and procured equipment delivered for their projects.

In another example, grantees did not always explain how the project's activation team was coordinating with the safety and security function to make sure that staffing plans, established qualifications and certifications, training programs, and demonstration activities were sufficient to ensure the readiness of operations and maintenance personnel to support revenue service. In several instances, FTA had difficulty determining how the grantee's safety and security functions were using the project's document control system to ensure the tracking and resolution of "open items" and "work-arounds" that could potentially impact safety and security.

B. New Industry Guidance

FTA also considered new guidance developed for industry since the publication of Circular 5200.1A in December 2002. Specifically, FTA has published a number of documents with recommendations to grantees for addressing safety and security in major capital projects, including: Handbook for Transit Safety and Security Certification (2002); Project Construction and Management Guidelines Update (2003); Public Transportation System Security and Emergency Preparedness Planning Guide (2003); FTA's Top 20 Security Action Items Web site (2003); and Transit Security Design Considerations (2005).

In partnership with the Transit Cooperative Research Program (TCRP) of the Transportation Research Board (TRB), FTA has also funded research that identifies and recommends activities to be performed by grantees to address safety and security in the engineering, design, construction, and operation of transit projects. For example, FTA is currently funding Project J-10G, Making Transportation Tunnels Safe and Secure; Project A-30, Improving Safety Where Light Rail, Pedestrians, and Vehicles Intersect: Project D-10, Audible Signals for Pedestrian Safety in Light Rail Transit Environments; and Project D-11, Design, Operation, and Safety of At-Grade Crossings of Exclusive Busways. These projects build on previous FTA-funded research for TCRP Report 17: Integration of Light Rail Transit into City Streets (1996); TCRP Report 69: Light Rail Service: Pedestrian and Vehicular Safety (2000); TCRP Research Results Digest 51, Second Train Coming Warning Sign: Demonstration Projects (2002); and TCRP Report 86, Volume 4: Public Transportation Security: Intrusion Detection for Public Transportation Facilities Handbook (2003).

Also, since the publication of the 5200.1A Circular, the American Public Transportation Association (APTA) has completed its Rail Transit Standards Program, issuing over 90 standards to support the design, operation and maintenance of rail transit projects. The Federal Highway Administration (FHWA) updated Part 10 of the Manual on Uniform Traffic Control Devices (MUTCD) in 2003, which relates to the design of rail transit grade crossings. Operation Lifesaver, in partnership with FTA and FRA, has developed program materials for use by rail transit grantees regarding public marketing, education,

and communications efforts for rail grade crossings.

C. Federal Security Requirements

Finally, as a result of the events of September 11, 2001, many grantees are now performing extensive vulnerability analyses as part of their major capital projects, following guidance issued by FTA, TSA, or the Department of Homeland Security (DHS) Office of Grants and Training (G&T). Grantees are also designing and specifying the use of security equipment, such as closed circuit television surveillance systems, passenger call boxes, enhanced lighting, access control systems, and intrusion detection systems, following guidance established by consensus-based standards organizations.

Additionally, in 2004, DOT and TSA issued a joint rule-making "Protection of Sensitive Security Information, published at 49 CFR Part 15 and 49 CFR Part 1520, respectively. DOT published "Interim Policies and Procedures for 49 CFR Part 15, Protection of Sensitive Security Information" on June 7, 2005 (a copy is available with this docket). The DOT policy and procedures apply to all DOT employees and to all DOT contractors, grantees, consultants, licensees, and regulated entities that have access to or receive Sensitive Security Information (SSI). Procedures have been established by grantees for managing SSI materials and to guide the sharing of SSI with FTA and other external agencies. FTA also has established procedures for working with grantees regarding the handling of these materials by Regional Offices, Headquarters staff, and PMOCs. Specifically, FTA personnel and PMOCs must comply with the grantee's SSI procedures as established in accordance with 49 CFR Part 15. Depending on the materials being reviewed and the procedures established by grantees, activities may include performing onsite reviews of SSI materials at the grantee's location, not removing SSI materials from specific locations, and ensuring that a grantee escort is available to observe FTA/PMOC review of SSI materials.

IV. What Specific Safety and Security Management Activities Are Required?

To address concerns identified from previous experience with developing and implementing SSMPs, and to reflect changes in available guidance and industry practices, the proposed circular identifies specific safety and security management activities to be performed by grantees for major capital projects. These activities include preparation of a policy statement, signed by the grantee's

executive leadership, endorsing the safety and security activities, as documented in the SSMP. The proposed activities also include the development of a well-defined organization, supported by a budget and schedule, for identifying, resolving, and managing safety and security activities during all development phases of the major capital project.

Further, these proposed activities include specific requirements regarding the conduct of safety and security analysis, the development of safety and security design criteria, the establishment of programs to ensure the training and qualification of operations and maintenance personnel prior to the initiation of revenue service, and the establishment of verification programs to ensure that safety and security design criteria are included in the technical specifications and contract documents for the project and delivered in the final project placed into revenue service.

Finally, the proposed activities ensure the issuance of final safety and security certification for the project, including its operational readiness, and the performance of appropriate coordination throughout the project to address requirements specified by local, State and Federal agencies, including applicable requirements from SSOAs, FRA, and TSA.

V. How Are Safety and Security Activities Documented in the SSMP?

To support consistent development of SSMPs by grantees for major capital projects, Chapter IV of the proposed circular identifies 11 sections required for the SSMP. Each section provides a detailed description of what should be included in the SSMP. The proposed circular, when published in final form will reference a manual being developed by FTA to promote effective practices for safety and security management. This manual will provide examples that may be used by grantees in preparing SSMPs.

VI. Request for Comments

FTA is establishing a docket to receive public comment on the proposed circular. FTA will publish the final circular, which may be revised based on public comment, in a later **Federal Register** notice.

In reviewing the proposed circular, FTA is requesting comments on the following:

1. Required Safety and Security Management Activities

The proposed circular identifies specific safety and security management activities to be performed by grantees for major capital projects. These activities are noted in Chapter II, Section 2, of the proposed SSMP Circular. FTA is interested to learn of opinions regarding these proposed activities and their relevance to ensuring the safety and security of major

capital projects.

Specifically, FTA would like to know if all of the required activities are necessary; if there are activities which should be added; and if grantees currently have programs underway addressing these requirements. Also, for "New Starts" projects requesting entry into Preliminary Engineering (PE), FTA is interested to learn what specific safety and security management activities grantees will perform during PE.

2. Listing of FTA Evaluation Criteria

The proposed circular identifies the criteria to be used by FTA in assessing and evaluating the grantee's performance of required safety and security management activities. These activities are noted in Chapter II, Section 3, of the proposed SSMP Circular. FTA would like to learn if commenters believe that these criteria are appropriate; if there are other criteria that should be considered by FTA, and if grantees believe that they have the project management organization and information management systems in place to meet these criteria.

3. Sensitive Security Information

The proposed circular references the DOT regulation on Sensitive Security Information (see 49 CFR Part 15). FTA has developed procedures to coordinate with grantees regarding their implementation of programs and procedures to identify and protect sensitive security information. FTA is interested in receiving comments regarding how well these procedures have worked in practice, and if there are any suggestions for improvements that should be addressed in the proposed circular.

4. Process for Developing and Updating SSMPs

FTA is seeking comments on the proposed approach to developing and updating SSMPs as part of the PMP. These criteria are found in Chapter III of the proposed circular. Specifically, do grantees require additional guidance regarding the appropriate contents of the SSMP for different project development phases? Do grantees prefer to include the SSMP as a separate chapter of the PMP or referenced as a separate plan within the PMP? Do

grantees with "New Starts" projects believe the proposed circular provides enough information regarding FTA's requirements for the SSMP at entry to Preliminary Engineering, entry to Final Design, application for FFGA, and at other times when circumstances require?

5. Required SSMP Contents

Chapter IV of the proposed circular lists eleven sections to be included in the SSMP developed by the grantee. FTA requests comments regarding these eleven sections. Are the requirements reasonable? Should additional sections or sub-sections be added? Should specific sections or sub-sections be removed? Are the descriptions for any section or sub-section unclear or confusing? Do grantees need additional guidance?

6. Other Comments

FTA also requests comments concerning the costs and benefits associated with meeting guidance in the proposed circular. Grantees are encouraged to comment on the number of hours and/or financial cost associated with implementing the proposed circular's guidance as well as the extent to which following the guidance will assist the grantee in achieving its organizational objectives for safety and security management in major capital projects.

Issued in Washington, DC, this 3rd of October 2006.

James S. Simpson,

Administrator, Federal Transit Administration.

[FR Doc. E6–16684 Filed 10–10–06; 8:45 am] **BILLING CODE 4910–57–P**

DEPARTMENT OF TRANSPORTATION

Surface Transportation Board

[STB Finance Docket No. 34909]

CSX Transportation, Inc., Norfolk Southern Railway Company, and Consolidated Rail Corporation—Joint Use and Operation Exemption

AGENCY: Surface Transportation Board, DoT.

ACTION: Notice of exemption.

SUMMARY: Under 49 U.S.C. 10502, the Board is granting a petition for exemption from the prior approval requirements of 49 U.S.C. 11323–25 for petitioners to provide for the joint use and joint rail freight operations over 7.69 miles of abandoned rail line of the former Staten Island Railway

Corporation 1 in New York and New Jersey, lying generally between the Conrail Chemical Coast Line and points on Staten Island, NY, subject to appropriate employee protective conditions.² The line consists of two segments as follows: (a) The North Shore Line between the end of track at milepost 4.6 at Union Avenue east of Arlington Yard, Richmond County, NY, and milepost 7.4, via the Chemical Coast Connector, at the proposed point of switch at the connection between the Chemical Coast Connector and Conrail's Chemical Coast Line in Union County, NJ, a distance of 2.8 miles; and (b) the Travis Branch between milepost 0.00 Arlington Yard Station and milepost 4.41 in Richmond County, a distance of 4.41 miles. Included within the North Shore Line segment are all tracks in Arlington Yard together with lead tracks on both the east and west ends of the yard, the so-called Wye Connector, that provides a direct connection to the Travis Branch from the North Shore Line and a track designated as the Travis Lead that provides a connection to and from the Travis Branch to the east end of Arlington Yard.³ Petitioners have asked for expedited consideration of the petition. **DATES:** The exemption will be effective

on October 8, 2006. Petitions to reopen must be filed by October 25, 2006.

ADDRESSES: An original and 10 copies of all pleadings, referring to STB Finance Docket No. 34909, must be filed with the Surface Transportation Board, 1925 K Street, NW., Washington, DC 20423–0001. In addition, one copy of all pleadings must be served on petitioners' representatives: Louis E. Gitomer, 600 Baltimore Avenue, Suite 301, Towson, MD 21204, Peter J. Shudtz, 1331

Pennsylvania Avenue NW., Suite 560,

¹ See Staten Island Railway Corporation— Abandonment Exemption—in Richmond County, NY, Docket No. AB–263 (Sub-No. 2X) (ICC served July 3, 1990), and Staten Island Railway Corporation—Abandonment, Docket No. AB–263 (Sub-No. 3) (ICC served Dec. 5, 1991). The lines were subsequently acquired by the New York City Economic Development Corporation (NYCEDC) and the Port Authority of New York and New Jersey (Port Authority).

² Notice of the filing and a request for comments was served and published in the **Federal Register** on August 25, 2006 (71 FR 50500–01). Comments in support of the petition were filed by Mayor Michael R. Bloomberg of the City of New York, NYCEDC and the Port Authority. No comments were filed in opposition.

³ Petitioners concurrently filed a Notice of Modified Certificate of Public Convenience and Necessity to operate the subject line in STB Finance Docket No. 34908, CSX Transportation, Inc., Norfolk Southern Railway Company, and Consolidated Rail Corporation—Modified Rail Certificate. That request was granted by decision served and published in the Federal Register on August 25, 2006 (71 FR 50499–50500).

Washington, DC 20004, and John V. Edwards, Three Commercial Place, Norfolk, VA 23510.

FOR FURTHER INFORMATION CONTACT:

Joseph H. Dettmar, (202) 565–1609. [Assistance for the hearing impaired is available through the Federal Information Relay Service (FIRS) at 1–800–877–8339.]

SUPPLEMENTARY INFORMATION:

Additional information is contained in the Board's decision served on October 5, 2006. To purchase a copy of the full decision, write, e-mail, or call: ASAP Document Solutions, 9332 Annapolis Rd., Suite 103, Lanham, MD 20706; e-mail: asapdc@verizon.net; telephone: (202) 306–4004. [Assistance for the hearing impaired is available through FIRS at 1–800–877–8339.]

Board decisions and notices are available on our Web site at www.stb.dot.gov.

Decided: October 4, 2006.

By the Board, Chairman Nottingham, Vice Chairman Mulvey, Commissioner Buttrey.

Vernon A. Williams,

Secretary.

[FR Doc. E6–16817 Filed 10–10–06; 8:45 am] BILLING CODE 4915–01–P

DEPARTMENT OF THE TREASURY

Internal Revenue Service

Proposed Collection; Comment Request for Form 8816

AGENCY: Internal Revenue Service (IRS), Treasury.

ACTION: Notice and request for comments.

SUMMARY: The Department of the Treasury, as part of its continuing effort to reduce paperwork and respondent burden, invites the general public and other Federal agencies to take this opportunity to comment on proposed and/or continuing information collections, as required by the Paperwork Reduction Act of 1995, Public Law 104–13 (44 U.S.C. 3506(c)(2)(A)). Currently, the IRS is soliciting comments concerning Form 8816, Special Loss Discount Account and Special Estimated Tax Payments for Insurance Companies.

DATES: Written comments should be received on or before December 11, 2006 to be assured of consideration.

ADDRESSES: Direct all written comments to Glenn Kirkland, Internal Revenue Service, Room 6516, 1111 Constitution Avenue, NW., Washington, DC 20224.

FOR FURTHER INFORMATION CONTACT: Requests for additional information or

copies of the form and instructions should be directed to Allan Hopkins, at Internal Revenue Service, Room 6516, 1111 Constitution Avenue, NW., Washington, DC 20224, or at (202) 622–6665, or through the Internet at Allan.M.Hopkins@irs.gov.

SUPPLEMENTARY INFORMATION:

Title: Special Loss Discount Account and Special Estimated Tax Payments for Insurance Companies.

OMB Number: 1545–1130. *Form Number:* 8816.

Abstract: Form 8816 is used by insurance companies claiming an additional deduction under Internal Revenue Code section 847 to reconcile estimated tax payments and to determine their tax benefit associated with the deduction. The information is needed by the IRS to determine that the proper additional deduction was claimed and to insure the proper amount of special estimated tax was computed and deposited.

Current Actions: There are no changes being made to the form at this time.

Type of Review: Extension of a currently approved collection.

Affected Public: Business or other forprofit organizations.

Estimated Number of Respondents: 3,000.

Estimated Time Per Respondent: 6 hr., 37 minutes.

Estimated Total Annual Burden Hours: 19,830.

The following paragraph applies to all of the collections of information covered by this notice:

An agency may not conduct or sponsor, and a person is not required to respond to, a collection of information unless the collection of information displays a valid OMB control number. Books or records relating to a collection of information must be retained as long as their contents may become material in the administration of any internal revenue law. Generally, tax returns and tax return information are confidential, as required by 26 U.S.C. 6103.

Request for Comments: Comments submitted in response to this notice will be summarized and/or included in the request for OMB approval. All comments will become a matter of public record. Comments are invited on: (a) Whether the collection of information is necessary for the proper performance of the functions of the agency, including whether the information shall have practical utility; (b) the accuracy of the agency's estimate of the burden of the collection of information; (c) ways to enhance the quality, utility, and clarity of the information to be collected; (d) ways to

minimize the burden of the collection of information on respondents, including through the use of automated collection techniques or other forms of information technology; and (e) estimates of capital or start-up costs and costs of operation, maintenance, and purchase of services to provide information.

Approved: September 27, 2006.

Glenn Kirkland,

IRS Reports Clearance Officer. [FR Doc. E6–16712 Filed 10–10–06; 8:45 am] BILLING CODE 4830–01–P

DEPARTMENT OF THE TREASURY

Internal Revenue Service

[CO-93-90]

Proposed Collection; Comment Request for Regulation Project

AGENCY: Internal Revenue Service (IRS), Treasury.

ACTION: Notice and request for comments.

SUMMARY: The Department of the Treasury, as part of its continuing effort to reduce paperwork and respondent burden, invites the general public and other Federal agencies to take this opportunity to comment on proposed and/or continuing information collections, as required by the Paperwork Reduction Act of 1995. Public Law 104-13 (44 U.S.C. 3506(c)(2)(A)). Currently, the IRS is soliciting comments concerning an existing final regulation, CO-93-90 (TD 8364), Corporations; Consolidated Returns-Special Rules Relating to Dispositions and Deconsolidations of Subsidiary Stock (§§ 1.337(d)-2 and 1.1502-20).

DATES: Written comments should be received on or before December 11, 2006 to be assured of consideration.

ADDRESSES: Direct all written comments to Glenn Kirkland, Internal Revenue Service, room 6512, 1111 Constitution Avenue, NW., Washington, DC 20224.

FOR FURTHER INFORMATION CONTACT:

Requests for additional information or copies of the regulations should be directed to Larnice Mack at Internal Revenue Service, room 6512, 1111 Constitution Avenue, NW., Washington, DC 20224, or at (202)622–3179, or through the Internet at Larnice.Mack@irs.gov.

SUPPLEMENTARY INFORMATION:

Title: Corporations; Consolidated Returns-Special Rules Relating to Dispositions and Deconsolidations of Subsidiary Stock. OMB Number: 1545–1160. Regulation Project Number: CO–93– 0

Abstract: This regulation prevents elimination of corporate-level tax because of the operation of the consolidated returns investment adjustment rules. Statements are required for dispositions of a subsidiary's stock for which losses are claimed, for basis reductions within 2 years of the stock's deconsolidation, and for elections by the common parent to retain the net operating losses of a disposed subsidiary.

Current Actions: There is no change to this existing regulation.

Type of Review: Extension of a currently approved collection.

Affected Public: Business or other forprofit organizations.

Estimated Number of Respondents: 3,000.

Estimated Time Per Respondent: 2 hours.

Estimated Total Annual Burden Hours: 6,000.

The following paragraph applies to all of the collections of information covered by this notice:

An agency may not conduct or sponsor, and a person is not required to respond to, a collection of information unless the collection of information displays a valid OMB control number. Books or records relating to a collection of information must be retained as long as their contents may become material in the administration of any internal revenue law. Generally, tax returns and tax return information are confidential, as required by 26 U.S.C. 6103.

Request for Comments: Comments submitted in response to this notice will be summarized and/or included in the request for OMB approval. All comments will become a matter of public record. Comments are invited on: (a) Whether the collection of information is necessary for the proper performance of the functions of the agency, including whether the information shall have practical utility; (b) the accuracy of the agency's estimate of the burden of the collection of information; (c) ways to enhance the quality, utility, and clarity of the information to be collected; (d) ways to minimize the burden of the collection of information on respondents, including through the use of automated collection techniques or other forms of information technology; and (e) estimates of capital or start-up costs and costs of operation, maintenance, and purchase of services to provide information.

Approved: September 28, 2006.

Glenn Kirkland,

IRS Reports Clearance Officer. [FR Doc. E6–16713 Filed 10–10–06; 8:45 am] BILLING CODE 4830–01–P

DEPARTMENT OF THE TREASURY

Bureau of the Public Debt

Proposed Collection: Comment Request

ACTION: Notice and request for comments.

SUMMARY: The Department of the Treasury, as part of its continuing effort to reduce paperwork and respondent burden, invites the general public and other Federal agencies to take this opportunity to comment on proposed and/or continuing information collections, as required by the Paperwork Reduction Act of 1995, Public Law 104-13 (44 U.S.C. 3506(c)(2)(A). Currently the Bureau of the Public Debt within the Department of the Treasury is soliciting comments concerning collections of information required to comply with the terms and conditions of FHA debentures.

DATES: Written comments should be received on or before December 11, 2006, to be assured of consideration.

ADDRESSES: Direct all written comments to Bureau of the Public Debt, Vicki S. Thorpe, 200 Third Street, A—4A, Parkersburg, WV 26106—1328, or Vicki. Thorpe@bpd.treas.gov.

FOR FURTHER INFORMATION CONTACT:

Requests for additional information or copies of the form and instructions should be directed to Vicki S. Thorpe, Bureau of the Public Debt, 200 Third Street, Parkersburg, WV 26106–1328, (304) 480–8150.

SUPPLEMENTARY INFORMATION:

Titles: FHA New Account Request; FHA Transaction Request; FHA Debenture Transfer Request. OMB Number: 1535–0120.

Form Numbers: PD F 5366, 5354, and 5367.

Abstract: The information is used to (1) establish a book-entry account; (2) change information on a book-entry account; and (3) transfer ownership of a book-entry account on the HUD system, maintained by the Federal Reserve Bank of Philadelphia.

Current Actions: None.
Type of Review: Extension.
Affected Public: Individuals or
households, businesses or other forprofit.

Estimated Number of Respondents: 300.

Estimated Time Per Respondent: 10 minutes.

Estimated Total Annual Burden Hours: 50.

Request for Comments: Comments submitted in response to this notice will be summarized and/or included in the request for OMB approval. All comments will become a matter of public record. Comments are invited on: (a) Whether the collection of information is necessary for the proper performance of the functions of the agency, including whether the information shall have practical utility; (b) the accuracy of the agency's estimate of the burden of the collection of information; (c) ways to enhance the quality, utility, and clarity of the information to be collected; (d) ways to minimize the burden of the collection of information on respondents, including through the use of automated collection techniques or other forms of information technology; and (e) estimates of capital or start-up costs and costs of operation, maintenance, and purchase of services to provide information.

Dated: October 4, 2006.

Vicki S. Thorpe,

Manager, Graphics, Printing and Records Branch.

[FR Doc. E6–16742 Filed 10–10–06; 8:45 am] BILLING CODE 4810–39–P

U.S.-CHINA ECONOMIC AND SECURITY REVIEW COMMISSION

Notice of Open Meeting To Prepare Annual Report; Advisory Committee: U.S.-China Economic and Security Review Commission

ACTION: Notice of open meeting to prepare Annual Report—October 16–17, 2006, Washington, DC.

SUMMARY: Notice is hereby given of a meeting of the U.S.-China Economic and Security Review Commission.

The Čommission is mandated by Congress to investigate, assess, evaluate and report to Congress annually on the U.S.-China economic and security relationship. The mandate specifically charges the Commission to prepare an annual report to the Congress "regarding the national security implications and impact of the bilateral trade and economic relationship between the United States and the People's Republic of China . . . [that] shall include a full analysis, along with conclusions and recommendations for legislative and administrative actions . . ."

Purpose of Meeting: Pursuant to this

Purpose of Meeting: Pursuant to this mandate, the Commission will meet in Washington, DC on October 16 and 17, 2006, to consider drafts of material for its 2006 Annual Report that have been prepared for its consideration by the Commission staff, and to make modifications to those drafts that Commission members believe are needed.

Topics to Be Discussed: The Commissioners will be considering draft Report sections addressing the following topics:

- China's Regional Activities.
- China's Energy Activities.
- China's Enforcement of Intellectual Property Rights and Its Production of Counterfeit Goods.
- China's Financial System and Its Effect on the United States.
- China's Proliferation To and Relationships With North Korea and Iran.
- China's Media Control Activities. In addition, Commissioners may discuss draft Report sections previously considered at the Commission's August 23 meeting:
- China's Internal Challenges and Their Impact on China's Actions Affecting Other Nations Including the United States.
 - China's Military Modernization.
- The Effect of U.S. and Multilateral Export Controls on China's Military Modernization.
- The Impact of China's Industrial Expansion and Industrial Subsidies on U.S. and Other Markets.
 - China's WTO Compliance.
- China's Impact on the U.S. Auto and Auto Parts Industries.

Date and Time: Monday and Tuesday, October 16–17, 2006, 9:30 a.m. to 4:30 p.m.

Place of Meeting: The meetings will occur in Conference Room 333 on

Monday, October 16 and in Conference Room 235 on Tuesday, October 17 of the Hall of The States, 444 North Capitol Street, NW., Washington, DC 20001. Public seating is limited, and will be available on a "first-come, first-served" basis. Advance reservations are not required.

Accessibility Statement:

- The entirety of this Commission meeting will be open to the public.
- Any member of the public is permitted to file a written statement with the Commission. Such statements may be left with the Commission's Executive Director during the meeting, or mailed or delivered to him at the Commission's office address: 444 North Capitol Street, Suite 602, Washington, DC 20001.
- The Commission's procedures for conducting its Annual Report preparation meetings do *not* provide for members of the public to speak during these meetings.
- The drafts prepared for Commissioners' use and consideration during the meeting are available for public inspection in the Commission's offices (see address above) during its normal office hours of 9 a.m. to 5:30 p.m., Monday through Friday. Any member of the public may request copies of any of these materials, which shall be provided at the Commission's actual cost for photocopying—10 cents per page—with payment to be made in cash in advance.
- During the meeting, at various points the Commission may take breaks from work on its Annual Report to deal with various administrative matters, such as budgetary, scheduling, and personnel matters. Those matters are not

subject to the open meeting requirements of the Federal Advisory Committee Act and at those times, all members of the public will be asked to depart the room.

• The circumstances under which the Commission is permitted to use appropriated funds to pay for food or beverages are limited, and this meeting does not qualify. Therefore, Commissioners have paid out of their own pockets for coffee and other refreshments for their consumption during the meeting, and for lunch; these will *not* be available to guests. Members of the public may obtain refreshments in a carry-out store on the ground floor of the building in which the meeting will be conducted, or may bring refreshments to the meeting from other sources.

For Further Information About This Meeting, Contact: Kathy Michels, Associate Director, U.S.-China Economic and Security Review Commission, 444 North Capitol Street, NW., Suite 602, Washington DC 20001; phone 202–624–1409; e-mail kmichels@uscc.gov.

Authority: Congress created the U.S.-China Economic and Security Review Commission in 2000 in the National Defense
Authorization Act (Public Law 106–398), as amended by Division P of the Consolidated Appropriations Resolution, 2003 (Public Law 108–7), as amended by Public Law 109–108 (November 22, 2005).

Dated: October 5, 2006.

Kathleen J. Michels,

Associate Director, U.S.-China Economic and Security Review Commission.

[FR Doc. E6–16823 Filed 10–10–06; 8:45 am] BILLING CODE 1137–00-P

Wednesday, October 11, 2006

Part II

Department of Agriculture

Office of Energy Policy and New Uses

7 CFR Part 2902

Designation of Biobased Items for Federal Procurement; Proposed Rule

DEPARTMENT OF AGRICULTURE

Office of Energy Policy and New Uses

7 CFR Part 2902

RIN 0503-AA32

Designation of Biobased Items for Federal Procurement

AGENCY: Office of Energy Policy and

New Uses, USDA.

ACTION: Notice of Proposed Rulemaking.

SUMMARY: The U.S. Department of Agriculture (USDA) is proposing to amend the guidelines for designating biobased products for Federal procurement, to add 10 sections to designate the following 10 items within which biobased products would be afforded Federal procurement preference, as provided for under section 9002 of the Farm Security and Rural Investment Act of 2002: Bath and tile cleaners; clothing products; concrete and asphalt release fluids; cutting, drilling, and tapping oils; de-icers; durable films; firearm lubricants; floor strippers; laundry products; and wood and concrete sealers. USDA also is proposing minimum biobased content for each of these items. Once USDA designates an item, procuring agencies are required generally to purchase biobased products within these designated items where the purchase price of the procurement item exceeds \$10,000 or where the quantity of such items or the functionally equivalent items purchased over the preceding fiscal year equaled \$10,000 or more.

DATES: USDA will accept public comments on this proposed rule until December 11, 2006.

ADDRESSES: You may submit comments by any of the following methods. All submissions received must include the agency name and Regulatory Information Number (RIN). The RIN for this rulemaking is 0503–AA32. Also, please identify submittals as pertaining to the "Proposed Designation of Items."

- Federal eRulemaking Portal: http://www.regulations.gov. Follow the instructions for submitting comments.
- E-mail: fb4p@oce.usda.gov. Include RIN number 0503–AA32 and "Proposed Designation of Items" on the subject line. Please include your name and address in your message.
- Mail/commercial/hand delivery:
 Mail or deliver your comments to:
 Marvin Duncan, USDA, Office of the
 Chief Economist, Office of Energy Policy
 and New Uses, Room 4059, South
 Building, 1400 Independence Avenue,
 SW., MS-3815, Washington, DC 20250-3815.

• Persons with disabilities who require alternative means for communication for regulatory information (braille, large print, audiotape, etc.) should contact the USDA TARGET Center at (202)720–2600 (voice) and (202)401–4133 (TDD).

FOR FURTHER INFORMATION CONTACT: Marvin Duncan, USDA, Office of the Chief Economist, Office of Energy Policy and New Uses, Room 4059, South Building, 1400 Independence Avenue SW., MS–3815, Washington, DC 20250–3815; e-mail: mduncan@oce.usda.gov; phone (202) 401–0461. Information regarding the Federal Biobased Products Preferred Procurement Program is available on the Internet at http://www.biobased.oce.usda.gov.

SUPPLEMENTARY INFORMATION: The information presented in this preamble is organized as follows:

- I. Authority
- II. Background
- III. Summary of Today's Proposed Rulemaking
- IV. Designation of Items, Minimum Biobased Contents, and Time Frame
 - A. Background
 - B. Items Proposed for Designation
 - C. Minimum Biobased Contents
- D. Effective Date for Procurement Preference and Incorporation Into Specifications
- V. Where Can Agencies Get More Information on These USDA-Designated Items?
- VI. Regulatory Information
- A. Executive Order 12866: Regulatory Planning and Review
- B. Regulatory Flexibility Act (RFA)
- C. Executive Order 12630: Governmental Actions and Interference With Constitutionally Protected Property Rights
- D. Executive Order 12988: Civil Justice Reform
- E. Executive Order 13132: Federalism
- F. Unfunded Mandates Reform Act of 1995
- G. Executive Order 12372: Intergovernmental Review of Federal Programs
- H. Executive Order 13175: Consultation and Coordination With Indian Tribal Governments
- I. Paperwork Reduction Act
- J. E-Government Act Compliance

I. Authority

The designation of these items is proposed under the authority of section 9002 of the Farm Security and Rural Investment Act of 2002 (FSRIA), 7 U.S.C. 8102 (referred to in this document as "section 9002").

II. Background

Section 9002 of FSRIA, as amended by section 943 of the Energy Policy Act of 2005, Pub. L. 109–58 (Energy Policy Act), provides for the preferred procurement of biobased products by

procuring agencies. Section 943 of the Energy Policy Act amended the definitions section of FSRIA, 7 U.S.C. 8101, by adding a definition of "procuring agency" that includes both Federal agencies and "any person contracting with any Federal agency with respect to work performed under that contract." The amendment also made Federal contractors, as well as Federal agencies, expressly subject to the procurement preference provisions of section 9002 of FSRIA. However, because this program requires agencies to incorporate the preference for biobased products into procurement specifications, the statutory amendment makes no substantive change to the program. USDA amended the Guidelines to incorporate the new definition of "procuring agency" through an interim final rule.

Procuring agencies must procure biobased products within each designated item unless they determine that products within a designated item are not reasonably available within a reasonable period of time, fail to meet the reasonable performance standards of the procuring agencies, or are available only at an unreasonable price. As stated in the Guidelines, biobased products that are merely incidental to Federal funding are excluded from the preferred procurement program. In implementing the preferred procurement program for biobased products, procuring agencies should follow their procurement rules and Office of Federal Procurement Policy guidance on buying non-biobased products when biobased products exist and should document exceptions taken for price, performance, and availability.

USDA recognizes that the performance needs for a given application are important criteria in making procurement decisions. USDA is not requiring procuring agencies to limit their choices to biobased products that fall under the items for designation in this proposed rule. Rather, the effect of the designation of the items is to require procuring agencies to determine their performance needs, determine whether there are qualified biobased products that fall under the designated items that meet the reasonable performance standards for those needs, and purchase such qualified biobased products to the maximum extent practicable as required by section 9002.

Section 9002 also requires USDA to provide information to procuring agencies on the availability, relative price, performance, and environmental and public health benefits of such items and, under section 9002(e)(1)(c), to recommend where appropriate the

minimum level of biobased content to be contained in the procured products.

Overlap with EPA Comprehensive Procurement Guidelines program for recovered content products. Some of the biobased items designated for preferred procurement may overlap with products designated under the Environmental Protection Agency's (EPA) Comprehensive Procurement Guidelines program for recovered content products. Where that occurs, an EPA-designated recovered content product (also known as "recycled content products" or "EPAdesignated products") has priority in Federal procurement over the qualifying biobased product. In situations where USDA believes there may be an overlap, it plans to ask manufacturers of qualifying biobased products to provide additional product and performance information including the various suggested uses of their product and the performance standards against which a particular product has been tested. In addition, depending on the type of biobased product, manufacturers may also be asked to provide other types of information, such as whether the product contains petroleum-, coal-, or natural gas-based components and whether the product contains recovered materials. Federal agencies may also ask manufacturers for information on a product's biobased content and its profile against environmental and human health measures and life cycle costs (the Building for Environmental and Economic Sustainability (BEES) analysis or ASTM International (ASTM) Standard D7075 for evaluating and reporting on environmental performance of biobased products). Such information will assist Federal agencies in determining whether the biobased products in question are, or are not, the same products for the same uses as the recovered content products and will be available on USDA's Web site with its catalog of qualifying biobased products.

Where a biobased item is used for the same purposes and to meet the same requirements as an EPA-designated recovered content product, the Federal agency must purchase the recovered content product. For example, if a biobased hydraulic fluid is to be used as a fluid in hydraulic systems and because "lubricating oils containing rerefined oil" has already been designated by EPA for that purpose, then the Federal agency must purchase the EPAdesignated recovered content product, "lubricating oils containing re-refined oil." If, on the other hand, that biobased hydraulic fluid is to be used to address certain environmental or health requirements that the EPA-designated

recovered content product would not meet, then the biobased product should be given preference, subject to cost, availability, and performance.

Federal Government Purchase of "Green" Products. Three components of the Federal government's green purchasing program are the Biobased Products Preferred Purchasing Program, the Environmental Protection Agency's Comprehensive Procurement Guidelines for products containing recovered materials, and the Environmentally Preferable Products Program. The Office of the Federal Environmental Executive (OFEE) and the Office of Management and Budget (OMB) encourage agencies to implement these components comprehensively when purchasing products and services.

Procuring agencies should note that not all biobased products are "environmentally preferable." For example, unless cleaning products contain no or reduced levels of metals and toxic and hazardous constituents, they can be harmful to aquatic life, the environment, or workers. When purchasing environmentally preferable cleaning products, many Federal agencies specify that products must meet Green Seal standards for institutional cleaning products or that products have been reformulated in accordance with recommendations from the U.S. EPA's Design for the Environment (DfE) program. Both the Green Seal standards and the DfE program identify chemicals of concern in cleaning products. These include zinc and other metals, formaldehyde, ammonia, alkyl phenol ethoxylates, ethylene glycol, and volatile organic compounds. In addition, both require that cleaning products have neutral or less caustic pH.

On the other hand, some biobased products may be better for the environment than some products that meet Green Seal standards for institutional cleaning products or that have been reformulated in accordance with EPA's DfE program. To fully compare products, one must look at the "cradle-to-grave" impacts of the manufacture, use, and disposal of products. Biobased products that will be available for preferred procurement under this program have been assessed as to their "cradle-to-grave" impacts.

One consideration of a product's impact on the environment is whether it introduces (and to what degree) new, fossil carbon into the atmosphere. Qualifying biobased products offer the user the opportunity to manage the carbon cycle and limit the introduction of new, fossil carbon into the atmosphere, whereas non-biobased

products derived from fossil fuels add new, fossil carbon to the atmosphere.

Manufacturers of qualifying biobased products under the Federal Biobased Products Preferred Procurement Program (FB4P) will be able to provide, at the request of Federal agencies, factual information on environmental and human health effects of their products, including the results of the BEES analysis, which examines 11 different environmental parameters, including human health, or the comparable ASTM D7505. Therefore, USDA encourages Federal procurement agencies to examine all available information on the environmental and human health effects of products when making their purchasing decisions.

Green Building Council. More than a dozen Federal agencies use the U.S. Green Building Council's Leadership in **Energy and Environmental Design** (LEED) Green Building Rating Systems for new construction, building renovation, and building operation and maintenance. The systems provide criteria for implementing sustainable design principles in building design, construction, operation, and maintenance. Points are assigned to each criterion, and building projects can be certified to be "certified," "silver," be certified to be "certified," "gold," or "platinum" depending on the number of points for which the project qualifies. LEED for New Construction and Major Renovations (LEED-NC) includes a "Materials & Resources" criterion, with one point allocated for the use of rapidly renewable materials. Thus, the use of biobased construction products can help agencies obtain LEED certification for their building construction projects.

Interagency Council. USDA has created, and is chairing, an "interagency council," with membership selected from among Federal stakeholders to the FB4P. To augment its own research, USDA consults with this council in identifying the order of item designation, manufacturers producing and marketing products that fall within an item proposed for designation, performance standards used by Federal agencies evaluating products to be procured, and warranty information used by manufacturers of end user equipment and other products with regard to biobased products.

Other Preferred Procurement Programs. Federal procurement officials should also note that biobased products may be available for purchase by Federal agencies through the Javits-Wagner-O'Day (JWOD) program. Under this program, members of organizations including the National Industries for the Blind and the National Industries for the Severely Handicapped offer products and services for preferred procurement by Federal agencies. A search of the JWOD online catalog (www.jwod.com) indicated that three of the items being proposed today (bath and tile cleaners, floor strippers, and laundry products) are available through the JWOD program. While none of the specific products within these items are identified in the JWOD online catalog as being biobased products, it is possible that biobased products are available or will be available in the future. Also, because additional categories of products are frequently added to the JWOD program, it is possible that biobased products within other items being proposed for designation today may be available through the JWOD program in the future. Procurement of biobased products through the JWOD program would further the objectives of both the JWOD program and the FB4P program.

III. Summary of Today's Proposed Rulemaking

Today, USDA is proposing to designate the following 10 items for preferred procurement: Bath and tile cleaners; clothing products; concrete and asphalt release fluids; cutting, drilling, and tapping oils; de-icers; durable films; firearm lubricants; floor strippers; laundry products; and wood and concrete sealers. USDA is also proposing minimum biobased content for each of these items (see Section IV.C). Lastly, USDA is proposing a date by which Federal agencies must incorporate designated items into their procurement specifications (see Section ĪV.D).

In today's proposed rulemaking, USDA is providing information on its findings as to the availability, economic and technical feasibility, environmental and public health benefits, and life cycle costs for each of the 10 designated items. Information on the availability, relative price, performance, and environmental and public health benefits of individual products within each of these 10 items is not presented in this notice. Further, USDA has reached an agreement with manufacturers not to publish their names in the **Federal Register** when designating items. This agreement was reached to encourage manufacturers to submit products for testing to support the designation of an item. Once an item has been designated, USDA will encourage the manufacturers of products within the designated item to voluntarily post their names and other contact information on the USDA FB4P Web site.

Warranties. Some of the items being proposed for designation today may affect maintenance warranties. As time and resources allow, USDA will work with manufacturers on addressing any effect the use of biobased products may have on maintenance warranties. At this time, however, USDA does not have information available as to whether or not the manufacturers will state that the use of these products will void maintenance warranties. USDA encourages manufacturers of biobased products to work with original equipment manufacturers (OEMs) to ensure that biobased products will not void maintenance warranties when used. USDA is willing to assist manufacturers of the biobased products, if they find that existing performance standards for maintenance warranties are not relevant or appropriate for biobased products, in working with the appropriate OEMs to develop tests that are relevant and appropriate for the end uses in which biobased products are intended. If despite these efforts there is insufficient information regarding the use of a biobased product and its effect of maintenance warranties, USDA notes that the procurement agent would not be required to buy such a product. As information is available on warranties, USDA will make such information available on its FB4P Web site.

Additional Information. USDA is working with manufacturers and vendors to post all relevant product and manufacturer contact information on the FB4P Web site before a procuring agency asks for it, in order to make the preferred program more efficient. Steps USDA has implemented, or will implement, include: making direct contact with submitting companies through email and phone conversations to encourage completion of product listing; coordinating outreach efforts with intermediate material producers to encourage participation of their customer base; conducting targeted outreach with industry and commodity groups to educate stakeholders on the importance of providing complete product information; participating in industry conferences and meetings to educate companies on program benefits and requirements; and communicating the potential for expanded markets beyond the Federal government, to include State and local governments, as well as the general public markets. Section V provides instructions to agencies on how to obtain this information on products within these items through the following Web site: http://www.biobased.oce.usda.gov.

Comments. USDA invites comment on the proposed designation of these 10

items, including the definition, proposed minimum biobased content, and any of the relevant analyses performed during the selection of these items. In addition, USDA invites comments and information in the following areas:

1. One of the items being proposed for designation (durable plastic films) may overlap with one of the products designated under EPA's Comprehensive Procurement Guidelines for products containing recovered material. To help procuring agencies in making their purchasing decisions between biobased products within the proposed designated items that overlap with products containing recovered material, USDA is requesting product specific information on unique performance attributes, environmental and human health effects, disposal costs, and other attributes that would distinguish biobased products from products containing recovered material as well as non-biobased products.

2. De-icers are used in a variety of applications and settings. In today's proposed rulemaking, this item would not apply to de-icers used at airports to de-ice airplanes and runways. USDA is seeking comment on whether this is appropriate; that is, whether there are differences in the de-icers used at airports and the de-icers used elsewhere that would preclude this item from including airport de-icers. Please provide detailed rationale and information to support your comments.

3. We are proposing a single item designation for bath and tile cleaners. We are seeking comment as to whether there are different performance standards for this item and, if so, whether USDA should consider either creating subcategories within this item, each with its own minimum biobased content, or limiting the scope of the current item and proposing one or more new items for bath and tile cleaners. In your comments, please be sure to identify specific performance standards and rationale for either subdividing the current proposed item or for limiting the scope of the current proposed item and proposing one or more new items for bath and tile cleaners.

4. We have attempted to identify relevant and appropriate performance standards and other relevant measures of performance for each of the proposed items. If you know of other such standards or relevant measures of performance for the proposed items, USDA requests that you submit information identifying such standards and measures, including their name (and other identifying information as necessary), identifying who is using the

standard/measure, and describing the circumstances under which the product is being used.

5. We are proposing a minimum biobased content for biobased clothing based on a projected blend of biobased material with non-qualifying biobased material or with non-biobased material. USDA requests information from manufacturers of biobased clothing on what blends are being used today or that might be reasonably forecast to be used in the future. Please provide specific information, including discussion on why you use or will use particular blends and what those blends levels are or are projected to be.

6. Many biobased products within the items being proposed for designation will have positive environmental and human health attributes. USDA is seeking comments on such attributes in order to provide additional information on the FB4P Web site. This information will then be available to Federal procuring agencies and will assist them in making "best value" purchase decisions. When possible, please provide appropriate documentation to support the environmental and human health attributes you describe.

To assist you in developing your comments, the background information used in proposing these items for designation can be found on the FB4P Web site. All comments should be submitted as directed in the ADDRESSES section above.

IV. Designation of Items, Minimum Biobased Contents, and Time Frame

A. Background

In order to designate items (generic groupings of specific products such as crankcase oils or products that contain qualifying biobased fibers) for preferred procurement, section 9002 requires USDA to consider: (1) The availability of items; and (2) the economic and technological feasibility of using the items, including the life cycle costs of the items.

In considering an item's availability, USDA uses several sources of information. USDA performs Internet searches, contacts trade associations (such as the Biobased Manufacturers Association) and commodity groups, searches the Thomas Register (a database, used as a resource for finding companies and products manufactured in North America, containing over 173,000 entries), and contacts individual manufacturers and vendors to identify those manufacturers and vendors with biobased products within items being considered for designation. USDA uses the results of these same

searches to determine if an item is generally available.

In considering an item's economic and technological feasibility, USDA examines evidence pointing to the general commercial use of an item and its cost and performance characteristics. This information is obtained from the sources used to assess an item's availability. Commercial use, in turn, is evidenced by any manufacturer and vendor information on the availability, relative prices, and performance of their products as well as by evidence of an item being purchased by a procuring agency or other entity, where available. In sum, USDA considers an item economically and technologically feasible for purposes of designation if products within that item are being offered and used in the marketplace.

In considering the life cycle costs of items proposed for designation, USDA uses the BEES analytical tool to test individual products within each proposed item. (Detailed information on this analytical tool can be found on the Web site http://www.bfrl.nist.gov/oae/software/bees.html.) The BEES analytical tool measures the environmental performance and the economic performance of a product.

Environmental performance is measured in the BEES analytical tool using the internationally-standardized and science-based life cycle assessment approach specified in the International Organization for Standardization (ISO) 14000 standards. The BEES environmental performance analysis includes human health as one of its components. All stages in the life of a product are analyzed: Raw material production; manufacture; transportation; installation; use; and recycling and waste management. The time period over which environmental performance is measured begins with raw material production and ends with disposal (waste management). The BEES environmental performance analysis also addresses products made from biobased feedstocks.

Economic performance in the BEES analysis is measured using the ASTM standard life cycle cost method (ASTM E917), which covers the costs of initial investment, replacement, operation, maintenance and repair, and disposal. The time frame for economic performance extends from the purchase of the product to final disposal.

USDA then utilizes the BEES results of individual products within a designated item in its consideration of the life cycle costs at the item level. There is a single unit of comparison associated with each designated item. The basis for the unit of comparison is

the "functional unit," defined so that the products compared are true substitutes for one another. If significant differences have been identified in the useful lives of alternative products within a designated item (e.g., if one product lasts twice as long as another), the functional unit will include reference to a time dimension to account for the frequency of product replacement. The functional unit also will account for products used in different amounts for equivalent service. For example, one surface coating product may be environmentally and economically preferable to another on a pound-for-pound basis, but may require twice the mass to cover one square foot of surface, and last half as long, as the other product. To account for these performance differences, the functional unit for the surface coating item could be "one square foot of application for 20 years" instead of "one pound of surface coating product." The functional unit provides the critical reference point to which all BEES results for products within an item are scaled. Because functional units vary from item to item, performance comparisons are valid only among products within a designated item.

The complete results of the BEES analysis, extrapolated to the item level, for each item proposed for designation in today's proposed rulemaking can be found at http://

www.biobased.oce.usda.gov.

As discussed above, the BEES analysis includes information on the environmental performance, human health impacts, and economic performance. In addition, ASTM D7505, which manufacturers may use in lieu of the BEES analytical tool, provides similar information. USDA is working with manufacturers and vendors to post this information on the FB4P Web site before a procuring agency asks for it, in order to make the preferred procurement program more efficient. As discussed earlier, USDA has also implemented, or will implement, several other steps intended to educate the manufacturers and other stakeholders on the benefits of this program and the need to post this information, including manufacturer contact information, on the FB4P Web site to make it available to procurement officials. Additional information on specific products within the items proposed for designation may also be obtained directly from the manufacturers of the products.

USDA recognizes that information related to the functional performance of biobased products is a primary factor in making the decision to purchase these products. USDA is gathering from manufacturers of biobased products being considered for designation information on industry standard test methods that they are using to evaluate the functional performance of their products. Additional standards are also being identified during meetings of the Interagency council and during the review process for each proposed rule. We have listed under the detailed discussion of each item proposed for designation (presented in Section IV.B) the functional performance test methods identified during the development of this Federal Register notice for these 10 items. While this process identifies many of the relevant standards, USDA recognizes that the performance test methods identified herein do not represent all of the methods that may be applicable for a designated item or for any individual product within the designated item. As noted earlier in this preamble, USDA is requesting identification of other relevant performance standards and measures of performance. As the program becomes fully implemented, these and other additional relevant performance standards will be available on the FB4P Web site.

In gathering information relevant to the analyses discussed above, USDA has made extensive efforts to contact and request information and product samples from representatives of all known manufacturers of products within the items proposed for designation. However, because the submission of information is on a strictly voluntary basis, USDA was able to obtain information and samples only from those manufacturers who were willing voluntarily to invest the resources required to gather and submit the information and samples. USDA used the samples to test for biobased content and the information to conduct the BEES analyses. The data presented are all the data that were submitted in response to USDA requests for information from all known manufacturers of the products within the 10 items proposed for designation. While USDA would prefer to have complete data on the full range of products within each item, the data that were submitted are sufficient to support designation of the items in today's proposed rulemaking.

To propose an item for designation, USDA must have sufficient information on a sufficient number of products within an item to be able to assess its availability and its economic and technological feasibility, including its life cycle costs. For some items, there may be numerous products available.

For other items, there may be very few products currently available. Given the infancy of the market for some items, it is not unexpected that even singleproduct items will be identified. Further, given that the intent of section 9002 is largely to stimulate the production of new biobased products and to energize emerging markets for those products, USDA has determined that the identification of two or more biobased products within an item, or even a single product with two or more suppliers, is sufficient to consider the designation of that item. Similarly, the documented availability, benefits, and life cycle costs of even a very small percentage of all products that may exist within an item are also considered sufficient to support designation.

B. Items Proposed for Designation

USDA uses a model (as summarized below) to identify and prioritize items for designation. Through this model, USDA has identified over 100 items for potential designation under the preferred procurement program. A list of these items and information on the model can be accessed on the USDA biobased program Web site at http://www.biobased.oce.usda.gov.

In general, items are developed and prioritized for designation by evaluating them against program criteria established by USDA and by gathering information from other government agencies, private industry groups, and independent manufacturers. These evaluations begin by asking the following questions about the products within an item:

- Are they cost competitive with non-biobased products?
- Do they meet industry performance standards?
- Are they readily available on the commercial market?

In addition to these primary concerns, USDA then considers the following points:

- Are there manufacturers interested in providing the necessary test information on products within a particular item?
- Are there a number of manufacturers producing biobased products in this item?
- Are there products available in this item?
- What level of difficulty is expected when designating this item?
- Is there Federal demand for the product?
- Are Federal procurement personnel looking for biobased products?
- Will an item create a high demand for biobased feed stock?

• Does manufacturing of products within this item increase potential for rural development?

After completing this evaluation, USDA prioritizes the list of items for designation. USDA then gathers information on products within the highest priority items and, as sufficient information becomes available for groups of approximately 10 items, a new rulemaking package will be developed to designate the items within that group. The list of items may change, with items being added or dropped, and the order in which items are proposed for designation is likely to change because the information necessary to designate an item may take more time to obtain than an item lower on the list.

In today's proposed rulemaking, USDA is proposing to designate 10 items for the preferred procurement program: Bath and tile cleaners; clothing products; concrete and asphalt release fluids; cutting, drilling, and tapping oils; de-icers; durable films; firearm lubricants; floor strippers; laundry products; and wood and concrete sealers. USDA has determined that each of these 10 items meets the necessary statutory requirements—namely, that they are being produced with biobased products and that their procurement by procuring agencies will carry out the following objectives of section 9002:

- To increase demand for biobased products, which would in turn increase demand for agricultural commodities that can serve as feedstocks for the production of biobased products;
- To spur development of the industrial base through value-added agricultural processing and manufacturing in rural communities; and
- To enhance the Nation's energy security by substituting biobased products for products derived from imported oil and natural gas. Further, USDA has sufficient information on these 10 items to determine their availability and to conduct the requisite analyses to determine their biobased content and their economic and technological feasibility, including life cycle costs.

Mature Markets. Section 2902.5(c)(2) of the final guidelines states that USDA will not designate items for preferred procurement that are determined to have mature markets. Mature markets are described as items that had significant national market penetration in 1972. USDA contacted manufacturers, manufacturing associations, and industry researchers to determine if, in 1972, biobased products had a significant market share within

any of the items proposed for designation today. USDA found that biobased products within none of the 10 items proposed for designation today had a significant market share in 1972 and that, generally, the companies that produce biobased products within these proposed designated items have been in business for only 10 to 20 years.

Overlap with EPA-Designated Recovered Content Products. In today's proposed rule, one of the 10 items may overlap with the EPA-designated recovered content product "Nonpaper Office Products: Plastic trash bags. This item is durable plastic films. For this item, USDA is requesting that certain information on the qualifying biobased products be made available by its manufacturers to assist Federal agencies in determining if an overlap exists between durable plastic films and plastic trash bags (the applicable EPAdesignated recovered content product). As noted earlier in this preamble, USDA is requesting information on overlap situations to further help procuring agencies make informed decisions when faced with purchasing a recovered content material product or a biobased product. As this information is developed, USDA will make it available on the FB4P Web site.

Exemptions. When proposing items for preferred procurement under the FB4P, USDA will identify, on an itemby-item basis, any item that would be exempt from preferred procurement on the basis of their use in products and systems designed or procured for combat or combat-related missions. USDA believes it is inappropriate to apply the biobased purchasing requirement to tactical equipment unless the Department of Defense has documented that these products can meet the performance requirements for such equipment and are available in sufficient supply to meet domestic and overseas deployment needs. After evaluating these situations for each of the 10 items being proposed for designation, USDA is proposing to exempt firearm lubricants, de-icers, and clothing products from preferred procurement under the FB4P when used in combat or combat-related missions.

USDA is proposing an exemption for all designated items when used in spacecraft systems and launch support equipment, because failure of such items could lead to catastrophic consequences. Many, if not all, items that USDA is or is planning to designate for preferred procurement are or will be used in space applications. Frequently, such applications used these items in ways that are different from their more "conventional" use on Earth. It is

difficult, if not impossible, to forecast what situations may occur when these items are used in space and how they will perform. Therefore, USDA believes it is reasonable to limit the preferred procurement program to items used in more conventional applications and is proposing to exempt all designated items used in space applications from the FB4P.

For each item being proposed for exemption, the exemption does not extend to contractors performing work for DoD or NASA. For example, if a contractor is producing a part for use on the space shuttle, the metalworking fluid the contractor uses to produce the part should be biobased (provided it meets the specifications for metalworking). The exemption does apply, however, if the product being purchased by the contractor is for use in combat or combat-related missions or for use in space applications. For example, if the part being produced by the contractor would actually be part of the space shuttle, then the exemption applies.

Each of the 10 proposed designated items are discussed in the following sections.

1. Bath and Tile Cleaners

Bath and tile cleaners are products designed to clean deposits on bath tubs, shower doors, shower curtains, bathroom tiles, floors, doors, counter tops, etc. They are available both in concentrated and ready-to-use forms.

As noted earlier in this preamble, USDA is requesting comment on whether there should be one or more subcategories within this item based on required performance properties of the item. For example, bath and tile cleaners used in medical situations might be required to meet different performance standards from those used in households. If this is the case, then there may be differences in the level of biobased content depending on the performance standard to be met. As proposed, USDA is not differentiating between settings in which bath and tile cleaners are used.

Procuring agencies should note that, as discussed in section II of this preamble, not all biobased cleaning products are "environmentally preferable" to non-biobased products. Unless cleaning products have been formulated to contain no (or reduced levels of) metals and toxic and hazardous constituents, they can be harmful to aquatic life, the environment, or workers. When purchasing environmentally preferable cleaning products, Federal agencies must compare the "cradle-to-grave" impacts

of the manufacture, use, and disposal of both biobased and non-biobased products.

For bath and tile cleaners, USDA identified 16 different manufacturers producing 29 individual biobased products. These 16 manufacturers do not necessarily include all manufacturers of biobased bath and tile cleaners, merely those identified during USDA information gathering activities. Information supplied by these manufacturers indicates that these products are typically tested against an industry performance standard and are being used commercially. While other applicable performance standards may exist, applicable industry performance standards against which these products have been typically tested, as identified by manufacturers of products within this item, include:

• Boeing Specification #D6–7127, Cleaning Interiors of Commercial Transport Aircraft.

• Green Seal #GS—37, Green Seal Environmental Standard for General-Purpose, Bathroom, Glass, and Carpet Cleaners Used for Industrial and Institutional Purposes.

USDA contacted procurement officials with various procuring agencies including GSA, several offices within the Defense Logistics Agency, the OFEE, USDA Departmental Administration, the National Park Service, EPA, Oak Ridge National Laboratory, and OMB in an effort to gather information on the purchases of bath and tile cleaners and products within the other nine items proposed for designation today. Communications with these officials lead to the conclusion that obtaining credible current usage statistics and specific potential markets within the Federal government for biobased products within the 10 proposed designated items is not possible at this time. Most of the contacted officials reported that procurement data are reported in higher level groupings of materials and supplies than the proposed designated items. Also, the purchasing of such materials as part of contracted services and with individual purchase cards used to purchase products locally further obscures credible data on purchases of specific products.

USDA also investigated the Web site *FEDBIZOPPS.gov*, a site which lists Federal contract purchase opportunities greater than \$25,000. The information provided on this Web site, however, is for broad categories of products rather than the specific types of products that are included in today's rulemaking. Therefore, USDA has been unable to obtain data on the amount of bath and

tile cleaners purchased by procuring agencies. However, Federal agencies routinely perform cleaning activities, or procure contract services, for cleaning their bathroom facilities. Thus, they have a need for bath and tile cleaners and for services that require the use of bath and tile cleaners. Designation of bath and tile cleaners will promote the use of biobased products, furthering the objectives of this program.

An analysis of the environmental and

human health benefits and the life cycle

costs of biobased bath and tile cleaners was performed for two of the products using the BEES analytical tool. Table 1 summarizes the BEES results for the two bath and tile cleaners. As seen in Table 1, the environmental performance score, which includes human health, ranges from 0.0129 to 0.0130 points per gallon of bath and tile cleaner. The environmental performance score indicates the share of annual per capita U.S. environmental impacts that is

attributable to one gallon of the product, expressed in 100ths of 1 percent. For example, the total amount of criteria air pollutants emitted in the U.S. in one year was divided by the total U.S. population to derive a "criteria air pollutants per person value." The production and use of one gallon of bath and tile cleaner sample A was estimated to contribute 0.000002 percent of this value.

TABLE 1.—SUMMARY OF BEES RESULTS FOR BATH AND TILE CLEANERS

Parameters -	Bath and tile cleaners	
	Sample A	Sample B
BEES Environmental Performance—Total Score ¹	0.0130	0.0129
Acidification (5%)	0.0000	0.0000
Criteria Air Pollutants (6%)	0.0002	0.0001
Ecological Toxicity (11%)	0.0004	0.0052
Eutrophication (5%)	0.0044	0.0003
Fossil Fuel Depletion (5%)	0.0029	0.0031
Global Warming (16%)	0.0024	0.0011
Habitat Alteration (16%)	0.0000	0.0000
Human Health (11%)	0.0010	0.0013
Indoor Air (11%)	0.0000	0.0000
Ozone Depletion (5%)	0.0000	0.0000
Smog (6%)	0.0015	0.0005
Water Intake (3%)	0.0002	0.0013
Economic Performance (Life Cycle Costs (\$)) 2	1.69	7.43
First Cost	1.69	7.43
Future Cost (3.9%)	(3)	(3)
Functional Unit	1 gallon of bath	and tile cleaner.

¹ Numbers in parentheses indicate weighting factor.

When evaluating the information presented in Table 1, as well as in the subsequent tables presented in this preamble, it should be noted that comparisons of the environmental performance scores are valid only among products within a designated item. Thus, comparisons of the scores presented in Table 1 and the scores presented in tables for other proposed designated items are not meaningful.

The numbers in parentheses following each of the 12 environmental impacts listed in the tables in this preamble indicate weighting factors. The weighting factors represent the relative importance of the 12 environmental impacts, including human health impacts, that contribute to the BEES Environmental Score. They are derived from lists of the relative importance of these impacts developed by the EPA Science Advisory Board for the purpose of advising EPA as to how best to allocate its limited resources among environmental impact areas. Note that a

lower Environmental Performance score is better than a higher score.

Life cycle costs presented in the tables in this preamble are per the appropriate functional unit for the proposed designated item. Future costs are discounted to present value using the OMB discount rate of 3.9 percent.

The life cycle costs of the submitted bath and tile cleaners range from \$1.69 to \$7.43 (present value dollars) per gallon. Present value dollars presented in this preamble represent the sum of all costs associated with a product over a fixed period of time, including any applicable costs for purchase, installation, replacement, operation, maintenance and repair, and disposal. Present value dollars presented in this preamble reflect 2006 dollars. Dollars are expressed in present value terms to adjust for the effects of inflation. The complete results of the BEES analysis, extrapolated to the item level, for each item proposed for designation in today's proposed rulemaking can be found at http://www.biobased.oce.usda.gov.

2. Clothing Products

Clothing products are coverings designed to be worn on a person's body. These products include coverings for the torso and limbs, as well as coverings for the hands, feet, and head. While this item applies to all types of clothing, some products within this item may not be applicable to specialized types of clothing, such as those categorized as person protective devices. Procuring agencies, therefore, need to assess an individual product's performance specifications for applicability for such specialized types of clothing.

For the reasons cited earlier in this notice, USDA is proposing to exempt this item from preferred procurement under the FB4P when used in products and systems designed or procured for combat or combat-related missions and in spacecraft systems and launch support equipment.

For biobased clothing products, USDA identified 3 different manufacturers producing 5 individual biobased products. These 3

²Costs are per functional unit.

³ For this item, no significant/quantifiable performance or durability differences were identified among competing alternative products. Therefore, future costs were not calculated.

manufacturers do not necessarily include all manufacturers of biobased clothing products, merely those identified during USDA information gathering activities. Information supplied by these manufacturers indicates that many of these products are typically tested against multiple industry standards and are being used commercially. While other applicable performance standards may exist, applicable industry performance standards against which these products have been typically tested, as identified by manufacturers of products within this item, include:

 NATICK Military Wicking Rate of Fabric;

- NATICK Military Air Permeability;NATICK Military Fabric Count;
- NATICK Military Weight;
- NATICK Military Seam Strength; NATICK Military Burst Strength;
- NATICK Military MVT Rate;
- NATICK Military pH; and
- NATICK Military Dimensional Stability.

USDA attempted to gather data on the potential market for biobased products within the Federal government as discussed in the section on bath and tile cleaners. These attempts were largely unsuccessful. However, various Federal agencies procure clothing products for use by their employees. Thus, they have a need for clothing products. Designation of clothing products will

promote the use of biobased products, furthering the objectives of this program.

An analysis of the environmental and human health benefits and the life cycle costs of biobased clothing products was performed for one of the products using the BEES analytical tool. Table 2 summarizes the BEES results for the clothing product. As seen in Table 2, the environmental performance score, which includes human health, is 0.0143 points per one XL T-shirt. The environmental performance score indicates the share of annual per capita U.S. environmental impacts that is attributable to one case of the product, expressed in 100ths of 1 percent.

TABLE 2.—SUMMARY OF BEES RESULTS FOR CLOTHING PRODUCTS

	Clothing products
Parameters	
BEES Environmental Performance—Total Score Acidification (5%)	0.0143
Acidification (5%)	0.0000
Criteria Air Pollutants (6%)	0.0001
Ecological Toxicity (11%)	0.0010
Eutrophication (5%)	0.0002
Fossil Fuel Depletion (5%)	0.0073
Global Warming (16%) Habitat Alteration (16%) Human Health (11%) Indoor Air (11%) Ozone Depletion (5%) Smog (6%) Water Intake (3%)	0.0019
Habitat Alteration (16%)	0.0000
Human Health (11%)	0.0024
Indoor Air (11%)	0.0000
Ozone Depletion (5%)	0.0000
Smog (6%)	0.0006
Water Intake (3%)	0.0008
Economic Performance (Life Cycle Cosis (\$)) 2	12.50
FIIST COST	12.50
Future Cost (3.9%)	(3)
Functional Unit	(4)

¹ Numbers in parentheses indicate weighting factor.

⁴ One XL T-shirt.

The life cycle costs of the submitted clothing product is \$12.50 (present value dollars) per XL T-shirt.

3. Concrete and Asphalt Release Fluids

Concrete and asphalt release fluids are products designed to provide a lubricating barrier between the composite surface materials (e.g., concrete or asphalt) and the container (e.g., wood or metal forms, truck beds, roller surfaces, etc.). They provide a non-sticking surface to help prevent waste and to improve clean up procedures.

For reasons cited earlier in this notice, USDA is proposing to exempt this item from preferred procurement under FB4P when used in spacecraft systems and launch support equipment.

For biobased concrete and asphalt release fluids, USDA identified 23

different manufacturers producing 37 individual products. These 23 manufacturers do not necessarily include all manufacturers of biobased concrete and asphalt release fluids, merely those identified during USDA information gathering activities. Information supplied by these manufacturers indicates that these products are typically tested against multiple industry performance standards and are being used commercially. While other applicable performance standards may exist, applicable industry performance standards against which these products have been typically tested, as identified by manufacturers of products within this item, include:

 ASTM D445–04e2, Standard Test Method for Kinematic Viscosity of

Transparent and Opaque Liquids (and the Calculation of Dynamic Viscosity);

- ASTM 5864–00, Standard Test Method for Determining Aerobic Aquatic Biodegradation of Lubricants or Their Components;
- ASTM D92, Standard Test Method for Flash and Fire Points by Cleveland Open Cup Tester; and
- ASTM D97, Standard Test Method for Pour Point of Petroleum Products.

USDA attempted to gather data on the potential market for biobased products within the Federal government as discussed in the section on bath and tile cleaners. These attempts were largely unsuccessful. However, Federal agencies routinely procure such products for paving and construction, or contract for paving and construction services involving the use of such products. Thus, they have a need for

²Costs are per functional unit.

³ For this item, no significant/quantifiable performance or durability differences were identified among competing alternative products. Therefore, future costs were not calculated.

concrete and asphalt release fluids and for services that use concrete and asphalt release fluids. Designation of biobased concrete and asphalt release fluids will promote the use of biobased products, furthering the objectives of this program.

An analysis of the environmental and human health benefits and the life cycle

costs of biobased concrete and asphalt release fluids was performed for two of the products using the BEES analytical tool. Table 3 summarizes the BEES results for the two biobased concrete and asphalt release fluids. As seen in Table 3, the environmental performance score, which includes human health, ranges from 0.5194 to 0.7453 points per

1000 gallons of release product (diluted and ready for use). The environmental performance score indicates the share of annual per capita U.S. environmental impacts that is attributable to 1000 gallons of the product (diluted and ready for use), expressed in 100ths of 1 percent.

TABLE 3.—SUMMARY OF BEES RESULTS FOR CONCRETE AND ASPHALT RELEASE FLUIDS

Parameters	Concrete and asphalt release fluids	
	Sample A	Sample B
BEES Environmental Performance—Total Score ¹	0.7453	0.5194
Acidification (5%)	0.0001	0.0000
Criteria Air Pollutants (6%)	0.0077	0.0053
Ecological Toxicity (11%)	0.0827	0.0252
Eutrophication (5%)	0.0121	0.0290
Fossil Fuel Depletion (5%)	0.3097	0.2624
Global Warming (16%)	0.0927	0.0616
Habitat Alteration (16%)	0.0000	0.0000
Human Health (11%)	0.1203	0.0883
Indoor Air (11%)	0.0000	0.0000
Ozone Depletion (5%)	0.0000	0.0000
Smog (6%)	0.0526	0.0123
Water Intake (3%)	0.0674	0.0353
Economic Performance (Life Cycle Costs (\$)) 2	604.82	154.97
First Cost	604.82	154.97
Future Cost (3.9%)	(3)	(3)
Functional Unit	1,000 gallons of (diluted and re	

¹ Numbers in parentheses indicate weighting factor.

The life cycle cost of the submitted concrete and asphalt release fluids was \$154.97 to \$604.82 (present value dollars) per 1000 gallons of product, diluted and ready for use.

4. Cutting, Drilling, and Tapping Oils

Cutting, drilling, and tapping oils are products designed to provide lubrication and reduce wear and friction on the contact parts for cutting, drilling, and tapping machinery, helping these parts last longer. This item only applies to neat oils, and does not apply to water emulsions.

For the reasons cited earlier in this notice, USDA is proposing to exempt this item from preferred procurement under the FB4P when used in products and systems designed or procured for spacecraft systems and launch support equipment.

For biobased cutting, drilling, and tapping oils, USDA identified 13 different manufacturers producing 33 individual biobased products. These 13 manufacturers do not necessarily include all manufacturers of biobased cutting, drilling, and tapping oils, merely those identified during USDA

information gathering activities. Information supplied by these manufacturers indicates that many of these products have been tested against multiple industry performance standards and are being used commercially. While other applicable performance standards may exist, applicable industry performance standards against which these products have been typically tested, as identified by manufacturers of products within this item, include:

- ASTM D130, Standard Test Method for Corrosiveness to Copper from Petroleum Products by Copper Strip Test;
- ASTM D1401–02, Standard Test Method for Water Separability of Petroleum Oils and Synthetic Fluids;
- ASTM D1748–02, Standard Test Method for Rust Protection by Metal Preservatives in the Humidity Cabinet;
- ASTM D2266–01, Standard Test Method for Wear Preventive Characteristics of Lubricating Grease (Four-Ball Method);
- ASTM D2270–04, Standard Practice for Calculating Viscosity Index From Kinematic Viscosity at 40 and 100 °C;

- ASTM D2783–03, Standard Test Method for Measurement of Extreme-Pressure Properties of Lubricating Fluids (Four-Ball Method);
- ASTM D287–92(2000)e1, Standard Test Method for API Gravity of Crude Petroleum and Petroleum Products (Hydrometer Method);
- ASTM D2982–98(2004), Standard Test Method for Detecting Glycol-Base Antifreeze in Used Lubricating Oils;
- ASTM D2983–04a, Standard Test Method for Low-Temperature Viscosity of Lubricants Measured by Brookfield Viscometer;
- ASTM D3233–93(2003), Standard Test Methods for Measurement of Extreme Pressure Properties of Fluid Lubricants (Falex Pin and Vee Block Methods);
- ASTM D455, Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and the Calculation of Dynamic Viscosity);
- ASTM D56–05, Standard Test Method for Flash Point by Tag Closed Cup Tester;
- ASTM D5864–00, Standard Test Method for Determining Aerobic

²Costs are per functional unit.

³For this item, no significant/quantifiable performance or durability differences were identified among competing alternative products. Therefore, future costs were not calculated.

Aquatic Biodegradation of Lubricants or Their Components;

- ASTM D5985, Standard Test Method for Pour Point of Petroleum Products (Rotational Method);
- ASTM D665, Standard Test Method for Rust-Preventing Characteristics of Inhibited Mineral Oil in the Presence of Water:
- ASTM D92, Standard Test Method for Flash and Fire Points by Cleveland Open Cup Tester;
- ASTM D97, Standard Test Method for Pour Point of Petroleum Products;
- Environmental Protection Agency #600/4–90–027, Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms; and

• Environmental Protection Agency #560/6–82–003, Biodegradability.

USDA attempted to gather data on the potential market for biobased products within the Federal government as discussed in the section on bath and tile cleaners. These attempts were largely unsuccessful. However, Federal agencies routinely own and operate cutting, drilling, and tapping machinery. In addition, many Federal agencies contract for services involving the use of such equipment. Thus, they have a need for cutting, drilling, and tapping oils and for services that require the use of machinery which requires cutting, drilling, and tapping oils. Designation of cutting, drilling, and tapping oils will promote the use of

biobased products, furthering the objectives of this program.

An analysis of the environmental and human health benefits and the life cycle costs of cutting, drilling, and tapping oils was performed for two of the products using the BEES analytical tool. Table 4 summarizes the BEES results for the two tapping oils. As seen in Table 4, the environmental performance score, which includes human health, ranges from 0.0296 to 0.0607 points per gallon of tapping oil. The environmental performance score indicates the share of annual per capita U.S. environmental impacts that is attributable to one gallon of tapping oil, expressed in 100ths of 1 percent.

TABLE 4.—SUMMARY OF BEES RESULTS FOR CUTTING, DRILLING, AND TAPPING OILS

Parameters.	Cutting, drilling, and tapping oils	
Parameters	Sample A	Sample B
BEES Environmental Performance—Total Score ¹	0.0607	0.0296
Acidification (5%)	0.0000	0.0000
Criteria Air Pollutants (6%)	0.0002	0.0002
Ecological Toxicity (11%)	0.0018	0.0067
Eutrophication (5%)	0.0003	0.0051
Fossil Fuel Depletion (5%)	0.0163	0.0070
Global Warming (16%)	0.0334	0.0038
Habitat Alteration (16%)	0.0000	0.0000
Human Health (11%)	0.0068	0.0027
Indoor Air (11%)	0.0000	0.0000
Ozone Depletion (5%)	0.0000	0.0000
Smog (6%)	0.0012	0.0017
Water Intake (3%)	0.0007	0.0024
Economic Performance (Life Cycle Costs(\$)) 2	152.15	20.00
First Cost	152.15	20.00
Future Cost (3.9%)	(3)	(3)
Functional Unit	One gallon o	of tapping oil

¹ Numbers in parentheses indicate weighting factor.

The life cycle cost of the submitted tapping oils range from \$20.00 to \$152.15 (present value dollars) per gallon of tapping oil.

5. De-icers

De-icers are agents that aid in the removal of snow and ice. For the purposes of this rulemaking, this category does not include de-icers used at airports to de-ice airplanes and runways.

For the reasons cited earlier in this notice, USDA is proposing to exempt this item from preferred procurement under the FB4P when used in products and systems designed or procured for combat or combat-related missions and in spacecraft systems and launch support equipment.

For biobased de-icers, USDA identified 3 different manufacturers

producing 9 individual biobased products. These 3 manufacturers do not necessarily include all manufacturers of biobased de-icers, merely those identified during USDA information gathering activities. Information supplied by these manufacturers indicates that these products are typically tested against one or more industry performance standards and are being used commercially. While other applicable performance standards may exist, applicable industry performance standards against which these products have been typically tested, as identified by manufacturers of products within this item, include:

• National Association of Corrosion Engineers Standard TM-01-69 (1976 rev.)—Standardizes immersion corrosion testing and provides a consensus on the technology in this field of laboratory corrosion testing;

- Pacific Northwest Snowfighters— Standard Methods for the Examination of Water and Wastewater; and
- American Association of State Highway & Transportation Officials.

USDA attempted to gather data on the potential market for biobased products within the Federal government as discussed in the section on bath and tile cleaners. These attempts were largely unsuccessful. However, many Federal agencies routinely perform, or procure contract services to perform, snow and ice removal activities. Thus, they have a need for de-icers. Designation of biobased de-icers will promote the use of biobased products, furthering the objectives of this program.

²Costs are per functional unit.

³ For this item, no significant/quantifiable performance or durability differences were identified among competing alternative products. Therefore, future costs were not calculated.

An analysis of the environmental and human health benefits and the life cycle costs of biobased de-icers was performed for one of the products using the BEES analytical tool. Table 5 summarizes the BEES results for this biobased de-icer. As seen in Table 5, the environmental performance score, which includes human health, is 0.0173 points per 1,500 square yards of surface area. The environmental performance score indicates the share of annual per

capita U.S. environmental impacts that is attributable to 1,500 square yards of surface area, expressed in 100ths of 1 percent.

TABLE 5.—SUMMARY OF BEES RESULTS FOR DE-ICERS

Davamatava	De-icer
Parameters	
BEES Environmental Performance—Total Score ¹	0.0173
BEES Environmental Performance—Total Score ¹	0.0000
Criteria Air Pollutants (6%) Ecological Toxicity (11%) Eutrophication (5%) Fossil Fuel Depletion (5%)	0.0001
Ecological Toxicity (11%)	0.0025
Eutrophication (5%)	0.0002
Fossil Fuel Depletion (5%)	0.0072
Global Warming (16%) Habitat Alteration (16%) Human Health (11%) Indoor Air (11%) Ozone Depletion (5%) Smog (6%) Water Intake (3%)	0.0024
Habitat Alteration (16%)	0.0000
Human Health (11%)	0.0037
Indoor Air (11%)	0.0000
Ozone Depletion (5%)	0.0000
Smog (6%)	0.0010
Water Intake (3%)	0.0002
Economic Performance (Life Cycle Costs(\$)) 2	3.75
First Cost	3.75
Future Cost (3.9%)	(3)
Functional Unit	(4)

¹ Numbers in parentheses indicate weighting factor.

²Costs are per functional unit.

41,500 square yards of surface area.

The life cycle cost of the submitted biodegradable cutlery was \$3.75 (present value dollars) per 1,500 square yards of surface area.

6. Durable Plastic Films

Durable plastic films are products such as bags and packaging materials. They are designed to resist water, ammonia, and other compounds, and do not readily biodegrade. This item applies to all types of applications, including construction barriers. However, some products within this item may not be applicable to all applications, such as construction barriers, which may require specific moisture protection properties. Procuring agencies, therefore, need to assess an individual product's performance specifications before using in specific applications, such as construction barriers.

Qualifying products within this item may overlap with the EPA-designated recovered content product: Nonpaper Office Products: Plastic trash bags.

For the reasons cited earlier in this notice, USDA is proposing to exempt this item from preferred procurement under the FB4P when used in spacecraft systems and launch support equipment.

For biobased durable plastic films, USDA identified 2 different manufacturers producing 2 individual biobased products. These 2 manufacturers do not necessarily include all manufacturers of biobased durable plastic films, merely those identified during USDA information gathering activities. Information supplied by these manufacturers indicates that these products are typically tested against one relevant measure of performance and are being used commercially. While applicable performance standards and other measures of performance may exist, applicable industry performance standards and relevant measures of performance against which these products have been typically tested, as identified by manufacturers of products within this item and by others, include:

 Building Performance Institute, Inc. USDA attempted to gather data on the potential market for biobased products within the Federal government as discussed in the section on bath and tile cleaners. These attempts were largely unsuccessful. However, Federal agencies routinely utilize durable plastic films in a variety of applications, including building cleaning and maintenance, landscaping and construction activities, and packaging activities, or procure services that use these products. Thus, they have a need for durable plastic films and for services that require the use of durable plastic films. Designation of durable plastic films will promote the use of biobased products, furthering the objectives of this program.

An analysis of the environmental and human health benefits and the life cycle costs of biobased durable plastic films was performed for one of the products using the BEES analytical tool. Table 6 summarizes the BEES results for this durable plastic film. As seen in Table 6, the environmental performance score, which includes human health, is 0.0125 per kilogram of durable film. The environmental performance score indicates the share of annual per capita U.S. environmental impacts that is attributable to one kilogram of durable film, expressed in 100ths of 1 percent.

³ For this item, no significant/quantifiable performance or durability differences were identified among competing alternative products. Therefore, future costs were not calculated.

TABLE 6.—SUMMARY OF BEES RESULTS FOR DURABLE PLASTIC FILMS

Parameters	Durable plastic film
	Sample A
BEES Environmental Performance—Total Score ¹	0.0125
Acidification (5%) Criteria Air Pollutants (6%)	0.0000
Criteria Air Pollutants (6%)	0.0001
Ecological Toxicity (11%)	0.0004
Ecological Toxicity (11%)	0.0004
Fossil Fuel Depletion (5%)	0.0077
Global Warming (16%)	0.0013
Habitat Alteration (16%)	0.0000
Human Health (11%)	0.0016
Indoor Air (11%)	0.0000
Ozone Depletion (5%)	0.0000
Smog (6%)	0.0008
Water Intake (3%)	0.0002
Ozone Depletion (5%) Smog (6%) Water Intake (3%) Economic Performance (Life Cycle Costs(\$)) ²	2.32
First Cost	2.32
Future Cost (3.9%)	(3)
Functional Unit	(4)

¹ Numbers in parentheses indicate weighting factor.

The life cycle cost of the submitted durable plastic film is \$2.32 (present value dollars) per kilogram of durable plastic film.

7. Firearm Lubricants

Firearm lubricants are used in firearms to reduce the friction and wear between the moving parts of a firearm. They may also help keep the weapon clean and prevent the formation of deposits that could cause the weapon to jam.

For the reasons cited earlier in this notice, USDA is proposing to exempt this item from preferred procurement under the FB4P when used in products and systems designed or procured for combat or combat-related missions and in spacecraft systems and launch support equipment.

For biobased firearm lubricants, USDA identified 2 different manufacturers producing 2 individual biobased products. The 2 manufacturers do not necessarily include all manufacturers of biobased firearm lubricants, merely those identified during USDA information gathering activities.

Information supplied by these manufacturers indicates that these

products have been tested against multiple industry performance standards and are being used commercially. While other applicable performance standards may exist, applicable industry performance standards against which these products have been typically tested, as identified by manufacturers of products within this item, include:

- ASTM D130, Standard Test Method for Corrosiveness to Copper from Petroleum Products by Copper Strip Test
- ASTM D445, Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and the Calculation of Dynamic Viscosity);
- ASTM D5864–00, Standard Test Method for Determining Aerobic Aquatic Biodegradation of Lubricants or Their Components
- ASTM D5985, Standard Test Method for Pour Point of Petroleum Products (Rotational Method);
- ASTM D665, Standard Test Method for Rust-Preventing Characteristics of Inhibited Mineral Oil in the Presence of Water; and
- ASTM D93, Standard Test Methods for Flash-Point by Pensky-Martens Closed Cup Tester.

USDA attempted to gather data on the potential market for biobased products within the Federal government as discussed in the section on bath and tile cleaners. These attempts were largely unsuccessful. However, Federal agencies routinely use, or procure contract services to provide, the types of firearms that require the use of firearm lubricants. Thus, they have a need for firearm lubricants will promote the use of biobased products, furthering the objectives of this program.

An analysis of the environmental and human health benefits and the life cycle costs of biobased firearm lubricants was performed for two of the products using the BEES analytical tool. Table 7 summarizes the BEES results for the two firearm lubricants. As seen in Table 7. the environmental performance score, which includes human health, ranges from 0.0236 to 0.0501 points per gallon of firearm lubricant. The environmental performance score indicates the share of annual per capita U.S. environmental impacts that is attributable to one gallon of firearm lubricant, expressed in 100ths of 1 percent.

TABLE 7.—SUMMARY OF BEES RESULTS FOR FIREARM LUBRICANTS

Parameters	Firearm lubricants	
Fatanetels	Parameters Sample A	Sample B
BEES Environmental Performance—Total Score ¹	0.0501	0.0236
Acidification (5%)	0.0000	0.0000

²Costs are per functional unit.

³ For this item, no significant/quantifiable performance or durability differences were identified among competing alternative products. Therefore, future costs were not calculated.

⁴One kilogram of durable film.

Parameters	Firearm lubricants	
	Sample A	Sample B
Criteria Air Pollutants (6%) Ecological Toxicity (11%) Eutrophication (5%) Fossil Fuel Depletion (5%)	0.0002	0.0002
Ecological Toxicity (11%)	0.0061	0.0043
Eutrophication (5%)	0.0110	0.0007
Fossil Fuel Depletion (5%)	0.0154	0.0091
Global Warming (16%)	0.0044	0.0040
Habitat Alteration (16%)	0.0000	0.0000
Human Health (11%)	0.0056	0.0035
Indoor Air (11%)	0.0000	0.0000
Ozone Depletion (5%)	0.0000	0.0000
Smog (6%)	0.0032	0.0010
Water Intake (3%)	0.0042	0.0008
Economic Performance (Life Cycle Costs(\$)) 2	42.13	4.00
First Cost	42.13	4.00
Future Cost (3.9%)	(3)	(3)

TABLE 7.—SUMMARY OF BEES RESULTS FOR FIREARM LUBRICANTS—Continued

² Costs are per functional unit.

Functional Unit

The life cycle cost of the submitted firearm lubricants ranges from \$4.00 to \$42.13 (present value dollars) per gallon of firearm lubricant.

8. Floor Strippers

Floor strippers are products formulated to loosen waxes, resins, or varnishes from floor surfaces. They can be in either liquid or gel form, and may also be used with or without mechanical assistance.

For the reasons cited earlier in this notice, USDA is proposing to exempt this item from preferred procurement under the FB4P when used in spacecraft systems and launch support equipment.

Procuring agencies should note that, as discussed in section II of this preamble, not all biobased cleaning products are "environmentally preferable" to non-biobased products. Unless cleaning products have been formulated to contain no (or reduced levels of) metals and toxic and hazardous constituents, they can be harmful to aquatic life, the environment, or workers. When purchasing environmentally preferable cleaning products, Federal agencies must compare the "cradle-to-grave" impacts of the manufacture, use, and disposal of both biobased and non-biobased

For biobased floor strippers, USDA identified 10 different manufacturers producing 12 individual biobased

products. These 12 manufacturers do not necessarily include all manufacturers of biobased floor strippers, merely those identified during USDA information gathering activities. Information supplied by these manufacturers indicates that these products are typically tested against one or more industry performance standards and are being used commercially. While other applicable performance standards may exist, applicable industry performance standards against which these products have been typically tested, as identified by manufacturers of products within this item, include:

- ASTM D6400–04, Standard Specification for Compostable Plastics;
- ASTM D877–02e1, Standard Test Method for Dielectric Breakdown Voltage of Insulating Liquids Using Disk Electrodes;
- Boeing Specification #D6-7127— Cleaning Interiors of Commercial Transport Aircraft;
- Federal Test Method Standard No. 536A;
- South Coast Air Quality Management District Method #313–91— Determination of volatile organic compounds (VOCs) by gas chromatography/mass spectrometry;
- ARP 1755B—Effect of Cleaning Agents on Aircraft Engine Material; and
- U.S. Navy #Navsea 6840—U.S. Navy surface ship (non-submarine)

authorized chemical cleaning products and dispensing systems.

One gallon of firearm lubricant.

 Green Seal #GS-34—Standard establishing environmental requirements for cleaning/degreasing agents;

USDA attempted to gather data on the potential market for biobased products within the Federal government as discussed in the section on bath and tile cleaners. These attempts were largely unsuccessful. However, Federal agencies routinely use, or procure contract services that use, floor strippers in cleaning and maintenance activities. Thus, they have a need for floor strippers and for services that require the use of floor strippers. Designation of floor strippers will promote the use of biobased products, furthering the objectives of this program.

An analysis of the environmental and human health benefits and the life cycle costs of biobased floor strippers was performed for one of the products using the BEES analytical tool. Table 8 summarizes the BEES results for this floor stripper. As seen in Table 8, the environmental performance score, which includes human health, is 0.0559 points per treatment of 2,500 square feet of floor. The environmental performance score indicates the share of annual per capita U.S. environmental impacts that is attributable to 2,500 square feet of application, expressed in 100ths of 1 percent.

¹ Numbers in parentheses indicate weighting factor.

³ For this item, no significant/quantifiable performance or durability differences were identified among competing alternative products. Therefore, future costs were not calculated.

TABLE 8.—SUMMARY OF BEES RESULTS FOR FLOOR STRIPPERS

ъ .	
Parameters	Sample A
BEES Environmental Performance—Total Score ¹	0.0559
Acidification (5%)	0.0000
Criteria Air Pollutants (6%) Ecological Toxicity (11%) Eutrophication (5%)	0.0005
Ecological Toxicity (11%)	0.0272
Eutrophication (5%)	0.0028
Fossii Fuei Depletion (5%)	0.0103
Global Warming (16%)	0.0041
Habitat Alteration (16%)	0.0000
Human Health (11%)	0.0035
Indoor Air (11%)	0.0024
Ozone Depletion (5%)	0.0000
Ozone Depletion (5%) Smog (6%) Water Intake (3%) Economic Performance (Life Cycle Costs (\$)) ²	0.0035
Water Intake (3%)	0.0016
Economic Performance (Life Cycle Costs (\$)) ²	8.50
First Cost	8.50
Future Cost (3.9%)	(3)
Functional Unit	42,500

¹ Numbers in parentheses indicate weighting factor.

4 Square feet of application.

The life cycle cost of the submitted floor stripper is \$8.50 (present value dollars) per 2,500 square feet of application.

9. Laundry Products

Laundry products include laundry detergents, bleach, stain removers, fabric softeners, etc., that do not leave skin-irritating residues and that clean effectively without the use of toxic chemicals. These products are generally safe for all washable fabrics.

Based on the information acquired, USDA is proposing to subcategorize this item into two primary types as follows: (1) Pretreatment and spot remover products and (2) general purpose products. USDA believes this is reasonable because of the varying concentrations of the products required to perform satisfactorily.

For the reasons cited earlier in this notice, USDA is proposing to exempt this item from preferred procurement under the FB4P when used in spacecraft systems and launch support equipment.

For biobased laundry products, USDA identified 17 different manufacturers producing 45 individual biobased products. These 17 manufacturers do not necessarily include all manufacturers of biobased laundry products, merely those identified during USDA information gathering activities. Information supplied by these manufacturers indicates that these products are typically tested against an industry performance standard and are being used commercially. While other applicable performance standards may exist, applicable industry performance standards against which these products have been typically tested, as identified by manufacturers of products within this item, include:

• Boeing Specification #D6–7127—Cleaning Interiors of Commercial Transport Aircraft.

USDA attempted to gather data on the potential market for biobased products within the Federal government as discussed in the section on bath and tile cleaners. These attempts were largely unsuccessful. However, Federal

agencies routinely use, or procure contract services that use, laundry products in cleaning and maintenance activities. Thus, they have a need for laundry products and for services that require the use of laundry products. Designation of laundry products will promote the use of biobased products, furthering the objectives of this program.

An analysis of the environmental and human health benefits and the life cycle costs of biobased laundry products was performed for one of the products using the BEES analytical tool. Table 9 summarizes the BEES results for this laundry product. As seen in Table 9, the environmental performance score, which includes human health, is 0.1362 per a quantity of laundry product sufficient to wash 1,000 loads of laundry. The environmental performance score indicates the share of annual per capita U.S. environmental impacts that is attributable to washing 1,000 loads of laundry, expressed in 100ths of 1 percent.

TABLE 9.—SUMMARY OF BEES RESULTS FOR LAUNDRY PRODUCTS

Devementors	Laundry products
Parameters	Sample A
BEES Environmental Performance—Total Score 1	0.1362
Acidification (5%)	0.0000
Criteria Air Pollutants (6%)	0.0012
Ecological Toxicity (11%)	0.0269
Eutrophication (5%)	0.0032
Fossil Fuel Depletion (5%)	0.0609
Global Warming (16%)	0.0119

²Costs are per functional unit.

³For this item, no significant/quantifiable performance or durability differences were identified among competing alternative products. Therefore, future costs were not calculated.

TABLE 9.—SUMMARY OF BEES RESULTS FOR LAUNDRY PRODUCTS—Continued

Parameters	Laundry products
	Sample A
Habitat Alteration (16%)	0.0000
Human Health (11%)	0.0216
Indoor Air (11%)	0.0000
Ozone Depletion (5%)	
Smog (6%)	0.0043
Water Intake (3%)	0.0062
Economic Performance (Life Cycle Costs (\$)) 2	84.54
First Cost	84.54
Future Cost (3.9%)	(3)
Functional Unit	(4)

¹ Numbers in parentheses indicate weighting factor.

²Costs are per functional unit.

⁴ Amount required to wash 1,000 loads of laundry.

The life cycle cost of the submitted laundry product was \$84.54 per 1,000 loads of laundry washed.

10. Wood and Concrete Sealers

Wood and concrete sealers are products used to protect wood and/or concrete from damage caused by insects, moisture, and decaying fungi and to make surfaces water resistant.

For the reasons cited earlier in this notice, USDA is proposing to exempt this item from preferred procurement under the FB4P when used in spacecraft systems and launch support equipment.

For biobased wood and concrete sealers, USDA identified 17 different manufacturers producing 30 individual biobased products. These 17 manufacturers do not necessarily include all manufacturers of biobased wood and concrete sealers, merely those identified during USDA information gathering activities. Information supplied by these manufacturers indicates that these products are typically tested against multiple measures of performance and are being used commercially. While other

relevant measurements of performance may exist, applicable relevant measurements of performance against which these products have been typically tested, as identified by manufacturers of products within this item, include:

- ASTM D4446–05, Standard Test Method for Anti-Swelling Effectiveness of Water-Repellent Formulations and Differential Swelling of Untreated Wood When Exposed to Liquid Water Environments:
- ASTM D5401–03, Standard Test Method for Evaluating Clear Water Repellent Coatings on Wood;
- ASTM D92–05a, Standard Test Method for Flash and Fire Points by Cleveland Open Cup Tester; and
- ASTM E84–05e1, Standard Test Method for Surface Burning Characteristics of Building Materials. USDA attempted to gather data on the potential market for biobased products within the Federal government as discussed in the section on bath and tile cleaners. These attempts were largely unsuccessful. However, Federal

agencies routinely perform, and procure services that perform, the types of construction and paving activities that utilize wood and concrete sealers. Thus, they have a need for wood and concrete sealers and for services that require the use of wood and concrete sealers. Designation of wood and concrete sealers will promote the use of biobased products, furthering the objectives of this program.

An analysis of the environmental and human health benefits and the life cycle costs of biobased wood and concrete sealers was performed for two of the products using the BEES analytical tool. Table 10 summarizes the BEES results for the two wood and concrete sealers. As seen in Table 10, the environmental performance score, which includes human health, ranges from 0.0336 to 2.4769 points per 250 square feet of surface area sealed. The environmental performance score indicates the share of annual per capita U.S. environmental impacts that is attributable to 250 square feet of surface area sealed, expressed in 100ths of 1 percent.

TABLE 10.—SUMMARY OF BEES RESULTS FOR WOOD AND CONCRETE SEALERS

Downwalen	Wood and concrete sealers	
Parameters	Sample A	Sample B
BEES Environmental Performance—Total Score 1	0.0336	2.4769
Acidification (5%)	0.0000	0.0000
Criteria Air Pollutants (6%)	0.0003	0.0027
Ecological Toxicity (11%)	0.0048	0.0397
Eutrophication (5%)	0.0017	0.3876
Fossil Fuel Depletion (5%)	0.0144	0.0559
Fossil Fuel Depletion (5%) Global Warming (16%)	0.0047	0.0203
Habitat Alteration (16%)	0.0000	0.0000
Human Health (11%)	0.0054	1.9630
Indoor Air (11%)	0.0000	0.0000
Ozone Depletion (5%)	0.0000	0.0000
Smog (6%)	0.0016	0.0050
Water Intake (3%)	0.0007	0.0027
Economic Performance (Life Cycle Costs(\$)) 2	18.00	200.00

³For this item, no significant/quantifiable performance or durability differences were identified among competing alternative products. Therefore, future costs were not calculated.

TABLE 10.—SUMMARY OF BEES RESULTS FOR WOOD AND CONCRETE SEALERS—Continued

Parameters	Wood and concrete sealers			
Falaneters	Sample A	Sample B		
First Cost	18.00 (³)	200.00 (³)		
Functional Unit	. 250 square feet of surface area seale			

¹ Numbers in parentheses indicate weighting factor.

The life cycle cost of the submitted wood and concrete sealers range from \$18.00 to \$200.00 (present value dollars) per 250 square feet of surface area sealed.

C. Minimum Biobased Contents

Section 9002(e)(1)(c) directs USDA to recommend minimum biobased content levels where appropriate. In today's proposed rulemaking, USDA is proposing minimum biobased content for each of the 10 items proposed for designation based on information currently available to USDA.

As discussed in Section IV.A of this preamble, USDA relied entirely on manufacturers' voluntary submission of samples to support the proposed designation of these 10 items. The data presented in the following paragraphs are the test results from all of the product samples that were submitted for analysis. It is the responsibility of the manufacturers to "self-certify" that each product being offered as a biobased product for preferred procurement contains qualifying feedstock. As contained in the Guidelines, the FB4P program will consider qualifying feedstocks for biobased products as originating from "designated countries" (as that term is defined in the Federal Acquisition Regulation (FAR) § 25.003)) as well as from the United States, USDA will develop a monitoring process for these self-certifications to ensure manufacturers are using qualifying feedstocks. If misrepresentations are found, USDA will remove the subject biobased product from the preferred procurement program and may take further actions as deemed appropriate.

As a result of public comments received on the first designated items rulemaking proposal, USDA decided to account for the slight imprecision in the analytical method used to determine biobased content of products when establishing the minimum biobased content. Thus, rather than establishing the minimum biobased content for an item at the tested biobased content of the product selected as the basis for the

minimum value, USDA is establishing the minimum biobased content at a level 3 percentage points less than the tested value. USDA believes that this adjustment is appropriate to account for the expected variations in analytical results.

USDA has determined that setting a minimum biobased content for designated items is appropriate. Establishing a minimum biobased content will encourage competition among manufacturers to develop products with higher biobased contents and will prevent products with de minimus biobased content from being purchased as a means of satisfying the requirements of section 9002. USDA believes that it is in the best interest of the preferred procurement program for minimum biobased contents to be set at levels that will realistically allow products to possess the necessary performance attributes and allow them to compete with non-biobased products in performance and economics. Setting the minimum biobased content for an item at a level met by several of the tested products will provide more products from which procurement officials may choose, will encourage the most widespread usage of biobased products by procuring agencies, and is expected to accomplish the objectives of section 9002. Procuring agencies are encouraged to seek products with the highest biobased content that is practicable in all 10 of the proposed designated items.

The following paragraphs summarize the information that USDA used to propose minimum biobased contents within each proposed designated item.

1. Bath and Tile Cleaners

Eight of the 29 biobased bath and tile cleaners identified have been tested for biobased content using ASTM D6866 $^{\rm 1}$

The biobased content of these 8 samples ranged from 16 percent to 100 percent.

USDA evaluated the manufacturer's performance claims for the product whose biobased content was tested at 16 percent. The available information for this product did not indicate any unique performance characteristics or features not found in products with a higher biobased content. In addition, the tested biobased content of this product was substantially lower than the next lowest tested biobased content of 77 percent. Therefore, USDA dropped this product from consideration in setting the minimum biobased content for the item.

The remaining 7 tested products have biobased contents ranging from 77 to 100 percent. USDA is proposing to set the minimum biobased content for this item at 74 percent, based on the product with a tested biobased content of 77 percent. Setting the minimum biobased content level based on the product with a tested biobased content of 77 percent will offer procuring agencies more choices in selecting products to purchase and will encourage the most widespread usage of biobased products by procuring agencies. To account for possible variability in the results of ASTM D6866, as discussed earlier, the tested 77 percent value was then adjusted to 74 percent.

2. Clothing Products

Two of the 5 available biobased clothing products have been tested for biobased content using ASTM D6866. The biobased content of these two clothing products was 99 percent and 100 percent.

Both of the products tested were composed of essentially 100 percent polylactic acid (PLA) fibers, which are a 100 percent biobased material. Another synthetic fiber made with qualifying biobased material is also available for clothing manufacture. When tested for the blankets, bedding, and bed linens item, the biobased

²Costs are per functional unit.

³ For this item, no significant/quantifiable performance or durability differences were identified among competing alternative products. Therefore, future costs were not calculated.

¹ASTM D6866 (Standard Test Methods for Determining the Biobased Content of Natural Range Materials Using Radiocarbon and Isotope Ratio Mass Spectrometry Analysis) is used to distinguish between carbon from fossil resources (non-biobased carbon) and carbon from renewable sources

⁽biobased carbon). The biobased content is expressed as the percentage of total carbon that is biobased carbon.

content of this other synthetic fiber was 29 percent. USDA knows that clothing can be and is being manufactured using this other synthetic fiber. Based on percent blends typically found in clothing, USDA believes that it is reasonable that both synthetic fibers will be used in blends where their content may be around 25 percent with the other 75 percent being non-qualifying biobased/non-biobased material.

Given the potential for the manufacture of biobased clothing as described above, USDA is proposing to set the minimum biobased content for this item at 6 percent. This is based on a clothing product composed of 25 percent of the synthetic fiber with the lower biobased content and 75 percent non-qualifying biobased content or nonbiobased content. The 6 percent is calculated by lowering the 29 percent biobased content by 3 percentage points (to account for the variability in the ASTM D6866), multiply the result (i.e., 26) by 25 percent, and then rounding down to the next whole integer (26 x 0.25 = 6.5, rounded down to 6).

USDA believes that this is a reasonable methodology for setting the minimum biobased content for biobased clothing and will offer procuring agencies more choices in selecting products to purchase and will encourage the most widespread usage of biobased products by procuring agencies. As noted earlier in this preamble, USDA welcomes comments specifically on the methodology used to set the proposed minimum biobased content for biobased clothing.

3. Concrete and Asphalt Release Fluids

Eight of the 37 biobased concrete and asphalt release fluids identified have been tested for biobased content using ASTM D6866. The biobased content of these 8 biobased concrete and asphalt release fluids ranged from 90 percent to 98 percent.

USDA is proposing to set the minimum biobased content for this item at 87 percent, based on the product with a tested biobased content of 90 percent. Given that the range of tested biobased contents is narrow, USDA is proposing to set the minimum biobased content at the lowest tested level, which will allow all of the products sampled to meet the minimum biobased content. Setting the minimum biobased content level based on the lowest level found among the sampled products will offer procuring agencies more choices in selecting products to purchase and will encourage the most widespread usage of biobased products by procuring agencies.

4. Cutting, Drilling, and Tapping Oils

Twelve of the 33 biobased cutting, drilling, and tapping oils identified have been tested for biobased content using ASTM D6866. The biobased content of these 12 biobased cutting, drilling, and tapping oils ranged from 67 percent to 100 percent.

UŜDA is proposing to set the minimum biobased content for this item at 64 percent, based on the product with a tested biobased content of 67. Cutting, drilling, and tapping oils can be formulated to meet a wide range of demands. For example, one of the products with a tested biobased content of 67 percent is a heavy duty oil. Because of the resulting range in product characteristics, USDA is proposing to set the minimum biobased content at a level that will include all of the products sampled. USDA believes that it is in the best interest of the preferred procurement program for minimum biobased contents to be set at levels that will realistically allow products to possess the necessary performance attributes and allow them to compete with non-biobased products in performance and economics. Furthermore, setting the minimum biobased content level based on the lowest level found among the sampled products will offer procuring agencies more choices in selecting products to purchase and will encourage the most widespread usage of biobased products by procuring agencies.

5. De-Icers

Two of the 9 biobased de-icers identified have been tested for biobased content using ASTM D6866. The biobased content of both of these biobased de-icers was 100 percent. Therefore, USDA is proposing to set the minimum biobased content for this item at 97 percent.

6. Durable Plastic Films

One of the 2 biobased durable plastic films identified have been tested for biobased content using ASTM D6866. The biobased contents of this durable plastic film was 64 percent. Therefore, USDA is proposing to set the minimum biobased content for this item at 61 percent.

7. Firearm Lubricants

Both biobased firearm lubricants identified have been tested for biobased content using ASTM D6866. The tested biobased contents for these samples ranged were 52 percent and 95 percent.

USDA is proposing to set the minimum biobased content for firearm lubricants at 49 percent, based on the product with a tested biobased content

of 52 percent. The firearm lubricant with the lower biobased content was specifically formulated for use in cold weather regions. Because of this range in product characteristics, USDA is proposing to set the minimum biobased content at a level that will include both products sampled. USDA believes that it is in the best interest of the preferred procurement program for minimum biobased contents to be set at levels that will realistically allow products to possess the necessary performance attributes and allow them to compete with non-biobased products in performance and economics. Setting the minimum biobased content level based on the lowest level found among the sampled products will offer procuring agencies more choices in selecting products to purchase and will encourage the most widespread usage of biobased products by procuring agencies.

8. Floor Strippers

Three of the 12 biobased floor strippers identified have been tested for biobased content using ASTM D6866. The biobased contents of these 3 biobased floor strippers ranged from 82 percent to 96 percent.

USDA is proposing to set the minimum biobased content for this item at 79 percent, based on the product with a tested biobased content of 82 percent. USDA is proposing to set the minimum biobased content at a level that will include all of the products sampled, including the product with 82 percent biobased content. USDA believes that it is in the best interest of the preferred procurement program for minimum biobased contents to be set at levels that will realistically allow products to possess the necessary performance attributes and allow them to compete with non-biobased products in performance and economics. Furthermore, setting the minimum biobased content level based on the lowest level found among the sampled products will offer procuring agencies more choices in selecting products to purchase and will encourage the most widespread usage of biobased products by procuring agencies.

9. Laundry Products

Five of the 45 biobased laundry products identified have been tested for biobased content using ASTM D6866— one pretreatment or spot remover biobased laundry product and 4 general purpose biobased laundry products. The biobased content of the one pretreatment or spot remover product was 11 percent. The biobased contents of the 4 general purpose biobased

laundry products ranged from 37 percent to 83 percent.

For pretreatment or spot remover biobased laundry products, USDA is proposing to set the minimum biobased content at 8 percent, based on the one product tested.

For general purpose biobased laundry products, USDA is proposing to set the minimum biobased content at 34 percent, based on the product with a tested biobased content of 37 percent. Three of the 4 general purpose biobased laundry products had tested biobased contents between 37 and 40 percent. While USDA knows of no performance differences between the four general purpose biobased products, USDA is proposing to set the minimum biobased content at a level that will include all of the general purpose biobased laundry products sampled. Furthermore, setting the minimum biobased content level based on the lowest level found among these sampled products will provide more products from which procurement officials may choose and will encourage the most widespread usage of biobased products by procuring agencies.

10. Wood and Concrete Sealers

Five of the 17 biobased wood and concrete sealers identified have been tested for biobased content using ASTM D6866. The biobased content of these 5 biobased wood and concrete sealers ranged from 82 percent to 91 percent.

USDA is proposing to set the minimum biobased content for this item at 79 percent, based on the products with a biobased content of 82 percent. USDA is proposing to set the minimum biobased content at a level that will include all of the products sampled. USDA believes that it is in the best interest of the preferred procurement program for minimum biobased contents to be set at levels that will realistically allow products to possess the necessary performance attributes and allow them to compete with nonbiobased products in performance and economics. Furthermore, setting the minimum biobased content level based on the lowest level found among the sampled products will offer procuring agencies more choices in selecting products to purchase and will encourage the most widespread usage of biobased products by procuring agencies.

D. Effective Date for Procurement Preference and Incorporation Into Specifications

USDA intends for the final rule to take effect thirty (30) days after publication of the final rule. However, under the terms of the proposed rule, procuring agencies would have a oneyear transition period, starting from the date of publication of the final rule, before the procurement preference for biobased products within a designated item would take effect.

USDA proposes a one-year period before the procurement preferences would take effect based on an understanding that Federal agencies will need time to incorporate the preferences into procurement documents and to revise existing standardized specifications. Section 9002(d) of FSRIA and section 2902(c) of 7 CFR part 2902 explicitly acknowledge the latter need for Federal agencies to have sufficient time to revise the affected specifications to give preference to biobased products when purchasing the designated items. Procuring agencies will need time to evaluate the economic and technological feasibility of the available biobased products for their agency-specific uses and for compliance with agency-specific requirements, including manufacturers' warranties for machinery in which the biobased products would be used.

By the time these items are promulgated for designation, Federal agencies will have had a minimum of 18 months (from when these designated items were proposed), and much longer considering when the Guidelines were first proposed and these requirements were first laid out, to implement these requirements.

For these reasons, USDA proposes that the mandatory preference for biobased products under the designated items take effect one year after promulgation of the final rule. The oneyear period provides these agencies with ample time to evaluate the economic and technological feasibility of biobased products for a specific use and to revise the specifications accordingly. However, some agencies may be able to complete these processes more expeditiously, and not all uses will require extensive analysis or revision of existing specifications. Although it is allowing up to one year, USDA encourages procuring agencies to implement the procurement preferences as early as practicable for procurement actions involving any of the designated items.

V. Where Can Agencies Get More Information on These USDA-Designated Items?

Once the item designations in today's proposal become final, manufacturers and vendors voluntarily may post information on specific products, including product and contact information, on the USDA biobased

products Web site http://www.biobased.oce.usda.gov. USDA will periodically audit the information displayed on the Web site and, where questions arise, contact the manufacturer or vendor to verify, correct, or remove incorrect or out-of-date information. Procuring agencies should contact the manufacturers and vendors directly to discuss specific needs and to obtain detailed information on the availability and prices of biobased products meeting those needs.

By accessing the Web site, agencies will also be able to obtain the voluntarily-posted information on each product concerning: Relative price; life cycle costs; hot links directly to a manufacturer's or vendor's Web site (if available); performance standards (industry, government, military, ASTM/ ISO) that the product has been tested against; and environmental and public health information from the BEES analysis or the alternative analysis embedded in the ASTM Standard D7075, "Standard Practice for **Evaluating and Reporting Environmental Performance of Biobased** Products.'

USDA has linked its Web site to DoD's list of specifications and standards, which can be used as guidance when procuring products. To access this list, go to USDA's FB4P Web site and click on the "Product Submission" tab and look for the DoD Specifications link.

VI. Regulatory Information

A. Executive Order 12866: Regulatory Planning and Review

Executive Order 12866 requires agencies to determine whether a regulatory action is "significant." The Order defines a "significant regulatory action" as one that is likely to result in a rule that may: "(1) Have an annual effect on the economy of \$100 million or more or adversely affect, in a material way, the economy, a sector of the economy, productivity, competition, jobs, the environment, public health or safety, or State, local, or tribal governments or communities; (2) Create a serious inconsistency or otherwise interfere with an action taken or planned by another agency; (3) Materially alter the budgetary impact of entitlements, grants, user fees, or loan programs or the rights and obligations of recipients thereof; or (4) Raise novel legal or policy issues arising out of legal mandates, the President's priorities, or the principles set forth in this Executive Order."

It has been determined that this rule is not a "significant regulatory action" under the terms of Executive Order 12866. The annual economic effect associated with today's proposed rule has not been quantified because the information necessary to estimate the effect does not exist. As was discussed earlier in this preamble, USDA made extensive efforts to obtain information on the Federal agencies' usage of the 10 items proposed for designation. These efforts were largely unsuccessful. Therefore, attempts to determine the economic impacts of today's proposed rule would necessitate estimating the anticipated market penetration of biobased products, which would entail many assumptions and, thus, be of questionable value. Also, the program allows procuring agencies the option of not purchasing biobased products if the costs are deemed "unreasonable." Under this program, the determination of "unreasonable" costs will be made by individual agencies. USDA knows these agencies will consider such factors as price, life-cycle costs, and environmental benefits in determining whether the cost of a biobased product is determined to be "reasonable" or "unreasonable." However, until the program is actually implemented by the various agencies, it is impossible to quantify the impact this option would have on the economic effect of the rule. Therefore, USDA relied on a qualitative assessment to reach the judgment that the annual economic effect of the designation of these 10 items is less than \$100 million, and likely to be substantially less than \$100 million. This judgment was based primarily on the offsetting nature of the program (an increase in biobased products purchased with a corresponding decrease in petroleum products purchased) and, secondarily, on the ability of procuring agencies not to purchase these items if costs are judged unreasonable, which would reduce the economic effect.

1. Summary of Impacts

Today's proposed rulemaking is expected to have both positive and negative impacts to individual businesses, including small businesses. USDA anticipates that the biobased preferred procurement program will provide additional opportunities for businesses to begin supplying biobased materials to manufacturers of bath and tile cleaners, clothing products, concrete and asphalt release fluids, cutting, drilling, and tapping oils, de-icers, durable plastic films, firearm lubricants, floor strippers, laundry products, and wood and concrete sealers and to begin

supplying these products made with biobased materials to Federal agencies and their contractors. In addition, other businesses, including small businesses, that do not directly contract with procuring agencies may be affected positively by the increased demand for these biobased materials and products. However, other businesses that manufacture and supply only nonqualifying products and do not offer a biobased alternative product may experience a decrease in demand for their products. Thus, today's proposed rule will likely increase the demand for biobased products, while decreasing the demand for non-qualifying products. It is anticipated that this will create a largely "offsetting" economic impact. USDA is unable to determine the

number of businesses, including small businesses, that may be adversely affected by today's proposed rule. If a business currently supplies any of the items proposed for designation to a procuring agency and those products do not qualify as biobased products, the proposed rule may reduce that company's ability to compete for future contracts. However, the proposed rule will not affect existing purchase orders, nor will it preclude businesses from modifying their product lines to meet new specifications or solicitation requirements for these products containing biobased materials. Thus, many businesses, including small businesses, that market to Federal agencies and their contractors have the option of modifying their product lines to meet the new biobased specifications.

2. Summary of Benefits

The designation of these 10 items provides the benefits outlined in the objectives of section 9002: To increase domestic demand for biobased products and, thus, for the many agricultural commodities that can serve as feedstocks for production of biobased products; to spur development of the industrial base through value-added agricultural processing and manufacturing in rural communities; and to enhance the Nation's energy security by substituting biobased products for products derived from imported oil and natural gas. The increased demand for biobased products will also lead to the substitution of products with a possibly more benign or beneficial environmental impact, as compared to the use of non-biobased products. By purchasing these biobased products, procuring agencies can increase opportunities for all of these benefits. On a national and regional level, today's proposed rule can result in expanding and strengthening markets

for biobased materials used in these 10 items. However, because the extent to which procuring agencies will find the performance and costs of biobased products acceptable is unknown, it is impossible to quantify the actual economic effect of today's proposed rule. USDA, however, anticipates the annual economic effect of the designation of these 10 items to be substantially below the \$100 million threshold. In addition, today's proposed rule does not: Create serious inconsistency or otherwise interfere with an action taken or planned by another agency; materially alter the budgetary impact of entitlements, grants, user fees, or loan programs or the rights and obligations of recipients thereof; or raise novel legal or policy issues arising out of legal mandates, the President's priorities, or the principles set forth in Executive Order 12866.

B. Regulatory Flexibility Act (RFA)

The RFA, 5 U.S.C. 601–602, generally requires an agency to prepare a regulatory flexibility analysis of any rule subject to notice and comment rulemaking requirements under the Administrative Procedure Act or any other statute unless the agency certifies that the rule will not have a significant economic impact on a substantial number of small entities. Small entities include small businesses, small organizations, and small governmental jurisdictions.

USDA evaluated the potential impacts of its proposed designation of these 10 items to determine whether its actions would have a significant impact on a substantial number of small entities. Because the Federal Biobased Products Preferred Procurement Program in section 9002 of FSRIA applies only to Federal agencies and their contractors, small governmental (city, county, etc.) agencies are not affected. Thus, the proposal, if promulgated, will not have a significant economic impact on small governmental jurisdictions. USDA anticipates that this program will affect entities, both large and small, that manufacture or sell biobased products. For example, the designation of items for preferred procurement will provide additional opportunities for businesses to manufacture and sell biobased products to Federal agencies and their contractors. Similar opportunities will be provided for entities that supply biobased materials to manufacturers. Conversely, the biobased procurement program may decrease opportunities for businesses that manufacture or sell nonbiobased products or provide components for the manufacturing of such products. However, the proposed

rule will not affect existing purchase orders and it will not preclude procuring agencies from continuing to purchase non-biobased items under certain conditions relating to the availability, performance, or cost of biobased items. Today's proposed rule will also not preclude businesses from modifying their product lines to meet new specifications or solicitation requirements for these products containing biobased materials. Thus, the economic impacts of today's proposed rule are not expected to be significant.

The intent of section 9002 is largely to stimulate the production of new biobased products and to energize emerging markets for those products. Because the program is still in its infancy, however, it is unknown how many businesses will ultimately be affected. While USDA has no data on the number of small businesses that may choose to develop and market products within the 10 items proposed for designation by today's proposed rulemaking, the number is expected to be small. Because biobased products represent an emerging market, only a small percentage of all manufacturers, large or small, are expected to develop and market biobased products. Thus, the number of small businesses affected by today's proposed rulemaking is not expected to be substantial.

After considering the economic impacts of today's proposed rule on small entities, USDA certifies that this action will not have a significant economic impact on a substantial number of small entities. This rule, therefore, does not require a regulatory flexibility analysis.

While not a factor relevant to determining whether the proposed rule will have a significant impact for RFA purposes, USDA has concluded that the effect of today's proposed rule would be to provide positive opportunities to businesses engaged in the manufacture of these biobased products. Purchase and use of these biobased products by procuring agencies increase demand for these products and result in private sector development of new technologies, creating business and employment opportunities that enhance local, regional, and national economies. Technological innovation associated with the use of biobased materials can translate into economic growth and increased industry competitiveness worldwide, thereby, creating opportunities for small entities.

C. Executive Order 12630: Governmental Actions and Interference With Constitutionally Protected Property Rights

This proposed rule has been reviewed in accordance with Executive Order 12630, Governmental Actions and Interference with Constitutionally Protected Property Rights, and does not contain policies that would have implications for these rights.

D. Executive Order 12988: Civil Justice Reform

This proposed rule has been reviewed in accordance with Executive Order 12988, Civil Justice Reform. This proposed rule does not preempt State or local laws, is not intended to have retroactive effect, and does not involve administrative appeals.

E. Executive Order 13132: Federalism

This proposed rule does not have sufficient federalism implications to warrant the preparation of a Federalism Assessment. Provisions of this proposed rule will not have a substantial direct effect on States or their political subdivisions or on the distribution of power and responsibilities among the various government levels.

F. Unfunded Mandates Reform Act of 1995

This proposed rule contains no Federal mandates under the regulatory provisions of Title II of the Unfunded Mandates Reform Act of 1995 (UMRA), 2 U.S.C. 1531–1538, for State, local, and tribal governments, or the private sector. Therefore, a statement under section 202 of UMRA is not required.

G. Executive Order 12372: Intergovernmental Review of Federal Programs

For the reasons set forth in the Final Rule Related Notice for 7 CFR part 3015, subpart V (48 FR 29115, June 24, 1983), this program is excluded from the scope of the Executive Order 12372, which requires intergovernmental consultation with State and local officials. This program does not directly affect State and local governments.

H. Executive Order 13175: Consultation and Coordination With Indian Tribal Governments

Today's proposed rule does not significantly or uniquely affect "one or more Indian tribes, * * * the relationship between the Federal Government and Indian tribes, or * * * the distribution of power and responsibilities between the Federal Government and Indian tribes." Thus,

no further action is required under Executive Order 13175.

I. Paperwork Reduction Act

In accordance with the Paperwork Reduction Act of 1995 (44 U.S.C. 3501 through 3520), the information collection under this proposed rule is currently approved under OMB control number 0503–0011.

J. E-Government Act Compliance

The Office of Energy Policy and New Uses is committed to compliance with the E-Government Act, to promote the use of the Internet and other information technologies to provide increased opportunities for citizen access to Government information and services, and for other purposes. USDA is implementing an electronic information system for posting information voluntarily submitted by manufacturers or vendors on the products they intend to offer for preferred procurement under each item designated. For information pertinent to GPEA compliance related to this rule, please contact Marvin Duncan at (202) 401-0461.

List of Subjects in 7 CFR Part 2902

Biobased products, Procurement. For the reasons stated in the preamble, the Department of Agriculture proposes to amend 7 CFR chapter XXIX as follows:

CHAPTER XXIX—OFFICE OF ENERGY POLICY AND NEW USES, DEPARTMENT OF AGRICULTURE

PART 2902—GUIDELINES FOR DESIGNATING BIOBASED PRODUCTS FOR FEDERAL PROCUREMENT

1. The authority citation for part 2902 continues to read as follows:

Authority: 7 U.S.C. 8102.

2. Add §§ 2902.36 through 2902.45 to subpart B to read as follows:

§ 2902.36 Bath and tile cleaners.

- (a) *Definition*. Bath and tile cleaners are products designed to clean deposits on bath tubs, shower doors, shower curtains, bathroom tiles, floors, doors, counter tops, etc. They are available both in concentrated and ready-to-use forms.
- (b) Minimum biobased content. The minimum biobased content is 74 percent and shall be based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished product.
- (c) *Preference effective date.* No later than [date one year after the date of publication of the final rule], procuring

agencies, in accordance with this part, will give a procurement preference for qualifying biobased bath and tile cleaners. By that date, Federal agencies that have the responsibility for drafting or reviewing specifications for items to be procured shall ensure that the relevant specifications require the use of biobased bath and tile cleaners.

(d) Exemptions. Spacecraft systems and launch support equipment applications are exempt from the preferred procurement requirement for this item.

§ 2902.37 Clothing products.

- (a) Definition. Clothing products are coverings designed to be worn on a person's body. These products include coverings for the torso and limbs, as well as coverings for the hands, feet, and head.
- (b) Minimum biobased content. The minimum biobased content is 6 percent and shall be based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished product.
- (c) Preference effective date. No later than [date one year after the date of publication of the final rule], procuring agencies, in accordance with this part, will give a procurement preference for qualifying biobased clothing products. By that date, Federal agencies that have the responsibility for drafting or reviewing specifications for items to be procured shall ensure that the relevant specifications require the use of biobased clothing products.
- (d) Exemptions. The following applications are exempt for the preferred procurement requirement for this item:
- (1) Military equipment: Product or system designed or procured for combat or combat-related missions.
- (2) Spacecraft systems and launch support equipment.

§ 2902.38 Concrete and asphalt release fluids.

- (a) Definition. Concrete and asphalt release fluids are products designed to provide a lubricating barrier between the composite surface materials (e.g., concrete or asphalt) and the container (e.g., wood or metal forms, truck beds, roller surfaces, etc.).
- (b) Minimum biobased content. The minimum biobased content is 87 percent and shall be based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished product.
- (c) *Preference effective date*. No later than [date one year after the date of

- publication of the final rule], procuring agencies, in accordance with this part, will give a procurement preference for qualifying biobased concrete and asphalt release fluids. By that date, Federal agencies that have the responsibility for drafting or reviewing specifications for items to be procured shall ensure that the relevant specifications require the use of biobased concrete and asphalt release fluids.
- (d) Exemptions. Spacecraft systems and launch support equipment applications are exempt from the preferred procurement requirement for this item.

§ 2902.39 Cutting, drilling, and tapping oils.

(a) Definition. Cutting, drilling, and tapping oils are products designed to provide lubrication and reduce wear on the contact parts for cutting, drilling, and tapping machinery. This item applies only to neat oils.

(b) Minimum biobased content. The minimum biobased content is 64 percent and shall be based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the

finished product.

- (c) Preference effective date. No later than [date one year after the date of publication of the final rule], procuring agencies, in accordance with this part, will give a procurement preference for qualifying biobased cutting, drilling, and tapping oils. By that date, Federal agencies that have the responsibility for drafting or reviewing specifications for items to be procured shall ensure that the relevant specifications require the use of biobased cutting, drilling, and tapping oils.
- (d) Exemptions. Spacecraft systems and launch support equipment are exempt for the preferred procurement requirement for this item.

§ 2902.40 De-icers.

- (a) *Definition*. De-icers are agents that aid in the removal of snow and ice. For the purposes of this rule, de-icers do not include materials used to de-ice aircraft and airport runways.
- (b) Minimum biobased content. The minimum biobased content is 97 percent and shall be based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished product.
- (c) Preference effective date. No later than [date one year after the date of publication of the final rule], procuring agencies, in accordance with this part, will give a procurement preference for

qualifying biobased de-icers. By that date, Federal agencies that have the responsibility for drafting or reviewing specifications for items to be procured shall ensure that the relevant specifications require the use of biobased de-icers.

(d) Exemptions. The following applications are exempt for the preferred procurement requirement for

his item:

(1) Military equipment: Product or system designed or procured for combat or combat-related missions.

(2) Spacecraft systems and launch support equipment.

§ 2902.41 Durable plastic films.

(a) *Definition*. Durable plastic films are products typically used in the production of bags and packaging materials, and designed to resist water, ammonia, and other compounds, and to not readily biodegrade.

(b) Minimum biobased content. The minimum biobased content is 61 percent and shall be based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the

finished product.

(c) Preference effective date. No later than [date one year after the date of publication of the final rule], procuring agencies, in accordance with this part, will give a procurement preference for qualifying biobased durable plastic films. By that date, Federal agencies that have the responsibility for drafting or reviewing specifications for items to be procured shall ensure that the relevant specifications require the use of biobased durable plastic films.

- (d) Determining overlap with an EPAdesignated recovered content product. Qualifying products within this item may overlap with the EPA-designated recovered content product: Nonpaper Office Products: Plastic trash bags. USDA is requesting that manufacturers of these qualifying biobased products provide information on the USDA Web site of qualifying biobased products about the intended uses of the product, information on whether or not the product contains any recovered material, in addition to biobased ingredients, and performance standards against which the product has been tested. This information will assist Federal agencies in determining whether or not a qualifying biobased product overlaps with EPA-designated nonpaper office products (plastic trash bags) and which product should be afforded the preference in purchasing.
- (e) Exemptions. Spacecraft systems and launch support equipment applications are exempt from the

preferred procurement requirement for this item.

§ 2902.42 Firearm lubricants.

(a) *Definition*. Firearm lubricants are used in firearms to reduce the friction and wear between the moving parts of a firearm, and to keep the weapon clean and prevent the formation of deposits that could cause the weapon to jam.

(b) Minimum biobased content. The minimum biobased content is 49 percent and shall be based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the

finished product.

- (c) Preference effective date. No later than [date one year after the date of publication of the final rule], procuring agencies, in accordance with this part, will give a procurement preference for qualifying biobased firearm lubricants. By that date, Federal agencies that have the responsibility for drafting or reviewing specifications for items to be procured shall ensure that the relevant specifications require the use of biobased firearm lubricants.
- (d) Exemptions. The following applications are exempt for the preferred procurement requirement for this item:
- (1) Military equipment: Product or system designed or procured for combat or combat-related missions.
- (2) Spacecraft systems and launch support equipment.

§ 2902.43 Floor Strippers.

- (a) Definition. Floor strippers are products formulated to loosen waxes, resins, or varnishes from floor surfaces. They can be in either liquid or gel form, and may also be used with or without mechanical assistance.
- (b) Minimum biobased content. The minimum biobased content is 79 percent and shall be based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished product.

(c) Preference effective date. No later than [date one year after the date of publication of the final rule], procuring agencies, in accordance with this part, will give a procurement preference for qualifying biobased floor strippers. By that date, Federal agencies that have the responsibility for drafting or reviewing specifications for items to be procured shall ensure that the relevant specifications require the use of biobased floor strippers.

(d) Exemptions. Spacecraft systems and launch support equipment applications are exempt from the preferred procurement requirement for

this item.

§ 2902.44 Laundry products.

- (a) *Definition*. (1) Laundry products include laundry detergents, bleach, stain removers, fabric softeners, etc., that do not leave skin-irritating residues and that clean effectively without the use of toxic chemicals.
- (2) The two types of laundry products for which minimum biobased contents under paragraph (b) of this section apply are:

(i) Pretreatment or spot removers. Laundry products specifically used to pretreat laundry to remove spots and

stains.

(ii) General purpose laundry products. Laundry products used for

regular cleaning activities.

- (b) Minimum biobased content. The minimum biobased content shall be based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished product. The applicable minimum biobased contents are:
- (1) Pretreatment and spot removers—8 percent.
- (2) General purpose laundry products—34 percent.
- (c) Preference effective date. No later than [date one year after the date of publication of the final rule], procuring agencies, in accordance with this part, will give a procurement preference for

- qualifying biobased laundry products. By that date, Federal agencies that have the responsibility for drafting or reviewing specifications for items to be procured shall ensure that the relevant specifications require the use of biobased laundry products.
- (d) Exemptions. Spacecraft systems and launch support equipment applications are exempt from the preferred procurement requirement for this item.

§ 2902.45 Wood and concrete sealers.

- (a) Definition. Wood and concrete sealers are products used to protect wood and/or concrete from damage caused by insects, moisture, and decaying fungi and to make surfaces water resistant.
- (b) Minimum biobased content. The minimum biobased content is 79 percent and shall be based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished product.
- (c) Preference effective date. No later than [date one year after the date of publication of the final rule], procuring agencies, in accordance with this part, will give a procurement preference for qualifying biobased wood and concrete sealers. By that date, Federal agencies that have the responsibility for drafting or reviewing specifications for items to be procured shall ensure that the relevant specifications require the use of biobased wood and concrete sealers.
- (d) Exemptions. Spacecraft systems and launch support equipment applications are exempt from the preferred procurement requirement for this item.

Dated: September 26, 2006.

Roger Conway,

Director, Office of Energy Policy and New Uses, U.S. Department of Agriculture.
[FR Doc. 06–8368 Filed 10–10–06; 8:45 am]

BILLING CODE 3410-GL-P

Wednesday, October 11, 2006

Part III

Department of Health and Human Services

Centers for Medicare & Medicaid Services

Medicare Program; Hospital Inpatient Prospective Payment Systems and Fiscal Year 2007 Rates; Notice

DEPARTMENT OF HEALTH AND HUMAN SERVICES

Centers for Medicare & Medicaid Services

[CMS-1488-N]

RIN 0938-AO12

Medicare Program; Hospital Inpatient Prospective Payment Systems and Fiscal Year 2007 Rates: Final Fiscal Year 2007 Wage Indices and Payment Rates After Application of Revised Occupational Mix Adjustment to Wage Index

AGENCY: Centers for Medicare & Medicaid Services (CMS), HHS.

ACTION: Notice.

SUMMARY: This notice contains tables listing the final occupational mix adjusted wage indices, hospital reclassifications, payment rates, impacts, and other related tables as a result of the application of the occupational mix adjustment to 100 percent of the wage index effective for fiscal year (FY) 2007.

DATES: *Effective Date:* This notice is effective on October 1, 2006.

FOR FURTHER INFORMATION CONTACT: Valerie Miller, (410) 786–4535, Wage Index Issues. Brian Slater, (410) 786– 5229, Geographic Reclassification Issues. Marc Hartstein, (410) 786–4548, All Other Issues.

SUPPLEMENTARY INFORMATION:

I. Background

In the August 18, 2006 Federal Register (71 FR 47870) (hereinafter referred to as the FY 2007 IPPS final rule), we set forth our final rule for the Medicare inpatient prospective payment system (IPPS). Due to the decision in the case Bellevue Hosp. Center v. Leavitt, 443 F. 3d 163 (2nd Cir. 2006), we stated that we would publish the FY 2007 occupational mix adjusted wage index tables, rates, and impacts on our Web site and in a Federal Register document subsequent to the FY 2007 IPPS final rule. (See the FY 2007 IPPS final rule for a full explanation of the reasons for such subsequent publication.) This notice includes such wage index tables, rates, and impacts.

II. Final FY 2007 Occupational Mix Adjusted Wage Indices, Rates, and Impacts

- A. Wage Index and Occupational Mix Adjustment
- 1. Implementation of the New Occupational Mix Adjustment for the FY 2007 Wage Index

The final wage index values for FY 2007 (except those for hospitals receiving wage index adjustments under section 505 of Pub. L. 108-173) are included in Tables 4A-1, 4A-2, 4B, 4C-1, 4C-2, and 4F of the Addendum to this notice and are posted on our Web site at http://www.cms.hhs.gov/ AcuteInpatientPPS/. For hospitals that are receiving a wage index adjustment under section 505 of Pub. L. 108-173, the hospital's final wage index will reflect the adjustment shown in Table 4J of the Addendum to this notice. Tables 3A and 3B of the Addendum to this notice and on our Web site reflect the 3-year average of the average hourly wage for each labor market area before the redesignation of hospitals, used for FYs 2005, 2006, and 2007. Table 3A lists average hourly wages for urban areas and Table 3B lists these data for rural areas. In addition, Table 2 in the Addendum to this notice includes the occupational mix adjusted average hourly wage for each hospital from the FYs 2001, 2002, and 2003 cost reporting periods. The average hourly wages for FYs 2001 and 2002 reflect a 10 percent occupational mix adjustment using the survey data used to develop the FYs 2005 and 2006 wage indices, respectively. The FY 2003 average hourly wages reflect a 100 percent occupational mix adjustment using the recently collected survey data and were used to calculate the FY 2007 wage index.

2. Proxy Occupational Mix Adjustment for Hospitals With No Survey Data

As stated in the FY 2007 IPPS final rule (71 FR 48014), we have applied the average occupational mix adjustment for a hospital's labor market area to the wage data of hospitals that did not submit occupational mix survey data or that submitted survey data that could not be used because we determined it to be aberrant. For example, a hospital's individual nurse category average hourly wages were out of range (that is, unusually high or low), and the hospital did not provide sufficient documentation to explain the aberrancy, or the hospital did not submit any registered nurse staff salaries or hours data.

In calculating the average occupational mix adjustment factor for an area, we replicated Steps 1 through 6 of the calculation for the occupational mix adjustment (see 71 FR 48009). However, instead of performing these steps at the hospital level, we aggregated the data at the labor market area level. In following these steps, for example, for Core-Based Statistical Areas (CBSAs) that contain providers that did not submit occupational mix survey data, the occupational mix adjustment factor ranged from a low of 0.8944 (CBSA 39820, Redding, CA), to a high of 1.0924 (CBSA 38220, Pine Bluff, AR). Also, in computing a hospital's occupational mix adjusted salaries and wage-related costs for nursing employees (Step 7 of the calculation (see 71 FR 48010)) in the absence of occupational mix survey data, we multiplied the hospital's total salaries and wage-related costs by the percentage of the area's total workers attributable to the area's total nursing category. There were also two CBSAs in which none of the providers submitted the occupational mix survey (CBSA 49740, Yuma, AZ, and CBSA 25020, Guayama, P.R.). In the absence of any data in these labor market areas, we applied an occupational mix adjustment factor of 1.0 to all providers.

3. Analysis of the Final FY 2007 Wage Index

Using the new occupational mix survey data and applying the occupational mix adjustment to 100 percent of the FY 2007 wage index results in a national average hourly wage of \$29.6529 and a Puerto-Rico specific average hourly wage of \$13.0943. We calculated the FY 2007 wage index using the Worksheet S-3 cost report data of 3,570 hospitals and occupational mix survey data from 3,239 hospitals (90.7 percent response rate). Although more than 3,239 hospitals submitted occupational mix survey data for the January through March 2006 collection period, we excluded the data for 37 hospitals that did not have FY 2003 Worksheet S-3 cost report data for use in calculating the FY 2007 wage index. Also, we excluded the occupational mix survey data of another 30 hospitals because their data was incomplete or aberrant. Using the occupational mix data of 3,239 hospitals, the FY 2007 national average hourly wages for each occupational mix nursing subcategory as calculated in Step 2 of the occupational mix calculation are as follows:

Occupational mix nursing subcategory	Average hourly wage
National RN Management National RN Staff National LPN National Nurse Aides, Order-	\$38.5908 33.3739 19.2721
lies, and Attendants National Medical Assistants National Nurse Category	13.6906 15.6304 28.7431

The national average hourly wage for the entire nurse category as computed in Step 5 of the occupational mix calculation is \$28.7431. Hospitals with a nurse category average hourly wage (as calculated in Step 4) of greater than national nurse category average hourly wage receive an occupational mix adjustment factor (as calculated in Step 6) of less than 1.0. Hospitals with a nurse category average hourly wage (as calculated in Step 4) of less than national nurse category average hourly wage receive an occupational mix adjustment factor (as calculated in Step 6) of greater than 1.0.

Based on the January through March 2006 occupational mix survey data, we determined (in Step 7 of the occupational mix calculation) that the national percentage of hospital employees in the Nurse category is 42.9 percent, and the national percentage of hospital employees in the All Other Occupations category is 57.1 percent. At the CBSA level, the percentage of hospital employees in the Nurse category ranged from a low of 23.0 percent in one CBSA, to a high of 85.5 percent in another CBSA.

After adjusting the FY 2007 wage indices by 100 percent for occupational mix, the wage index values for a total of 250 hospitals in 73 labor market areas are assigned a statewide rural wage index value ("the rural floor") according to section 4410 of Pub. L. 105-33, or an imputed floor, for hospitals located in all-urban States, according to § 412.64(h).

a. Effect of the 2006 Occupational Data on the FY 2007 Wage Index (Unadjusted Relative to Adjusted Wage Index). We compared the FY 2007 unadjusted wage indices for each CBSA to the FY 2007 wage indices adjusted for occupational mix. In implementing an occupational mix adjusted wage index based on the above calculation, the final wage index values for 14 rural areas (29.8 percent) and 201 urban areas (52.1 percent) would decrease as a result of the adjustment. Six rural areas (12.8 percent) and 108 urban areas (28.0 percent) would experience a decrease of 1 percent or greater in their wage index values. The largest negative impacts would be 2.7 percent and 6.0 percent. In

addition, 33 rural areas (70.2 percent) and 181 urban areas (46.9 percent) would experience an increase in their wage index values. The largest increase for a rural area would be 3.16 percent and the largest increase for an urban area would be 8.39 percent. Four urban areas would be unaffected. These results indicate that a larger percentage of rural areas benefit from an occupational mix adjustment than do urban areas. However, as was the case with the previous occupational mix data, close to a third of rural CBSAs (29.8 percent) continue to experience a decrease in their wage indices as a result of the

occupational mix adjustment.

b. Effect of the 2006 Occupational Mix Survey Data Relative to the 2003 Survey Data. We also analyzed the effect on the FY 2007 wage index of applying the January through March 2006 occupational mix survey data, relative to applying the 2003 occupational mix survey data. In this analysis, we compared the FY 2007 wage index adjusted 100 percent using 2003 and 2006 survey data. By controlling for changes in hospitals' wage data and geographic reclassification, we determined that the wage index values for 27 rural areas (57.4 percent) and 183 urban areas (47.4 percent) would decrease as a result of applying the 2006 survey data instead of the 2003 survey data. Ten rural areas (21.3 percent) and 96 urban areas (24.9 percent) would experience a decrease of 1 percent or greater in their wage index values. The largest negative impact for a rural area would be 3.6 percent. Six urban areas (1.2 percent) would be decreasing by greater than 5 percent; the largest urban decrease would be 20.9 percent, and the second largest decrease for an urban area would be 7.7 percent. One rural and one urban area would be unaffected by the change in the occupational mix data. In addition, 19 rural areas (40.4 percent) and 202 urban areas (52.3 percent) would experience an increase in their wage index values. The largest increase for a rural area would be 2.6 percent and the largest increase for an urban area would be 7.15 percent.

B. Final FY 2007 Hospital Reclassifications/Redesignations

1. Withdrawals and Terminations

As we stated in the FY 2007 IPPS final rule (71 FR 48020), for FY 2007, rather than hospitals withdrawing or terminating their 3-year reclassifications within 45 days of the publication of the IPPS proposed rule, hospitals would be subject to special procedures unique to FY 2007.

These procedures are as follows:

- Hospitals had 15 days from the display date of the FY 2007 IPPS final rule to notify us of whether, in the absence of viewing the final 100 percent occupational mix-adjusted wage index data, they wish to choose a particular wage index for which they are eligible (such as to definitively maintain, terminate, or withdraw from a reclassification that they received).
- If we did not receive notice from the hospital within the 15-day timeframe, we made our best efforts to give the hospital the highest wage index among its available options. We made reclassification withdrawal and termination decisions based on what we perceived would be most advantageous to the hospital. (See 71 FR 48020 for an explanation of the reclassifications and adjustment we chose among.) Please note that in some cases we terminated a hospital's Lugar reclassification under section 1886(d)(8)(B) of the Act in order to receive the out-migration adjustment. Because this termination would result in the hospital losing urban status, we published a separate table (Table 9D) identifying these hospitals that move from Lugar/urban status to rural status with the out-migration adjustment. Also, in some cases, we may have made half-year terminations/withdrawals on behalf of section 508 hospitals (or groups containing section 508 hospitals) using the procedures identified in the FY 2007 IPPS final rule. (See 71 FR 48021 for an explanation of the half-year reclassifications that could occur for section 508 hospitals and groups containing section 508 hospitals.

 We have posted the final occupational mix-adjusted wage indices, out-migration adjustments, and our decisions on hospital reclassification on the CMS Web site at http://www.cms.hhs.gov/ AcuteInpatientPPS/WIFN/list.asp. We have posted the same table on the CMS Web site that appeared in the **Federal Register** final notice of the occupational mix-adjusted wage indices.

• In the FY 2007 IPPS final rule, we acknowledged that hospitals may base termination/withdrawal decisions on factors other than simply what results in the highest wage index for the upcoming fiscal year. For this reason, we allowed a hospital to change a decision that is made by CMS on its behalf. Hospitals now have a 30-day period from the date these final data and our final decisions appear on the CMS Web site to notify CMS in writing, with a copy to the MGCRB, of whether they wish to reverse the reclassification decision made by CMS or to choose another reclassification for which they are eligible. Hospitals are able to

determine the reclassification decision applied on their behalf by reviewing Tables 9A through 9C for hospitals that are reclassified under section 1886(d)(8)(B) of the Act, section 508 of Pub. L. 108-173, or section 1886(d)(10) of the Act. The applicable wage index for these hospitals will be found on Table 2. If a hospital is not listed in Tables 9A through 9C, CMS has made a decision not to reclassify the hospital and its home wage index will apply, including the effect of any out-migration adjustment (if applicable). Again, the wage index that will apply to the hospital is found in Table 2. Any applicable out-migration adjustment for the hospital is found in Table 4J. As indicated above in this section, we are publishing a separate table identifying hospitals that we move from Lugar/ urban status to rural status with the outmigration adjustment in Table 9D.

Requests to reverse a decision made on behalf of a hospital by CMS and to choose another reclassification or adjustment for which the hospital is otherwise eligible must be received by CMS no later than 5 p.m., e.s.t., with a copy sent to the MGCRB by October 30, 2006 (or within 30 days from the date the information appears on the CMS Web site at http://www.cms.hhs.gov/ AcuteInpatientPPS/WIFN/list.asp at the following addresses: Division of Acute Care, C4-08-06, 7500 Security Boulevard, Baltimore, MD 21244, Attn: Marianne Myers; and a copy to Medicare Geographic Classification Review Board, 2520 Lord Baltimore Drive, Suite L, Baltimore, MD 21244-2670.

As required under § 412.273(c), requests by groups of hospitals must be made by all hospitals that are a party to the application or reclassification. The reclassification or adjustment chosen by the hospital must be one for which the hospital would otherwise be eligible had CMS not made the withdrawal or termination decision on the hospital's behalf.

• If a hospital (or group of hospitals) fails to notify CMS that it is revising a determination made on its behalf within 30 days from the date the information appears on the CMS Web site, the decision made by CMS on the hospital's behalf will be final for FY 2007. Therefore, if CMS made a decision on a hospital's (or group of hospitals) behalf to terminate or withdraw a reclassification and the hospital does not reverse or modify CMS's decision within 30 days of posting the decision on the CMS Web site, we will deem the hospital's reclassification is withdrawn or terminated. If the hospital does not reverse or modify CMS's decision

within 30 days of posting of the decision on the CMS Web site, once CMS's decision on the hospital's behalf is in effect, it will be treated in the same manner as if the hospital(s) had made the reclassification decision on its own. Thus, for example, because a hospital cannot have overlapping reclassifications, if we decide a hospital should accept a FY 2007 through 2009 reclassification and the hospital does not modify or reverse CMS's decision within 30 days of posting the decision on the CMS Web site, any reclassification the hospital previously had for FY 2006 through 2008 would be permanently terminated.

Hospitals should note that we will not recalculate the wage indices or budget neutrality factors now that CMS has made their decisions regarding what is most advantageous to each hospital using the 100 percent occupational mixadjusted wage data. That is, we will not further recalculate the wage indices (including any rural floors or imputed rural floors) or standardized amounts based on hospital decisions that further revise decisions made by CMS on the hospitals' behalf.

In addition, we note that rural areas that include a section 508 hospital (specifically a hospital with wages relatively higher than the wages of other hospitals) may experience a decrease in their wage index for the second half of FY 2007. This is because section 508 hospitals are not considered reclassified under section 1886(d)(10) of the Act, and therefore, are not subject to the rule in section 1886(d)(8)(C)(ii) of the Act requiring rural area wage indices to be calculated exclusive of hospitals reclassified under section 1886(d)(10) of the Act, if doing so would increase the rural wage index. Thus, for the first half of the year, a section 508 hospital may be included in the home wage index of a rural area, while the hospitals reclassified under section 1886(d)(10) of the Act are excluded, since such exclusion increases the wage index of the rural area. However, for the second half of the year, the hospital is no longer a section 508 hospital. If the former section 508 hospital is reclassified under section 1886(d)(10) of the Act, it is grouped with other hospitals so reclassified. The high wages of the section 508 hospital may operate such that, for the second half of the year, it is more advantageous for all of the reclassified hospitals to be included in the wage index of the rural area (rather than excluded as they were in the first half of the year). However, because the other reclassified hospitals are now included in the wage index, and not just the sole section 508 hospital with high

wages, the area may see a decline in the wage index. We view this scenario as arising due to the rural area's higher than expected wage index during the first half of the year from including only the section 508 hospital and not any reclassified hospitals. If we did not establish special rules that allowed for one-half year reclassifications, the section 508 hospital likely would have reclassified for the entire year under section 1886(d)(10) of the Act. In that case, the wage index for the second-half of FY 2007 would have applied for the entire year.

2. MGCRB Applications for FY 2008

Section 1886(d)(10)(C)(ii) of the Act indicates that a hospital requesting a change in geographic classification for a fiscal year must submit its application to the MGCRB no later than the first day of the 13-month period ending on September 30 of the preceding fiscal year. Thus, the statute requires that FY 2008 reclassification applications be submitted to the MGCRB no later than September 1, 2006. For this reason, hospitals must have filed a FY 2008 reclassification application by the September 1, 2006 deadline even though the average hourly wage data used to develop the final FY 2007 wage indices was not available.

The MGCRB, in evaluating a hospital's request for reclassification for FY 2008 for the wage index, must utilize the official data used to develop the FY 2007 wage index. The wage data used to support the hospital's wage comparisons must be from the CMS hospital wage survey. Generally, the source for these data is the IPPS final rule. However, the wage tables identifying the 3-year average hourly wages of hospitals were not available in time to include them in the FY 2007 IPPS final rule and by the September 1, 2006 deadline for submitting FY 2008 geographic reclassification applications.

As outlined in $\S 412.256(c)(2)$, hospitals with incomplete applications have the opportunity to request that the MGCRB grant a hospital that has submitted an application by September 1, 2006, an extension beyond September 1, 2006, to complete its application. Thus, while hospitals must file an application for reclassification to the MGCRB by September 1, 2006, they are able to supplement the reclassification application with official data used to develop the FY 2007 wage index after filing their initial application.

Therefore, as we stated in the FY 2007 IPPS final rule (71 FR 48022 through 48023), we are allowing hospitals 30 days after the final wage data is posted on the CMS Web site or by October 30,

2006 to file a supplement to the reclassification application they filed by September 1, 2006. The supplement would include the official data (Attachment H in the MGCRB Application) used to develop the FY 2007 wage index. Supplements must be received within 30 days this final data is posted on the CMS Web site or by October 30, 2006. The 3-year average hourly wage information necessary for FY 2008 reclassification applications appears in Tables 2, 3A, and 3B of the Addendum to this notice. The information also is available on the CMS Web site at: http://www.cms.hhs.gov/ AcuteInpatientPPS/WIFN/list.asp and then by accessing the page titled "MGCRB Reclassification Data for FY 2008 Applications." Applications and other information about MGCRB reclassifications may be obtained via the CMS Internet Web site at: http:// www.cms.hhs.gov/mgcrb/, or by calling the MGCRB at (410) 786-1174. The mailing address of the MGCRB is: 2520 Lord Baltimore Drive, Suite L, Baltimore, MD 21244-2670.

3. Cancellations of Previous Withdrawals or Terminations for FY 2008 and Subsequent Fiscal Years

We are also allowing a 30-day period from the date the final wage data is posted on the CMS Web site to cancel a previous withdrawal or termination in order for a hospital to reinstate its reclassification for FY 2008 (for a FY 2006-2008 reclassification) or FY 2008 and FY 2009 (for a FY 2007-2009 reclassification). Because we have made termination or withdrawal decisions on behalf of hospitals, hospitals should look carefully at these decisions and determine whether they want to cancel such withdrawals or terminations for FY 2008 or FY 2009 if the reclassification time period includes these years. Hospitals must request to reinstate a reclassification that includes FY 2008 within 30 days of posting the Web site data for the reclassification to continue in that year even if they agree with the decision we made on their behalf for FY

Hospitals must request to reinstate a reclassification that includes FY 2008 within 30 days of when the data are posted to the CMS Web site or by October 30, 2006.

Requests to cancel a withdrawal or termination in order to reinstate a hospital's reclassification for FY 2008 or FY 2009, or both fiscal years, should be forwarded to the following addresses: Medicare Geographic Classification Review Board, 2520 Lord Baltimore Drive, Suite L, Baltimore, MD 21244–2670; and a copy to Division of Acute Care, C4–08–06, 7500 Security Boulevard, Baltimore, MD 21244, Attn: Marianne Myers.

All requests must be received within 30 days of this posting of CMS final wage data and final reclassification decisions on the CMS Web site or by October 30, 2006

C. Final FY 2007 Prospective Payment Systems Payment Rates for Hospital Operating and Capital Related Costs

As discussed in the FY 2007 IPPS final rule, due to the unusual circumstances imposed by the order of the Court of Appeals for the Second Circuit in the decision in Bellevue Hospital Center v. Leavitt, we did not publish the final FY 2007 budget neutrality factors, standardized amounts, fixed-loss cost threshold, outlier offset factor, DRG weights, or wage indices in the FY 2007 IPPS final rule. Because the occupational mix adjustment affects the calculation of the outlier threshold as well as the outlier offset and budget neutrality factors that are applied to the standardized amounts, we were only able to provide tentative figures in that final rule. As discussed above in this notice, we are publishing final occupation mixadjusted wage indices. Accordingly, in this section of this notice, we are discussing the final FY 2007 prospective payment rates for Medicare hospital inpatient operating costs and Medicare hospital inpatient capital-related costs. We calculated these final rates using the methodology we adopted in the FY 2007 IPPS final rule.

We note that, because hospitals excluded from the IPPS are paid on a cost basis (and not by the IPPS), these hospitals were not affected by the tentative figures for standardized amounts, offsets, and budget neutrality

factors. Therefore, the rate-of-increase percentages for updating the target amounts for hospitals and hospital units excluded from the IPPS that are effective October 1, 2006 were finalized in the FY 2007 IPPS final rule (71 FR 48164) and are not included in this notice.

1. Final FY 2007 Prospective Payment Rates for Hospital Inpatient Operating Costs

a. Final FY 2007 Standardized Amount. We calculated the final FY 2007 standardized amounts using the methodology we adopted in the FY 2007 IPPS final rule. For a complete description of this methodology, please see the FY 2007 IPPS final rule (71 FR 48145 through 48155). Tables 1A and 1B in the Addendum to this notice contain the final national standardized amount that we are applying to all hospitals, except hospitals in Puerto Rico. The final Puerto Rico-specific amounts are shown in Table 1C. The final amounts shown in Tables 1A and 1B differ only in that the labor-related share applied to the final standardized amounts in Table 1A is 69.7 percent, and the labor-related share applied to the final standardized amounts in Table 1B is 62 percent. (The labor-related share is 62 percent for all hospitals (other than those in Puerto Rico) whose wage indices are less than or equal to 1.0000.)

In addition, Tables 1A and 1B include final standardized amounts reflecting the full 3.4 percent update for FY 2007, and final standardized amounts reflecting the 2.0 percentage point reduction to the update (a 1.4 percent update) applicable for hospitals that fail to submit quality data consistent with section 1886(b)(3)(B)(viii) of the Act.

In the FY 2007 IPPS final rule, we did not supply a table that illustrated the changes from the FY 2006 national average standardized amount because we were only setting the standardized amounts tentatively, but we stated that we would provide the table in the subsequent **Federal Register** notice. Therefore, in this notice, we include below a table that details the calculation of the final standardized amounts.

COMPARISON OF FY 2006 STANDARDIZED AMOUNTS TO FINAL FY 2007 SINGLE STANDARDIZED AMOUNT WITH FULL UPDATE AND REDUCED UPDATE

	Full update (3.4 percent)	Reduced update (1.4 percent)
FY 2006 Base Rate, after removing reclassification budget neutrality, demonstration budget neutrality, wage index transition budget neutrality factors and outlier offset (based on the proposed labor and nonlabor market share percentage for FY 2007).		
Final FY 2007 Update Factor	1.034	1.014.

COMPARISON OF FY 2006 STANDARDIZED AMOUNTS TO FINAL FY 2007 SINGLE STANDARDIZED AMOUNT WITH FULL UPDATE AND REDUCED UPDATE—Continued

	Full update (3.4 percent)	Reduced update (1.4 percent)
Final FY 2007 DRG Recalibrations and Wage Index Budget Neutrality Factor	0.995662	0.995662. 0.992355. Labor: \$3,512.37. Nonlabor: \$1,526.90.
Final FY 2007 Outlier Factor	0.948968	0.948968. 0.999700. 0.999905. Labor: \$2,963.73. Nonlabor: \$1,816.48.
Final Rate for FY 2007 (after multiplying FY 2006 base rate by above factors) where the wage index is greater than 1.0000.	Labor: \$3,397.52 Nonlabor: \$1,476.97	Labor: \$3,331.80. Nonlabor: \$1,448.40.

The final labor-related and nonlabor-related portions of the national average standardized amounts for Puerto Rico hospitals for FY 2007 are set forth in Table 1C in the Addendum to this notice. (The labor-related share applied to the Puerto Rico-specific standardized amount is 58.7 percent, or 62 percent, depending on which is more advantageous to the hospital.

b. Final Adjustments for Area Wage Levels. The final occupational mix adjusted wage indices by geographic area are listed in Tables 4A–1, 4A–2, 4B, 4C–1, 4C–2, and 4F in the Addendum to this notice. (These tables are also available on the CMS Web site.)

c. FY 2007 Final Outlier Fixed-Loss Cost Threshold. Using the methodology we adopted in the FY 2007 IPPS final rule, we are establishing a final outlier fixed-loss cost threshold for FY 2007 equal to the prospective payment rate for the DRG, plus any IME and DSH payments, and any add-on payments for new technology, plus \$24,485.

d. DRG Weights. Because we rely on the wage index data as one of the standardizing factors that we use in calculating both the charge-based and the cost-based relative weights that we are blending to set the FY 2007 transitional relative weights, we have recalculated the FY 2007 relative weights. We list the final DRG weights in Table 5 of the Addendum to this notice.

2. Final FY 2007 Prospective Payment Rates for Acute Care Hospital Inpatient Capital-Related Costs

We have calculated the final FY 2007 capital Federal rates, offsets, and budget neutrality factors using the methodology we adopted in the FY 2007 IPPS final rule. For a complete description of this methodology, please see the FY 2007 IPPS final rule (71 FR 48155 through 48156).

a. Inpatient Hospital Capital-Related Prospective Payment Rate Update. The factors used in the update framework are not affected by the occupational mix information used to adjust the wage index. Therefore, the update factor for FY 2007 was not revised from the capital PPS standard Federal rate update factor published in the FY 2007 IPPS final rule and remains at 1.10 percent for FY 2007. A full discussion of the update framework is provided in the FY 2007 IPPS final rule (71 FR 48156 through 48158).

b. Outlier Payment Adjustment Factor. Based on the final thresholds as set forth in section II.C. of this notice, we estimate that final outlier payments for capital-related costs will equal 4.32 percent for inpatient capital-related payments based on the final Federal rate in FY 2007. Therefore, we are applying a final outlier adjustment factor of 0.9568 to the final capital Federal rate. Thus, we estimate that the percentage of capital outlier payments to total capital standard payments for FY 2007 will be slightly lower than the percentages for FY 2006.

The outlier thresholds for FY 2007 are in section II.C.1. of this notice. For FY 2007, a case qualifies as a cost outlier if the cost for the case plus the IME and DSH payments are greater than the prospective payment rate for the DRG plus \$24,485.

c. Budget Neutrality Adjustment Factor for Changes in DRG Classifications and Weights and the GAF. Using the methodology discussed in the FY 2007 IPPS final rule (71 FR 48158 through 48161), for FY 2007, we are establishing a final GAF/DRG budget neutrality factor of 0.9986. The GAF/ DRG budget neutrality factors are built permanently into the capital rates; that is, they are applied cumulatively in determining the capital Federal rate. This follows from the requirement that estimated aggregate payments each year be no more or less than they would have been in the absence of the annual DRG

reclassification and recalibration and changes in the GAF. The final incremental change in the adjustment from FY 2006 to FY 2007 is 0.9986. The final cumulative change in the capital Federal rate due to this adjustment is 0.9906 (the product of the incremental factors for FYs 1993 though 2006 and the final incremental factor of 0.9986 for FY 2007). (We note that averages of the incremental factors that were in effect during FYs 2005 and 2006, respectively, were used in the calculation of the final cumulative adjustment of 0.9986 for FY 2007.)

This factor accounts for DRG reclassifications and recalibration and for changes in the GAF as well as the revised wage index as adjusted by occupational mix data. It also incorporates the effects on the final GAF of FY 2007 geographic reclassification decisions made by the MGCRB compared to FY 2006 decisions. However, it does not account for changes in payments due to changes in the DSH and IME adjustment factors or in the large urban add-on.

- d. Exceptions Payment Adjustment Factor. The adjustments made to the wage index as a result of the application of occupational mix data had no effect on capital exceptions payments. Therefore, the special exceptions adjustment factor remains at 0.9997 as discussed in section III.A.4. of FY 2007 IPPS final rule (71 FR 48161). We also explained that the adjustments for regular exception payments are no longer necessary as they were only applicable during the capital transition period (cost reporting periods beginning on or after October 1, 1991 and before October 1, 2001).
- e. Capital Standard Federal Rate for FY 2007. We are providing a chart that shows how each of the factors and adjustments for FY 2007 affected the computation of the final FY 2007 capital Federal rate in comparison to the FY

2006 capital Federal rate. The FY 2007 update factor has the effect of increasing the final capital Federal rate by 1.1 percent compared to the average FY 2006 Federal rate. The final GAF/DRG budget neutrality factor has the effect of decreasing the final capital Federal rate by 0.14 percent. The final FY 2007

outlier adjustment factor has the effect of increasing the final capital Federal rate by 0.56 percent compared to the average FY 2006 capital Federal rate. The FY 2007 exceptions payment adjustment factor remains unchanged from the FY 2006 exceptions payment adjustment factor, and therefore, has a

0.0 percent net effect on the final FY 2007 capital Federal rate. The combined effect of all the changes is to increase the capital Federal rate by 1.52 percent compared to the average FY 2006 capital Federal rate.

COMPARISON OF FACTORS AND ADJUSTMENTS: FY 2006 CAPITAL FEDERAL RATE AND FY 2007 CAPITAL FEDERAL RATE

	FY 2006	FY 2007	Change	Percent change
Update Factor¹ GAF/DRG Adjustment Factor¹ Outlier Adjustment Factor² Exceptions Adjustment Factor² Capital Federal Rate	1.0080	1.0110	1.0110	1.10
	1.0008	3 0.9986	0.9986	-0.14
	0.9515	3 0.9568	1.0056	0.56
	0.9997	0.9997	0.0000	0.00
	\$420.65	3 \$427, 03	1.0152	1.52

¹The update factor and the GAF/DRG budget neutrality factors are built permanently into the capital rates. Thus, for example, the incremental change from FY 2006 to FY 2007 resulting from the application of the final GAF/DRG budget neutrality factor for FY 2007 is 0.9986.

³ Final factors for FY 2007, as discussed in section II.E. of this notice.

We provided a chart in the FY 2007 IPPS final rule (71 FR 48162) that compared the tentative FY 2007 capital Federal rate to the proposed FY 2007 capital Federal rate (71 FR 24158 through 24159). We are now providing a chart that shows how the final FY 2007 capital Federal rate differs from the tentative FY 2007 capital Federal rate as presented in the FY 2007 IPPS final rule.

COMPARISON OF FACTORS AND ADJUSTMENTS: FY 2007 TENTATIVE CAPITAL FEDERAL RATE AND FY 2007 FINAL CAPITAL FEDERAL RATE

	Tentative FY 2007 ¹	Final FY 2007 ²	Change	Percent change
Update Factor¹	1.0110	1.0110	0	0
	0.9994	0.9986	0.0008	-0.08
	0.9568	0.9568	0	0
Exceptions Adjustment Factor ² Capital Federal Rate	0.9997	0.9997	0.0000	0.00
	\$427.38	\$427.03	0.0008	0.08

¹ As published in the FY 2007 IPPS final rule without the application of occupational mix data to the wage index.

As a final comparison, we are providing a chart that shows how the final FY 2007 capital Federal rate differs from the proposed FY 2007 capital Federal rate presented in the FY 2007 IPPS proposed rule (71 FR 24158 through 24159).

COMPARISON OF FACTORS AND ADJUSTMENTS: PROPOSED FY 2007 CAPITAL FEDERAL RATE AND FINAL FY 2007 CAPITAL FEDERAL RATE

	Proposed FY 2007	Final FY 2007	Change	Percent change
Update Factor GAF/DRG Adjustment Factor Outlier Adjustment Factor Exceptions Adjustment Factor Capital Federal Rate	1.0080	1.0110	1.0030	0.30
	1.0012	* 0.9986	0.9974	-0.26
	0.9513	* 0.9568	1.0058	0.58
	0.9997	0.9997	0.0000	0.00
	\$424.42	* \$427.03	1.0061	0.61

^{*} Final factors for FY 2007, as discussed in section II.C.2 of this notice.

²The outlier reduction factor and the exceptions adjustment factor are not built permanently into the capital rates; that is, these factors are not applied cumulatively in determining the capital rates. Thus, for example, the net change resulting from the application of the final FY 2007 outlier adjustment factor would be 0.9568/0.9515, or 1.0056.

² Final capital inpatient factors and rates after occupational mix adjustment to wage index in accordance with the order of the Second Circuit Court.

g. Special Capital Rate for Puerto Rico Hospitals. Using the methodology discussed in the FY 2007 IPPS final rule (71 FR 48104), the final FY 2007 special capital rate for Puerto Rico is \$203.06. (See the FY 2007 IPPS final rule (71 FR 48163) for additional information on the calculation of FY 2007 capital PPS payments.)

D. Final FY 2007 Inpatient Operating and Capital-Related Impacts

1. Final FY 2007 Inpatient Operating Impacts (Quantitative Effects of the Final Occupational Mix Adjusted Wage Indices)

The impact analysis for policy changes under the IPPS for operating costs was included in the FY 2007 IPPS final rule. As stated in that impact section (71 FR 48332), we were unable to provide final occupational mix adjusted wage indices because of our obligation to collect new occupational mix survey data consistent with the order of the Court of Appeals in the Second Circuit. We were also unable to provide final relative weights, budget neutrality calculations, the outlier threshold and outlier offsets to the standardized amounts because these figures are all dependent on final wage indices. However, we also indicated that when 100 percent occupational mix adjusted wage data were available, we would recalculate the impacts and provide them in a subsequent Federal Register notice prior to October 1, 2006. Now that the new occupational mix survey data are available and the final 100 percent occupational mix adjusted wage data have been prepared, we are providing the final impacts for FY 2007 including the effect of the occupational mix adjusted wage data. Since there are statutory budget neutrality requirements applied to changes in DRGs and recalibration, wage index and geographic reclassifications, our payment estimates for hospitals overall are consistent with our estimate from the FY 2007 IPPS final rule (71 FR 48331). That is, the revisions to these figures do not increase or decrease aggregate total IPPS payments relative to those we earlier calculated. We continue to estimate that the changes in the FY 2007 IPPS final rule, in conjunction with the final IPPS rates included in this notice, will result in an approximate \$3.4 billion increase in operating and capital payments. (See the FY 2007 IPPS final rule (71 FR 48331)

for a more detailed explanation of how we estimated this \$3.4 billion increase).

a. Analysis of Impact Table I. Table I displays the results of our analysis of the payment changes for FY 2007 that are affected by use of the 100 percent occupational-mix adjusted wage data using occupational-mix survey data from January through March. These impacts update the tentative ones that were shown in the FY 2007 IPPS final rule. As explained in the FY 2007 IPPS final rule and this notice, the FY 2006 occupational-mix survey data were unavailable in time for the completion of the IPPS final rule that was made available to the public on August 1. In this notice, we are only displaying the columns that were affected by the change to the 100 percent occupationalmix adjusted wage data and therefore we are not reprinting the impacts to the quality data rate difference or the MDH changes from section 5003 of the Deficit Reduction Act that were published in the FY 2007 IPPS final rule. (See the FY 2007 IPPS final rule (71 FR 48333 through 48341) for a full discussion of the FY 2007 regulatory impact analysis.)

Table I categorizes hospitals by various geographic and special payment consideration groups to illustrate the varying impacts on different types of hospitals. The top row of the table shows the overall impact on the 3,595 hospitals included in the analysis. The next four rows of Table I contain hospitals categorized according to their geographic location: all urban, which is further divided into large urban and other urban; and rural. There are 2,590 hospitals located in urban areas included in our analysis. Among these, there are 1,441 hospitals located in large urban areas (populations over 1 million), and 1,149 hospitals in other urban areas (populations of 1 million or fewer). In addition, there are 1,005 hospitals in rural areas. The next two groupings are by bed-size categories, shown separately for urban and rural hospitals. The final groupings by geographic location are by census divisions, also shown separately for urban and rural hospitals.

The second part of Table I shows hospital groups based on hospitals' FY 2007 payment classifications, including any reclassifications under section 1886(d)(10) of the Act. For example, the rows labeled urban, large urban, other urban, and rural show that the number of hospitals paid based on these categorizations after consideration of

geographic reclassifications (including reclassifications under sections 1886(d)(8)(B) and 1886(d)(8)(E) of the Act, which have implications for capital payments) are 2,607, 1,448, 1,159, and 988, respectively.

The next three groupings examine the impacts of the changes on hospitals grouped by whether or not they have GME residency programs (teaching hospitals that receive an IME adjustment) or receive DSH payments, or some combination of these two adjustments. There are 2,511 nonteaching hospitals in our analysis, 843 teaching hospitals with fewer than 100 residents, and 241 teaching hospitals with 100 or more residents.

In the DSH categories, hospitals are grouped according to their DSH payment status, and whether they are considered urban or rural for DSH purposes. The next category groups hospitals considered urban after geographic reclassification, in terms of whether they receive the IME adjustment, the DSH adjustment, both, or neither.

The next five rows examine the impacts of the changes on rural hospitals by special payment groups (sole community hospitals (SCHs), rural referral centers (RRCs), and Medicare dependent hospitals (MDHs)), as well as rural hospitals not receiving a special payment designation. There were 187 RRCs, 376 SCHs, 146 MDHs, 98 hospitals that are both SCHs and RRCs, and 8 hospitals that are both MDHs and RRCs.

The next two groupings are based on type of ownership and the hospital's Medicare utilization expressed as a percent of total patient days. These data are taken primarily from the FY 2004 Medicare cost reports, if available, (otherwise FY 2003 data are used).

The next series of groupings concern the geographic reclassification status of hospitals. The first grouping displays all urban hospitals that were reclassified by the MGCRB for FY 2007. The next grouping shows the MGCRB rural reclassifications. The final three rows in Table I contain hospitals located in urban counties, but deemed to be rural under section 1886(d)(8)(E) of the Act, hospitals located in rural counties but deemed to be urban under section 1886(d)(8)(B) of the Act, and hospitals currently reclassified under section 508 of Pub. L. 108-173, which expires on March 31, 2007.

TABLE I.—IMPACT ANALYSIS OF CHANGES FOR FY 2007

	Number of hospitals ¹ (1)	FY 2007 Transitional ½ Cost ½ charge weights & DRG changes 2 (2)	FY 2007 wage data ³ (3)	FY 2007 DRG, Rel. Wts. and Wage index changes ⁴ (4)	FY 2007 wage index transition for hospitals moving from urban to rural ⁵ (5)	FY 2007 MGCRB re- classifica- tions ⁶ (6)	FY 2007 out-migra- tion adjust- ment ⁷ (7)	All FY 2007 changes ⁸ (8)
All Hospitals	3,595	0.3	0.2	0.0	0.0	0.0	0.1	3.5
By Geographic Location:	0.500	0.0	0.4	0.0	0.0	0.0	0.4	0.4
Urban hospitals Large urban areas	2,590	0.2	0.1	0.0	0.0	-0.3	0.1	3.4
(populations over 1								
million) Other urban areas	1,441	0.4	0.0	-0.1	0.0	-0.4	0.0	3.5
(populations of 1								
million or fewer)	1,149	0.1	0.3	0.0	0.0	-0.1	0.2	3.4
Rural hospitals Bed Size (Urban):	1,005	0.3	0.3	0.4	0.3	2.1	0.1	3.9
0–99 beds	651	0.4	0.1	0.0	0.0	-0.5	0.1	3.5
100-199 beds	867	0.6	0.2	0.3	0.0	-0.1	0.1	3.8
200–299 beds	492	0.3	0.1	0.0	0.0	-0.3	0.1	3.6
300–499 beds 500 or more beds	413 167	0.1 0.0	0.2 0.1	-0.2 -0.3	0.0	-0.3 -0.3	0.1 0.0	3.3 3.2
Bed Size (Rural):								
0–49 beds	348	0.5	0.2	0.6	0.1	0.8	0.2	4.7
50-99 beds 100-149 beds	370 174	0.5 0.4	0.2 0.4	0.4 0.5	0.2 0.5	1.1 2.5	0.2 0.1	4.9 3.6
150–199 beds	68	0.3	0.4	0.3	0.4	3.4	0.1	3.3
200 or more beds	45	0.0	0.3	-0.1	0.0	3.1	0.0	3.0
Urban by Region: New England	128	0.4	1.1	1.0	0.0	0.3	0.1	3.5
Middle Atlantic	357	0.5	0.6	0.7	0.0	-0.1	0.2	3.9
South Atlantic	388	0.1	-0.2	-0.5	0.0	-0.4	0.0	3.2
East North Central	395 165	0.2	0.3 -0.6	0.1	0.0	-0.3 -0.4	0.0	3.4 2.7
East South Central West North Central	157	- 0.1 0.0	-0.6 -0.4	-1.0 -0.8	0.0	-0.4 -0.6	0.1 0.0	2.7
West South Central	374	0.2	-0.1	-0.3	0.0	-0.5	0.0	3.4
Mountain Pacific	149	0.2	0.2 0.1	0.0	0.0	-0.2 -0.3	0.0 0.1	3.7 3.7
Puerto Rico	424 53	0.4 0.3	- 1.4	- 1.5	0.0 0.0	-0.3 -0.6	0.1	2.0
Rural by Region:								
New England Middle Atlantic	19 72	0.5 0.5	-0.2 0.2	0.1 0.5	0.0	2.0	0.1 0.0	6.0 5.2
South Atlantic	176	0.5	0.2	0.5	0.1	2.3 2.2	0.0	3.8
East North Central	125	0.2	-0.2	-0.1	0.1	1.6	0.0	3.8
East South Central	180	0.3	0.6	0.5	0.2	2.5	0.1	3.5
West North Central West South Central	116 193	0.2 0.4	0.2 0.9	0.2 0.9	0.0 0.5	2.0 2.8	0.1 0.2	4.3 4.1
Mountain	81	0.3	-0.2	-0.1	2.1	0.8	0.1	2.7
Pacific	43	0.3	-0.3	-0.2	0.0	1.8	0.1	3.2
By Payment Classifica- tion:								
Urban hospitals	2,607	0.2	0.1	0.0	0.0	-0.3	0.1	3.4
Large urban areas								
(populations over 1 million)	1,448	0.4	0.0	-0.1	0.0	-0.4	0.0	3.5
Other urban areas	.,	5.	0.0					0.0
(populations of 1	4 450	0.4	0.0		0.0	0.4		
million or fewer) Rural areas	1,159 988	0.1 0.3	0.3 0.3	0.0 0.4	0.0 0.3	-0.1 2.0	0.2 0.1	3.4 4.0
Teaching Status:	000	0.0	0.0	0	0.0		0.1	1.0
Nonteaching	2,511	0.4	0.1	0.1	0.0	0.2	0.1	3.8
Fewer than 100 residents	843	0.2	0.1	-0.1	0.0	-0.2	0.1	3.4
100 or more residents	241	0.2	0.3	-0.1	0.0	-0.2	0.0	3.1
Urban DSH:		* -						
Non – DSH 100 or more beds	906 1,520	0.2 0.2	0.1 0.1	-0.1 0.0	0.0	-0.1 -0.3	0.1 0.1	3.6 3.4
Less than 100 beds	346	0.2	0.0	0.0	0.0	-0.3	0.1	3.6
Rural DSH:		<u> </u>						
SCH	386	0.3	0.2	0.4	0.2	0.6	0.1	4.6

TABLE I.—IMPACT ANALYSIS OF CHANGES FOR FY 2007—Continued

			Г	T		1	
Number of hospitals ¹ (1)	FY 2007 Transitional ½ Cost ⅔ charge weights & DRG changes ² (2)	FY 2007 wage data ³ (3)	FY 2007 DRG, Rel. Wts. and Wage index changes ⁴ (4)	FY 2007 wage index transition for hospitals moving from urban to rural ⁵ (5)	FY 2007 MGCRB re- classifica- tions ⁶ (6)	FY 2007 out-migra- tion adjust- ment 7 (7)	All FY 2007 changes ⁸ (8)
199	0.2	0.4	0.3	0.2	3.4	0.0	3.5
55	0.6	0.7	0.0	0.0	0.7	0.2	3.5
183	0.6	0.5	0.7	0.4	0.9	0.4	3.8
815	0.2	0.1	-0.1	0.0	-0.3	0.0	3.3
201	0.1	0.3	0.0	0.0	-0.1	0.2	3.3
•							3.7
							3.5 3.6
146	0.5	0.1	0.5	0.0	0.7	0.1	9.0
98	0.1	-0.1	-0.1	0.0	1.9	0.0	3.1
8	0.3	-0.1	0.3	0.0	1.0	0.0	14.0
2,102	0.2	0.2	0.1	0.0	0.0	0.1	3.5
880	0.4	-0.1		0.1	-0.1	0.0	3.5
							3.4 7.6
		0			0.0	0.2	
243	0.6	-0.1	0.1	0.0	-0.3	0.0	3.6
,							3.3 3.7
462	0.2	0.3	0.2	0.0	0.5	0.1	3.8
84	1.0	-0.4	0.1	0.0	-0.5	0.1	4.4
281	0.3	0.3	0.1	0.0	2.4	0.0	3.7
201			0				-
2,284	0.2	0.1	-0.1	0.0	-0.6	0.1	3.4
341	0.3	0.4	0.2	0.0	1.8	0.0	3.5
2,224	0.2	0.1	-0.1	0.0	-0.6	0.1	3.4
369	0.2	0.3	0.2	0.1	3.6	0.0	3.6
578	0.5	0.3	0.5	0.6	_03	0.3	4.4
30	0.2	0.8	0.8	0.0	-0.1	0.0	5.4
57	0.6	0.3	0.6	0.0	3.6	0.0	4.4
108	0.2	0.6	0.4	0.0	-0.2	0.0	1.9
21	-2.0	0.0	-2.4	0.0	-0.6	0.0	1.2
	hospitals 1 (1) 199 55 183 815 201 1,051 540 187 376 146 98 8 2,102 880 603 10 243 1,328 1,478 462 84 281 2,284 341 2,224 369 578 30 57 108	Number of hospitals¹ (1) Transitional ½ Cost ⅔ charge weights & DRG changes² (2) 199 0.2 55 0.6 183 0.6 815 0.2 201 1,051 0.5 540 0.3 187 0.2 0.3 376 0.3 0.3 146 0.5 98 0.1 98 0.1 0.3 2,102 880 0.4 0.4 603 0.3 0.3 0.2 1,478 0.3 0.2 1,478 0.3 0.2 341 0.3 0.2 281 0.3 0.2 341 0.3 0.2 369 0.2 0.2 578 0.5 0.5 30 0.2 0.2 57 0.6 0.2 0.6 0.2 0.2 0.6	Number of hospitals¹ (1) Transitional charge weights & DRG changes² (2) FY 2007 wage data³ (3) 199 0.2 0.4 55 0.6 0.7 wage data³ (3) 815 0.2 0.1 201 0.1 0.3 o.0 187 0.2 0.5 o.1 540 0.3 0.0 187 0.2 0.5 o.1 376 0.3 0.1 o.1 146 0.5 0.2 98 0.1 -0.1 146 0.5 0.2 98 0.1 -0.1 2,102 0.2 0.2 880 0.4 -0.1 1,328 0.2 0.0 1,478 0.3 0.3 462 0.2 0.3 84 1.0 -0.4 2,284 0.2 0.1 341 0.3 0.3 462 0.2 0.3 369 0.2 0.3 578	Number of hospitals¹ (1) Transitional lys Cost 3/s charge weights & DRG changes² (2) FY 2007 DRG, Rel. Wits, and Wage index changes⁴ (4) 199 0.2 0.4 0.3 55 0.6 0.7 0.9 183 0.6 0.5 0.7 815 0.2 0.1 -0.1 201 0.1 0.3 0.0 1,051 0.5 0.1 0.1 540 0.3 0.0 -0.2 187 0.2 0.5 0.3 376 0.3 0.1 0.3 146 0.5 0.2 0.5 98 0.1 -0.1 -0.1 800 0.4 -0.1 -0.2 803 0.4 -0.1 -0.2 800 0.4 -0.1 -0.2 100 2.2 0.1 1.7 243 0.6 -0.1 0.1 1,478 0.3 0.3 0.2 462 0.2 0.3	Number of hospitals Charges Charge weights & DRG charges Charges weights & DRG charges Charges	Number of hospitals Pry 2007 Properties Pry 2007 Pry 200	Number of Variational Variations of Variation of Variat

¹ Because data necessary to classify some hospitals by category were missing, the total number of hospitals in each category may not equal the national total. Discharge data are from FY 2005, and hospital cost report data are from reporting periods beginning in FY 2004 and FY 2003.
² This column displays the final payment impact of the changes to the V24 GROUPER and the recalibration of the DRG cost weights based on FY 2005 MedPAR data in accordance with section 1886(d)(4)(C)(iii) of the Act.

³ This column displays the final payment impact of updating the wage index data with the 100 percent occupational mix adjustment applied to

the FY 2003 cost report data.

⁴This column displays the final payment impact of the 0.995662 budget neutrality factor for DRG and wage index changes (with a 100 percent occupational mix adjustment applied to the wage index) data in accordance with section 1886(d)(4)(C)(iii) of the Act and section 1886(d)(3)(E) of

the Act.

5 Shown here are the final effects of providing rural hospitals formerly located in urban areas with urban wage index values in FY 2007. The effects reflected here are budget neutral: this column therefore includes the effect of the 0.999700 adjustment that we have applied to the rates to

ensure budget neutrality.

⁶ Shown here are the final effects of geographic reclassifications by the Medicare Geographic Classification Review Board (MGCRB) and CMS decisions made on behalf of the hospital for FY 2007. The effects demonstrate the FY 2007 payment impact of going from no reclassifications to the reclassifications scheduled to be in effect for FY 2007. Reclassification for prior years has no bearing on the payment impacts shown here. This column reflects the geographic budget neutrality factor of 0.992355.

This column displays the final impact of the FY 2007 implementation of section 505 of Pub. L. 108-173, which provides for an increase in a

hospital's wage index if the hospital qualifies by meeting a threshold percentage of residents of the county where the hospital is located who commute to work at hospitals in counties with higher wage indices.

8 This column shows final changes in payments from FY 2006 to FY 2007. It incorporates all of the changes displayed in Columns 2, 3, 4,5, and 6 (the changes displayed in Columns 2 and 3 are included in Column 4), as well as those displayed in columns 2 and 3 (related to the quality data differential in the IPPS update and implementation of the MDH DRA provisions) of the FY 2007 IPPS final rule. It also reflects the impact of the FY 2007 update, changes in hospitals' reclassification status in FY 2007 compared to FY 2006, and the changes in payments as a result of continuing the reclassifications under section 508 of Pub. L. 108-173. The product of these impacts may be different from the percentage changes shown here due to rounding and interactive effects.

(1) Effects of the Changes to the DRG Reclassifications and Relative Cost-Based Weights (Column 2). In Column 2 of Table I, we present the combined effects of the DRG reclassifications and recalibration, as discussed in section II. of the preamble to the FY 2007 IPPS final rule (71 FR 47879 through 47979). Section 1886(d)(4)(C)(i) of the Act requires us annually to make appropriate classification changes in order to reflect changes in treatment patterns, technology, and any other factors that may change the relative use of hospital resources.

As discussed in the preamble of the FY 2007 IPPS final rule (71 FR 47882 through 47898), we are changing the relative weight calculation methodology from a charge-based to a cost-based method. Further, we are implementing the new methodology under a 3-year transition such that weights in FY 2007 are ½ cost-based and ½ charge-based. As part of the methodology for determining cost weights, we standardize hospital charges by the wage index to remove the effect of area wage differences. Since the wage index data has been updated to reflect a 100 percent occupational mix adjustment based on the latest survey data available, we recalculated the relative weights for the FY 2007 by standardizing charges using the 100 percent occupational mix adjusted wage indices. The use of occupational mix adjusted wage indices to standardize hospital charges resulted in very small changes to the DRG relative weights. No DRG weight changed by greater or less than 1 percent from those shown in Table 5 of the FY 2007 IPPS final rule. The revised and final FY 2007 DRG relative weights are shown in Table 5 of the Addendum to this notice.

In column 2, we compare aggregate payments using the FY 2007 blended relative weights (GROUPER Version 24) to the FY 2006 DRG relative charge weights (GROUPER Version 23.0) so the

percentages shown here illustrate the effect of changes to the DRGs and relative weights. The method of calculating the relative weights and the reclassification changes to the GROUPER are described in more detail in section II. of the preamble to the FY 2007 IPPS final rule. The impacts shown in this column are generally very consistent by hospital category with those shown in column 4 of Table I of the FY 2007 IPPS final rule (71 FR 48335). With the exception of using occupational mix adjusted wage indices to standardize hospital charges, the data and methodology that we modeled in this column are identical to the FY 2007 IPPS final rule. Therefore, any differences in the impacts shown in this column from column 6 of Table I of the FY 2007 IPPS final rule and column 4 of the table above are due to the use of occupational mix adjusted wage data. We note that this column reflects the impact of changes to the DRG classifications and relative weights only and is not budget neutral. Consistent with section 1886(d)(4)(C)(iii) of the Act, we apply a single budget neutrality factor to ensure that the combined overall payment impact of changes to the DRG classification, relative weights, and wage index is budget neutral. The budget neutrality factor for the combined changes to the DRGs, relative weights, and wage index are shown in the table above entitled, "Comparison of FY 2006 Standardized Amounts to Final FY 2007 Single Standardized Amount with Full Update and Reduced Update."

(2) Effects of Wage Index Changes (Column 3). Section 1886(d)(3)(E) of the Act requires that, beginning October 1, 1993, we annually update the wage data used to calculate the wage index. In accordance with this requirement, the wage index for FY 2007 is based on data submitted for hospital cost reporting periods beginning on or after October 1, 2002 and before October 1, 2003. In the IPPS FY 2007 IPPS final rule, due to the

decision in Bellevue Hosp. Center v. Leavitt, in which the Court of Appeals for the Second Circuit ordered CMS to apply the occupational mix adjustment to 100 percent of the wage index effective for FY 2007 (see section III.C. of the FY 2007 IPPS final rule for more details of this Court decision (71 FR 48006)), we were unable to show the impact of the 100 percent occupational mix adjustment as the necessary data were unavailable in time for making the final IPPS rule available to the public on August 1. This column now shows the final estimated effect of updating the wage index with wage data from FY 2003 hospital cost reports and moving to a 100 percent occupational mix adjusted wage index using occupational mix survey data for January through March of this year.

The estimated impact on hospital payments of the new wage data with the 100 percent occupational mix adjustment applied using the new survey data is isolated in Column 3 by holding the other payment parameters constant. That is, Column 3 shows the percentage changes in payments when going from a model using the FY 2006 wage index, based on FY 2002 wage data and having a 10-percent occupational mix adjustment applied, to a model using the FY 2007 prereclassification wage index, based on FY 2003 wage data with a 100 percent occupational mix adjustment based on the latest occupational mix survey data. The wage data collected on the FY 2003 cost report are the same as the FY 2002 wage data that were used to calculate the FY 2006 wage index.

Hospitals located in urban New England are estimated to receive the greatest benefit from the new wage and occupational mix data. Payments to hospitals in urban New England are estimated to increase 1.1 percent while rural hospitals located in the West South Central region experience an increase of 0.9 percent from these data. Puerto Rico hospitals see the least benefit from the change to the wage and occupational mix data with a 1.4 percent estimated decrease in payments.

The national average hourly wage increased 5.9 percent compared to FY 2006 from the new wage data. Therefore, the only manner in which to maintain or exceed the previous year's wage index was to match the national 5.9 increase in average hourly wage. Of the 3,491 hospitals with wage data for both FYs 2006 and 2007, 1,706, or 48.9 percent, also experienced an average hourly wage increase of 5.9 percent or more.

The following chart compares the shifts in wage index values for hospitals for FY 2007 relative to FY 2006. Among urban hospitals, 40 will experience an increase of between 5 percent and 10 percent and 15 will experience an increase of more than 10 percent. No rural hospitals will experience an increase greater than 5 percent, but 790 will experience increases between 0 and 5 percent. On the negative side, 79 urban hospitals will experience decreases in their wage index values of at least 5 percent, but less than 10 percent. Eight urban hospitals will experience decreases in their wage index values greater than 10 percent.

The following chart shows the projected impact for urban and rural hospitals:

Percentage change in area wage index	Number of hospitals			
values	Urban	Rural		
Increase more than 10 percent	15	0		
percent	40	0		
than 5 percent Decrease more than 5	2,354	986		
percent and less than 10 percent Decrease more than 10	79	5		
percent	8	4		

(3) Combined Effects of DRG and Wage Index Changes, Including Budget Neutrality Adjustment (Column 4). Section 1886(d)(4)(C)(iii) of the Act requires that changes to DRG reclassifications and the relative weights cannot increase or decrease aggregate payments. In addition, section 1886(d)(3)(E) of the Act specifies that any updates or adjustments to the wage index are to be budget neutral. As noted in the Addendum to this final rule, in determining the budget neutrality factor, we equated simulated aggregate payments for FY 2006 and FY 2007 using the FY 2005 Medicare utilization

data after applying the changes to the DRG relative weights and the wage index

We computed a wage and DRG recalibration budget neutrality factor of 0.995662. The 0.0 percent impact for all hospitals demonstrates that these changes, in combination with the budget neutrality factor, are budget neutral. In Table I, the combined overall impacts of the effects of both the DRG reclassifications and the updated wage index are shown in Column 4. The changes in this column are the sum of the changes in Columns 2 and 3, combined with the budget neutrality factor for the wage index, including the wage index floor for urban areas required by section 4410 of Pub. L. 105-33. There also may be some variation of plus or minus 0.1 percentage point due to rounding. As indicated above, the changes in the relative weights are generally consistent with those we showed in Table I of the FY 2007 IPPS final rule while the impacts due to the wage data may be somewhat different than those shown there because of the new occupational mix survey and a 100 percent adjustment to the wage index. Any changes between column 6 of Table I of the FY 2007 IPPS final rule and column 4 of Table I of this notice are due to use of a 100 percent adjustment for occupational mix and the new survey data.

(4) Effects of the 3-Year Provision Allowing Urban Hospitals that Were Converted to Rural as a Result of the FY 2005 Labor Market Area Changes to Maintain the Wage Index of the Urban Labor Market Area in Which They Were Formerly Located (Column 5). To help alleviate the decreased payments for urban hospitals that became rural under the new labor market area definitions, for purposes of the wage index, we adopted a policy in FY 2005 to allow them to maintain the wage index assignment of the MSA where they were located for the 3-year period FY 2005, FY 2006, and FY 2007. Column 5 shows the impact of the remaining labor market area transition, for those hospitals that were urban under the old labor market area designations and are now considered rural hospitals. Section 1886(d)(3)(E) of the Act specifies that any updates or adjustments to the wage index are to be budget neutral. Therefore, we applied a adjustment of 0.999700 to ensure that the effects of reclassification are budget neutral as indicated by the zero effect on payments to hospitals overall. The rural hospital row shows a 0.3 percent benefit from this provision as these hold-harmless hospitals are now classified as geographically rural.

(5) Effects of MGCRB Reclassifications (Column 6). Our impact analysis up to this point has assumed hospitals are paid on the basis of their actual geographic location (with the exception of ongoing policies that provide that certain hospitals receive payments on other bases than where they are geographically located, such as hospitals in rural counties that are deemed urban under section 1886(d)(8)(B) of the Act). The changes in Column 6 reflect the per case payment impact of moving from this baseline to a simulation incorporating the MGCRB decisions for FY 2007 which affect hospitals' wage index area assignments.

By February 28 of each year, the MGCRB makes reclassification determinations that will be effective for the next fiscal year, which begins on October 1. The MGCRB may approve a hospital's reclassification request for the purpose of using another area's wage index value. The FY 2007 wage index values incorporate all of the MGCRB's reclassification decisions for FY 2007 as well as any decisions made by the CMS Administrator through the appeals and review process.

For FY 2007, as stated in the FY 2006 IPPS final rule (70 FR 47382, August 12, 2005), we established procedural rules under section 1886(d)(10)(D)(v) of the Act to address specific circumstances where individual and group reclassifications involve a section 508 hospital. The rules were designed to recognize the special circumstances of section 508 hospital reclassifications ending midyear during FY 2007 and were intended to allow previously approved reclassifications to continue through March 31, 2007, and new section 1886(d)(10) reclassifications to begin April 1, 2007, upon the conclusion of the section 508 reclassifications. Under these procedural rules, some section

The first and second half fiscal year section 1886(d)(10) reclassifications permitted under these procedural rules have implications for the calculation of the reclassified wage indices and the reclassification budget neutrality factor. Section 1886(d)(8)(c) of the Act provides requirements for determining the wage index values for hospitals that were reclassified as a result of the MGCRB decisions under 1886(d)(10) of the Act. As provided in the statute, we are required to calculate a separate wage index for hospitals reclassified to an area if including the wage data for the

reclassified hospitals would reduce the

area wage index by more than 1 percent.

1886(d)(10) hospital reclassifications are

only in effect for the second half of the

fiscal year.

Because of the half-year reclassifications permitted under the procedural rules, in this final rule, we are issuing two separate wage indices for affected areas (one effective from October 1, 2006, through March 31, 2007 and a second reclassified wage index effective April 1, 2007, through September 30, 2007). The FY 2007 wage index values are calculated based on the wage data for hospitals reclassified to the area in the respective half of the fiscal year. The impact of this policy is modeled in Column 6 of Table I of this notice.

The overall effect of geographic reclassification is required by section 1886(d)(8)(D) of the Act to be budget neutral. In this final rule, we are calculating one budget neutrality adjustment that reflects the average of the adjustments required for first and second half fiscal year reclassifications, respectively. Therefore, we applied an adjustment of 0.992355 to ensure that the effects of the section 1886(d)(10)reclassifications are budget neutral. (See section II.A. of the Addendum to FY 2007 IPPS final rule (71 48146).) As noted in section II.B. of this notice, CMS applied reclassification decisions for FY 2007 on behalf of hospitals to give them the highest wage index. Hospitals have 30 days from the date of the posting of these data on the CMS Web site to revise the decision that CMS made on their behalf.

The impacts shown in Column 6 of Table 1 above reflect the CMS reclassification decisions on behalf of hospitals, which reflect the area that would give the hospital the highest wage index using a 100 percent occupational-mix adjustment and the most recent survey data. As a group, rural hospitals benefit most from reclassification. We estimate that their payments will rise 2.1 percent in FY 2007. Payments to urban hospitals will decline by 0.3 percent. Hospitals in other urban areas will experience an overall decrease in payments of 0.1 percent, while hospitals in large urban areas will lose 0.4 percent. Among urban hospital groups (that is, bed size, census division and IME/DSH status), payments generally would decline.

A positive impact is evident among all of the rural hospital groups. The smallest increase among rural census divisions is 0.8 percent for the Mountain region. The largest increases are in the rural West South Central and rural East South Central regions with 2.8 and 2.5 percent, respectively. Urban hospitals reclassified for FY 2007 are expected to receive an increase of 2.4 percent, while rural reclassified hospitals are expected to benefit from

the MGCRB changes with a 3.6 percent increase in payments. Payments to urban and rural hospitals that did not reclassify are expected to decrease slightly due to the MGCRB changes, decreasing by 0.6 percent for urban hospitals and 0.3 percent for rural hospitals.

(6) Effects of the Wage Index Adjustment for Out-Migration (Column 7). Section 1886(d)(13) of the Act, as added by section 505 of Pub. L. 108-173, provides for an increase in the wage index for hospitals located in certain counties that have a relatively high percentage of hospital employees who reside in the county, but work in a different area with a higher wage index. Hospitals located in counties that qualify for the payment adjustment are to receive an increase in the wage index that is equal to a weighted average of the difference between the wage index of the resident county and the higher wage index work area(s), weighted by the overall percentage of workers who are employed in an area with a higher wage index.

Using our established criteria, 583 providers in 282 counties are eligible for this adjustment. Due to the statutory formula to calculate the adjustment and the small number of counties that qualify, the impact on hospitals is minimal, with an overall impact on all

hospitals of 0.1 percent.

(7) Effects of All Changes (Column 8). Column 8 compares our estimate of payments per case between FY 2006 and FY 2007, incorporating all changes reflected in the FY 2007 IPPS final rule and in this notice (including statutory changes). This column reflects the impact of all FY 2007 changes relative to FY 2006, including the impact of the quality data changes and the MDH changes from section 5003 of the DRA (see 70 FR 48335) and the impacts shown in Columns 2 through 8 as well as other factors that are not applied until the final rates are calculated. The average increase for all hospitals is approximately 3.5 percent. This increase includes the effects of the 3.4 percent market basket update. It also reflects the 0.5 percentage point difference between the projected outlier payments in FY 2006 (5.1 percent of total DRG payments) and the current estimate of the percentage of actual outlier payments in FY 2006 (4.6 percent), as described in the introduction to this Appendix and the Addendum to this final rule. As a result, payments are projected to be 0.5 percentage points lower in FY 2006 than originally estimated, resulting in a 0.5 percentage point greater increase for FY 2007 than would otherwise occur. In

addition, the impact of section 505 adjustments accounted for a 0.1 percent increase. Indirect medical education formula changes for teaching hospitals under section 502 of Pub. L. 108-173, changes in payments due to the difference between the FY 2006 and FY 2007 wage index values assigned to providers reclassified under section 508 of Pub. L. 108-173, and changes in the incremental increase in payments from section 505 of Pub. L. 108-173 outmigration adjustments account for the remaining -0.6 percent.

There might also be interactive effects among the various factors comprising the payment system that we are not able to isolate. For these reasons, the values in Column 8 may not equal the product of the percentage changes described above. We estimate that payments will increase across all hospitals in each category shown in column 8.

We estimate that the average payment per case will increase in FY 2007 by 3.5 percent across all hospitals, 3.4 percent for hospitals in urban areas, 3.5 percent for hospitals in large urban areas, 3.4 percent for hospitals in other urban areas and 3.9 percent for hospitals in rural areas.

Among urban census divisions, we estimate the largest payment increases would be 3.9 percent in the Mid Atlantic region and 3.7 percent in the Pacific and Mountain regions. We estimate that the smallest urban increase will be 2.0 percent in Puerto Rico.

Among rural areas, the New England and Middle Atlantic regions would benefit the most from changes in the FY 2007 IPPS final rule, with 6.0 and 5.2 percent increases, respectively. The smallest increase would occur in the Mountain region, with a 2.7 percent increase in payments.

Among special categories of rural hospitals in Column 8, MDH/RRC providers receive an increase in payments of 14.0 percent and MDH providers receive an increase of 9.0 percent, primarily due to the changes to MDH payments set forth in section 5003 of Pub. L. 109–171 (see 70 FR 48062).

Urban hospitals reclassified for the first half of FY 2007 are anticipated to receive an increase of 3.7 percent, while urban hospitals that reclassified for the second half of FY 2007 are expected to receive an increase of 3.5 percent. The same set of rural hospitals is reclassified for the first and second half of FY 2007. Rural hospitals reclassifying for the entire year of FY 2007 are anticipated to receive a 3.6 percent payment increase. Those hospitals located in rural counties, but deemed to be urban under section 1886(d)(8)(B) of the Act are expected to receive an increase in

payments of 4.4 percent. Hospitals that were reclassified under section 508 of Pub. L. 108–173, which is only effective through March 31, 2007, are expected to receive an increase of 1.9 percent. This lower estimated increase in payment than the average for all hospitals is due to the expiration of the higher section

508 wage indices in effect for 6 months of FY 2007.

b. Analysis of Impact Table II. Table II presents the projected impact of the changes for FY 2007 for urban and rural hospitals and for the different categories of hospitals shown in Table I. It compares the estimated payments per case for FY 2006 with the average estimated per case payments for FY

2007, as calculated under our models. Thus, this table presents, in terms of the average dollar amounts paid per discharge, the combined effects of the changes presented in Table I. The percentage changes shown in the last column of Table II equal the percentage changes in average payments from Column 8 of Table I.

TABLE II.—IMPACT ANALYSIS OF CHANGES FOR FY 2007 OPERATING PROSPECTIVE PAYMENT SYSTEM [Payments per case]

	Number of hospitals (1)	Average FY 2006 pay- ment per case ¹ (2)	Average FY 2007 pay- ment per case ¹ (3)	All FY 2007 changes (4)
All hospitals	3,595	8,540	8,838	3.5
By Geographic Location:	•	·	,	
Urban hospitals	2,590	8,951	9,258	3.4
Large urban areas (populations over 1 million)	1,441	9,368	9,692	3.5
Other urban areas (populations of 1 million or fewer)	1,149	8,446	8,731	3.4
Rural hospitals	1,005	6,228	6,474	3.9
Bed Size (Urban):				
0–99 beds	651	6,730	6,964	3.5
100–199 beds	867	7,490	7,772	3.8
200–299 beds	492	8,403	8,702	3.6
300–499 beds	413	9,405	9,719	3.3
500 or more beds	167	11,388	11,748	3.2
Bed Size (Rural):	0.40	F 000	F 400	4.7
0–49 beds	348	5,222	5,466	4.7
50–99 beds	370	5,622	5,897	4.9
100–149 beds	174	6,199	6,425	3.6
150–199 beds	68 45	6,933	7,163	3.3 3.0
Urban by Region:	45	7,898	8,134	3.0
	128	9,391	9,717	3.5
New England	357	9,833	10,217	3.9
South Atlantic	388	8,476	8,747	3.2
East North Central	395	8,561	8,854	3.4
East South Central	165	8,209	8,433	2.7
West North Central	157	8,689	8,929	2.8
West South Central	374	8,447	8,737	3.4
Mountain	149	8,812	9,140	3.7
Pacific	424	10,742	11,144	3.7
Puerto Rico	53	4,190	4,272	2.0
Rural by Region:		,	,	
New England	19	8,137	8,627	6.0
Middle Atlantic	72	6,291	6,616	5.2
South Atlantic	176	6,033	6,264	3.8
East North Central	125	6,457	6,700	3.8
East South Central	180	5,973	6,181	3.5
West North Central	116	6,422	6,696	4.3
West South Central	193	5,669	5,902	4.1
Mountain	81	6,589	6,768	2.7
Pacific	43	7,608	7,850	3.2
By Payment Classification:				
Urban hospitals	2,607	8,939	9,245	3.4
Large urban areas (populations over 1 million)	1,448	9,357	9,682	3.5
Other urban areas (populations of 1 million or fewer)	1,159	8,431	8,714	3.4
Rural areas	988	6,278	6,530	4.0
Teaching Status:	0.511	7 104	7 202	2.0
Non-teaching	2,511	7,124	7,393	3.8
Fewer than 100 Residents	843	8,640 12,605	8,932	3.4 3.1
Urban DSH:	241	12,605	13,001	3.1
Non-DSH	906	7,725	8,001	3.6
100 or more beds	1,520	9,424	9,746	3.4
Less than 100 beds	346	6,159	6,383	3.4
Rural DSH:	340	0,109	0,303	3.0
SCH	386	5,816	6,080	4.6
0011	300	3,010	0,000	1 4.0

TABLE II.—IMPACT ANALYSIS OF CHANGES FOR FY 2007 OPERATING PROSPECTIVE PAYMENT SYSTEM—Continued [Payments per case]

	Number of hospitals (1)	Average FY 2006 pay- ment per case ¹ (2)	Average FY 2007 pay- ment per case ¹ (3)	All FY 2007 changes (4)
Other Rural:				
100 or more beds	55	5,737	5,936	3.5
Less than 100 beds	183	5,104	5,301	3.8
Urban teaching and DSH:				
Both teaching and DSH	815	10,367	10,707	3.3
Teaching and no DSH	201	8,601	8,889	3.3
No teaching and DSH	1,051	7,617	7,899	3.7
No teaching and no DSH	540	7,283	7,539	3.5
Rural Hospital Types:		·	·	
RRC	187	7,277	7,529	3.5
SCH	376	6,216	6,439	3.6
MDH	146	5,190	5,657	9.0
SCH and RRC	98	7,408	7,637	3.1
MDH and RRC	8	6,439	7,341	14.0
Unknown				
Type of Ownership:				
Voluntary	2,102	8,680	8,984	3.5
Proprietary	880	7,714	7,984	3.5
Government	603	8.779	9.078	3.4
Unknown	10	13,196	14,194	7.6
Medicare Utilization as a Percent of Inpatient Days:			,	
0–25	243	12,182	12.620	3.6
25–50	1,328	9,739	10,057	3.3
50–65	1,478	7,438	7,714	3.7
Over 65	462	6.662	6,915	3.8
Unknown	84	9,920	10,354	4.4
Hospitals Reclassified by the Medicare Geographic Classification Review Board: FY		0,020	10,001	
2005 Reclassifications:				
Urban Hospitals Reclassified by the Medicare Geographic Classification Review				
Board: First Half FY 2007 Reclassifications:	281	8,778	9,099	3.7
Urban Nonreclassified, First Half FY 2007:	2,284	8,983	9,288	3.4
All Urban Hospitals Reclassified Second Half FY 2007:	341	9,038	9,351	3.5
Urban Nonreclassified Hospitals Second Half FY 2007:	2,224	8,947	9,253	3.4
All Rural Hospitals Reclassified Second Half FY 2007:	369	6,759	7.004	3.6
Rural Nonreclassified Hospitals Second Half FY 2007:	578	5,559	5,806	4.4
All Section 401 Reclassified Hospitals:	30	7,030	7.408	5.4
Other Reclassified Hospitals (Section 1886(d)(8)(B))	57	5,839	6,097	4.4
Section 508 Hospitals	108	9,268	9,446	1.9
Specialty Hospitals		3,200	3,440	1.9
Cardiac Specialty Hospitals	21	11,363	11.497	1.2
- Cardiao Opodiany i Ioophaio		11,000	11,737	1.2

¹ These payment amounts per case do not reflect any estimates of annual case-mix increase.

2. Final FY 2007 Capital-Related Impacts (Quantitative Effects of the Final Occupational Mix Adjusted Wage Indices)

(a) General Considerations. In accordance with § 412.312, the basic methodology for determining a capital PPS payment is:

(Standard Federal Rate) × (DRG weight) × (Geographic Adjustment Factor (GAF)) × (Large Urban Add-on, if applicable) × (COLA for hospitals located in Alaska and Hawaii) × (1 + Disproportionate Share (DSH) Adjustment Factor + Indirect Medical Education (IME) Adjustment Factor, if applicable).

In addition, hospitals may also receive outlier payments for those cases that qualify under the threshold established for each fiscal year.

The data used in developing the impact analysis presented below are taken from the March 2006 update of the FY 2005 MedPAR file and the March 2006 update of the Provider-Specific File that is used for payment purposes. Although the analyses of the changes to the capital prospective payment system do not incorporate cost data, we used the March 2006 update of the most recently available hospital cost report data (FYs 2003 and 2004) to categorize hospitals. Our analysis has several qualifications. First, we do not make adjustments for behavioral changes that hospitals may adopt in response to policy changes. Second, due to the interdependent nature of the IPPS, it is very difficult to precisely quantify the impact associated with each change.

Third, we draw upon various sources for the data used to categorize hospitals in the tables. In some cases (for instance, the number of beds), there is a fair degree of variation in the data from different sources. We have attempted to construct these variables with the best available sources overall. However, for individual hospitals, some miscategorizations are possible.

Using cases from the March 2006 update of the FY 2005 MedPAR file, we simulated payments under the capital PPS for FY 2006 and FY 2007 for a comparison of total payments per case. Any short-term, acute care hospitals not paid under the general IPPS (Indian Health Service hospitals and hospitals in Maryland) are excluded from the simulations.

We modeled payments for each hospital by multiplying the capital Federal rate by the GAF and the hospital's case-mix. We then added estimated payments for indirect medical education, disproportionate share, large urban add-on, and outliers, if applicable. For purposes of this impact analysis, the model includes the following assumptions:

• We estimate that the Medicare casemix index will increase by 1.0 percent in both FYs 2006 and 2007.

- We estimate that the Medicare discharges will be 13.5 million in FY 2006 and 13.1 million in FY 2007 for a 3.0 percent decrease from FY 2006 to FY 2007.
- The capital Federal rate was updated beginning in FY 1996 by an analytical framework that considers changes in the prices associated with capital-related costs and adjustments to account for forecast error, changes in the case-mix index, allowable changes in intensity, and other factors. The FY 2007 update is 1.1 percent (see section II.E.2. of this notice).
- In addition to the FY 2007 update factor, the FY 2007 capital Federal rate was calculated based on a GAF/DRG budget neutrality factor of 0.9986, an outlier adjustment factor of 0.9568, and an exceptions adjustment factor of 0.9997.

(b) Results. We used the actuarial model described above to estimate the potential impact of our changes for FY 2007 on total capital payments per case, using a universe of 3,595 hospitals. As described above, the individual hospital payment parameters are taken from the best available data, including the March 2006 update of the FY 2005 MedPAR file, the March 2006 update to the Provider-Specific File, and the most recent cost report data from the March 2006 update of HCRIS. In Table III, we present a comparison of total payments per case for FY 2006 compared to FY 2007 based on the FY 2007 payment policies. Column 2 shows estimates of payments per case under our model for FY 2006. Column 3 shows estimates of payments per case under our model for FY 2007. Column 4 shows the total percentage change in payments from FY 2006 to FY 2007. The change represented in Column 4 includes the 1.1 percent update to the capital Federal rate, a 0.0 percent increase in case-mix, changes in the adjustments to the capital Federal rate (for example, the effect of the hospital wage index on the GAF), and reclassifications by the MGCRB. The comparisons are provided by: (1) Geographic location; (2) region; and (3) payment classification.

The simulation results show that, on average, capital payments per case can be expected to increase 2.4 percent in FY 2007. In addition to the 1.1 percent increase due to the capital market basket update, this projected increase in capital payments per case is largely attributable to the change in the DRG recalibration process methodology for FY 2007 as discussed in section II.C. of the preamble of the FY 2007 IPPS final rule (71 FR 48006). To a lesser extent, the final outlier factor also contributes to the increase in capital payments per case, while the final GAF has the opposite effect on capital payments (0.2 percent and -0.1 percent, respectively).

The results of our comparisons by geographic location and by region are consistent with the results we expected after applying the changes to the DRG recalibration methodology. The geographic comparison shows that urban hospitals are expected to experience a 2.3 percent increase in IPPS capital payments per case, while rural hospitals are expected to experience a 2.4 percent increase in capital payments per case. This difference is mostly due to the changes to the methodology used to recalibrate DRGs discussed in the FY 2007 IPPS final rule (71 FR 47882). The capital impact is largely consistent with the impacts in the FY 2007 IPPS final rule (71 FR 48348). However the capital GAF is somewhat affected by the wage index changes resulting from using the revised occupational mix survey data and applying a 100 percent occupational mix adjustment. Any changes from the impact presented in the FY 2007 IPPS final rule would be due to the revised wage indices and the new occupational mix adjustment. Due to circumstances described in the FY 2007 IPPS final rule (71 FR 48005), the wage index used in these calculations is final.

All regions are estimated to receive an increase in total capital payments per case from FY 2006 to FY 2007. Changes vary by region from a minimum increase of 0.14 percent in Puerto Rico for (urban) to a maximum increase of 3.1 percent in the West South Central rural region and the Middle Atlantic rural region. The change in payments per case for all hospitals is 2.4 percent and is the same as indicated in the FY 2007 IPPS final rule.

Section 1886(d)(10) of the Act established the MGCRB. Before FY 2005, hospitals could apply to the MGCRB for reclassification for purposes of the standardized amount, wage index, or both. Section 401(c) of Pub. L. 108–173 equalized the standardized amounts

under the operating IPPS. Therefore, beginning in FY 2005, there is no longer reclassification for the purposes of the standardized amounts; however, hospitals still may apply for reclassification for purposes of the wage index for FY 2007. Reclassification for wage index purposes also affects the GAF because that factor is constructed from the hospital wage index.

As discussed in the FY 2007 IPPS final rule (71 FR 48067), procedural rules were established in the FY 2006 IPPS final rule (70 FR 47382) to recognize the special circumstances of section 508 hospital reclassifications ending midyear during FY 2007. Under these procedural rules, some section 1886(d)(10) hospital reclassifications are only in effect for the second half of the fiscal year. These half fiscal year reclassifications have implications for the calculation of reclassified wage indices and therefore, affect capital payments because GAF values are calculated from the hospital wage index.

To present the effects of the hospitals being reclassified for FY 2007, we show the average payments per case for reclassified hospitals for each half of FY 2007 compared to the average payments per case for the same time period in FY 2006. The reclassified groups are compared to all other nonreclassified hospitals for the same time period. These categories are further identified by urban and rural designation. In general, the average payments per case in the first half of FY 2007 is the same or 0.1 percent less as the average payments per case in the second half of FY 2007 for each category of reclassified hospitals shown in Table III. The exception to that generalization is rural nonreclassified hospitals, which are expected to have the largest increases in payments, as well as the largest increase from the first half to the second half of FY 2007, that is, 2.7 percent in the first half of FY 2007, and 3.0 percent in the second half of FY 2007. Urban reclassified hospitals are expected to increase 2.6 percent and 2.5 percent in the first and second halves of FY 2007, respectively. Reclassified rural hospitals and nonreclassified urban hospitals are projected to have the same increase of 2.3 percent in the first half, while in the second half, the increase in payments per discharge to urban nonreclassified hospitals will remain at 2.3 percent but payments per discharge to rural reclassified hospitals are expected to decrease by 0.1 percent to 2.2 percent from the first half of FY 2007 to the second half of FY 2007.

TABLE III.—COMPARISON OF TOTAL PAYMENTS PER CASE [FY 2006 payments compared to FY 2007 payments]

	Number of hospitals	Average FY 2006 payments/ case	Average FY 2007 payments/ case	Change
By Geographic Location:				
All hospitals	3,595	753	771	2.4
Large urban areas (populations over 1 million)	1,441	849	869	2.4
Other urban areas (populations of 1 million or fewer)	1,149	731	747	2.3
Rural areas	1,005	513	526	2.4
Urban hospitals	2,590	796	814	2.3
0–99 beds	651	617	631	2.3
100–199 beds	867	673	690	2.6
200–299 beds	492	751	769	2.4
300–499 beds	413	827	845	2.2
500 or more beds	167	1,005	1,027	2.2
Rural hospitals	1,005	513	526	2.4
0–49 beds	348	422	435	3.1
50–99 beds	370	469	482	2.8
100–149 beds	174	516	528	2.3
150–199 beds	68	564	576	2.2
200 or more beds	45	642	654	1.9
By Region:				
Urban by Region	2,590	796	814	2.3
New England	128	853	874	2.5
Middle Atlantic	357	873	898	2.9
South Atlantic	388	755	771	2.0
East North Central	395	782	801	2.5
East South Central	165	720	731	1.6
West North Central	157	783	795	1.6
West South Central	374	740	758	2.4
Mountain	149	787	808	2.6
Pacific	424	920	942	2.4
Puerto Rico	53	347	348	0.1
Rural by Region	1,005	513	526	2.4
New England	19	686	696	1.5
Middle Atlantic	72	518	534	3.1
South Atlantic	176	497	511	2.7
East North Central	125	547	560	2.2
East South Central	180	476	487	2.3
West North Central	116	540	551	2.2
West South Central	193	464	479	3.1
Mountain	81	535	542	1.3
Pacific	43	616	627	1.7
By Payment Classification:				
All hospitals	3,595	753	771	2.4
Large urban areas (populations over 1 million)	1,448	848	869	2.4
Other urban areas (populations of 1 million or fewer)	1,159	730	746	2.3
Rural areas	988	515	527	2.4
Teaching Status:				
Non-teaching	2,511	630	645	2.5
Fewer than 100 Residents	843	765	782	2.2
100 or more Residents	241	1,100	1,125	2.3
Urban DSH:	4 500		0.40	0.4
100 or more beds	1,520	821	840	2.4
Less than 100 beds	346	543	557	2.5
Rural DSH:				
Sole Community (SCH/EACH)	386	464	477	2.7
Referral Center (RRC/EACH)	199	570	582	2.1
Other Rural:				
100 or more beds	55	475	486	2.3
Less than 100 beds	183	423	435	3.0
Urban teaching and DSH:				
Both teaching and DSH	815	902	922	2.3
Teaching and no DSH	201	816	835	2.3
No teaching and DSH	1,051	667	683	2.5
No teaching and no DSH	540	700	716	2.3
Rural Hospital Types:				
Non special status hospitals	2,490	799	818	2.3
RRC/EACH	44	707	722	2.2
SCH/EACH	39	627	640	2.1
Medicare-dependent hospitals (MDH)	18	421	433	2.8
SCH, RRC and EACH	16	736	756	2.7

TABLE III.—COMPARISON OF TOTAL PAYMENTS PER CASE—Continued

[FY 2006 payments compared to FY 2007 payments]

	Number of hospitals	Average FY 2006 payments/ case	Average FY 2007 payments/ case	Change
Hospitals Reclassified by the Medicare Geographic Classification Review Board: FY2007 Reclassifications:				
All Urban Reclassified 1st Half	281	777	797	2.6
All Urban Non-Reclassified 1st Half	2,284	799	818	2.3
All Rural Reclassified 1st Half	358	555	568	2.3
All Rural Non-Reclassified 1st Half	589	460	473	2.7
All Urban Reclassified 2nd Half	341	807	826	2.5
All Urban Non-Reclassified 2nd Half	2,224	795	814	2.3
ALL Rural Reclassified 2nd Half	369	559	571	2.2
All Rural Non-Reclassified 2nd Half	578	451	464	3.0
All Section 401 Reclassified Hospitals	30	553	565	2.3
Other Reclassified Hospitals (Section 1886(d)(8)(B))	53	516	528	2.2
Type of Ownership:				
Voluntary	2,102	771	790	2.4
Proprietary	880	679	695	2.3
Government	603	740	757	2.3
Medicare Utilization as a Percent of Inpatient Days:				
0–25	243	999	1,026	2.7
25–50	1,328	855	874	2.2
50–65	1,478	663	680	2.5
Over 65	462	597	611	2.4

III. Collection of Information Requirements

This document does not impose information collection and recordkeeping requirements. Consequently, it need not be reviewed by the Office of Management and Budget under the authority of the Paperwork Reduction Act of 1995.

Authority: Program; No. 93.773 Medicare— Hospital Insurance Program; and No. 93.774, Medicare—Supplementary Medical Insurance Program)

Dated: September 21, 2006.

Mark B. McClellan,

Administrator, , Centers for Medicare & Medicaid Services.

Approved: September 27, 2006.

Michael O. Leavitt,

Secretary.

Addendum

This addendum includes tables referred to throughout the notice which contain data relating to the FY 2007 wage indices and the hospital reclassifications and payment amounts for operating and capital-related costs that are affected by the new occupational mix survey data discussed in section II. of this notice.

Table 1A—National Adjusted Operating Standardized Amounts, Labor/Nonlabor (69.7 Percent Labor Share/30.3 Percent Nonlabor Share If Wage Index Is Greater Than 1)

Table 1B—National Adjusted Operating Standardized Amounts, Labor/Nonlabor (62 Percent Labor Share/38 Percent Nonlabor Share If Wage Index Is Less Than or Equal To 1)

Table 1C—Adjusted Operating Standardized Amounts for Puerto Rico, Labor/ Nonlabor

Table 1D—Capital Standard Federal Payment Rate

Table 2—Hospital Case-Mix Indexes for Discharges Occurring in Federal Fiscal Year 2005; Hospital Wage Indexes for Federal Fiscal Year 2007; Hospital Average Hourly Wage for Federal Fiscal Years 2005 (2001 Wage Data), 2006 (2002 Wage Data), and 2007 (2003 Wage Data); Wage Indexes and 3-Year Average of Hospital Average Hourly Wages

Table 3A—FY 2007 and 3-Year Average Hourly Wage for Urban Areas by CBSA

Table 3B—FY 2007 and 3-Year Average Hourly Wage for Rural Areas by CBSA

Table 4A—1—Wage Index and Capital Geographic Adjustment Factor (GAF) for Urban Areas by CBSA—FY 2007

Table 4A—2—Wage Index and Capital Geographic Adjustment Factor (GAF) for Certain Urban Areas by CBSA for the Period April 1 through September 30, 2007

Table 4B—1—Wage Index and Capital Geographic Adjustment Factor (GAF) for Rural Areas by CBSA—FY 2007

Table 4B—2—Wage Index and Capital Geographic Adjustment Factor (GAF) for Certain Rural Areas by CBSA for the Period April 1 through September 30, 2007* Table 4C—1—Wage Index and Capital Geographic Adjustment Factor (GAF) for Hospitals That Are Reclassified by CBSA—FY 2007

Table 4C—2—Wage Index and Capital Geographic Adjustment Factor (GAF) for Certain Hospitals That Are Reclassified by CBSA for the Period April 1 through September 30, 2007

Table 4F—Puerto Rico Wage Index and Capital Geographic Adjustment Factor (GAF) by CBSA—FY 2007

Table 4J—Out-Migration Adjustment—FY 2007

Table 5—List of Diagnosis-Related Groups (DRGs), Relative Weighting Factors, and Geometric and Arithmetic Mean Length of Stay (LOS)

Table 9A—Hospital Reclassifications and Redesignations by Individual Hospitals and CBSA for FY 2007

Table 9B—Hospital Reclassifications and Redesignations by Individual Hospital Under Section 508 of Pub. L. 108–173 for FY 2007

Table 9C—Hospitals Redesignated as Rural under Section 1886(d)(8)(E) of the Act for FY 2007

Table 9D—Hospitals who waived Lugar status to receive Out-migration Adjustment

Table 10—Geometric Mean Plus the Lesser of 0.75 of the National Adjusted Operating Standardized Payment Amount (Increased to Reflect the Difference Between Costs and Charges) or 0.75 of One Standard Deviation of Mean Charges by Diagnosis-Related Group (DRG)—September 2006

TABLE 1A.—NATIONAL ADJUSTED OPERATING STANDARDIZED; LABOR/NONLABOR [69.7 Percent Labor Share/30.3 Percent Nonlabor Share If Wage Index Greater Than 1]

Full Update (3.4 Percent)		Reduced Update	e (1.4 Percent)
Labor-related	Nonlabor-related	Labor-related	Nonlabor-related
\$3,397.52	\$1,476.97	\$3,331.80	\$1,448.40

TABLE 1B.—NATIONAL ADJUSTED OPERATING STANDARDIZED AMOUNTS, LABOR/NONLABOR [62 Percent Labor Share/38 Percent Nonlabor Share If Wage Index Less Than or Equal to 1]

Full Update (3.4 Percent)		Reduced Update (1.4 Percent)		
Labor-related	Nonlabor-related	Labor-related	Nonlabor-related	
\$3,022.18	\$1,852.31	\$2,963.73	\$1,816.48	

TABLE 1C.—ADJUSTED OPERATING STANDARDIZED AMOUNTS FOR PUERTO RICO, LABOR/NONLABOR

	Rates If W Greater		Rates If Wage Index Less Than or Equal to 1	
	Labor	Nonlabor	Labor	Nonlabor
National Puerto Rico	\$3,397.52 1,436.12	\$1,476.97 880.20	\$3,022.18 1,359.68	\$1,852.31 956.64

TABLE 1D.—CAPITAL STANDARD FEDERAL PAYMENT RATE

	Rate
National Puerto Rico	\$427.03 203.03

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES

Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 ¹	Average hourly wage** (3 years)
010001	1.4913	0.7664	20.6563	21.6546	22.1989	21.5314
010004	***	*	22.7585	*	*	22.7585
010005 h	1.1262	0.8889	20.4937	22.4906	23.6022	22.2289
010006	1.4596	0.7876	21.0241	23.4823	23.4975	22.6401
010007	1.0707	0.7664	16.8811	18.2430	19.9328	18.3636
010008	0.9820	0.7933	23.8333	20.4591	17.9533	20.5783
010009	0.9668	0.8756	21.6422	23.2229	23.5626	22.8435
010010 h	1.0464	0.9226	22.3021	21.4974	27.0386	23.4333
010011	1.5930	0.8889	24.8166	27.4850	27.6658	26.6785
010012	1.2376	0.8822	21.7622	22.7020	24.4059	22.9524
010015	1.0200	0.7664	20.4732	21.5111	22.3383	21.4818
010016	1.5194	0.8889	23.0414	25.1502	24.6488	24.2708
010018	1.4681	0.8889	20.5888	22.2990	23.7048	22.1788
010019	1.2315	0.7876	20.1336	22.0906	22.8766	21.7323
010021 h	1.2160	0.7664	20.7108	18.6785	19.7367	19.6613
010022	0.9818	0.9699	25.8797	24.5670	25.8403	25.4393
010023	1.9061	0.7933	23.7791	27.6174	25.4272	25.5461
010024	1.6733	0.7933	20.0067	20.7265	22.0819	20.8864
010025	1.2764	0.8371	19.8561	21.2674	22.7635	21.2709
010027	0.7773	0.7664	14.9585	15.3704	16.4681	15.5470
010029	1.5790	0.8371	21.6724	22.6976	23.9007	22.7914
010031	***	*	20.9463	*	*	20.9463
010032	0.8962	0.7664	18.5073	19.1555	19.3311	19.0281
010033	2.0668	0.8889	25.5165	26.3784	27.4181	26.4464
010034	0.9985	0.7933	17.1625	16.9686	17.7457	17.3133
010035	1.2645	0.8889	23.1319	22.2870	24.2425	23.2085
010036	1.1237	0.7664	20.5125	22.9747	21.5796	21.7075

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 ¹	Average hourly wage** (3 years)
010038	1.3446	0.8059	20.3935	21.4509	23.7039	21.9034
010039	1.6165	0.8967	23.4151	25.8820	26.9919	25.4654
010040	1.5959	0.8060	21.6708	22.8851	24.3207	22.9524
010043	1.0507	0.8889	19.5422	22.5945	21.9775	21.4194
010044	1.0646	0.8889	23.0220	21.4036	22.5009	22.2925
010045	1.1547	0.8889	20.5658	19.8803	20.4927	20.3026
010046	1.4907	0.8060	20.8935	21.6965	23.4219	21.9636
010047	0.8902	0.7819	19.5937	21.0604	26.4851	22.3753
010049 010050	1.1436 1.0226	0.7664 0.8889	17.7801 21.5625	20.2413 22.1584	21.7888 22.9620	19.9912 22.2007
010051	0.8417	0.8761	14.7053	15.2208	18.7700	16.2601
010052	0.8872	0.7767	21.3673	16.4959	25.9233	21.5543
010053	1.0524	*	17.4160	19.0108	*	18.2193
010054	1.0884	0.8756	23.1894	22.5554	23.3624	23.0327
010055	1.5280	0.7664	19.1847	22.3800	22.5396	21.3292
010056	1.5788	0.8889	22.7183	23.7144	23.7398	23.3988
010058	0.9540	0.8889	20.3182	18.5537	19.5091	19.5962
010059	1.0302	0.8756	23.6963	21.3237	23.0012	22.7246
010061	1.0116	0.8170	20.5683	21.9370	24.1185	22.2906
010062	1.0689	0.7664	18.1323	18.3435	21.4805	19.2652
010064	1.6993	0.8889	25.4345	26.1110	24.8155	25.4466
010065	1.4873	0.7933	20.0108	21.3785	23.0477	21.5043
010066	0.8394	0.7664	17.0935	17.6152	19.8692	18.2085
010068	1.0221	0.7664	17.5690	19.0789	22.7156	19.7871
010069 010072	1.0221	0.7664	19.6317 21.5419	21.3608 21.8169	23.1243 24.4989	21.2883 22.5892
010073	0.9710	0.7664	16.4043	16.4168	18.3963	17.0851
010078	1.5086	0.8059	21.0633	21.6857	23.5279	22.1019
010079	1.1637	0.8967	20.4254	21.8199	22.7337	21.6778
010083 h	1.1649	0.7871	20.2166	22.3041	22.4279	21.6675
010084	1.5041	0.8889	22.5219	24.7127	26.3238	24.5148
010085	1.3171	0.8756	23.7007	24.4710	24.2609	24.1411
010086	1.0946	0.7664	19.4332	18.6081	22.2096	20.0606
010087	1.9800	0.7847	21.6226	22.5225	22.4318	22.1820
010089	1.2666	0.8889	22.2508	22.8448	25.0811	23.4064
010090	1.7203	0.7847	21.4322	23.6948	26.0494	23.6535
010091	0.9645	0.7664	19.4222	18.6912	23.1309	20.2880
010092	1.6031	0.8761	22.0709	24.4592	26.6796	24.3552
010095	0.8478	0.8761	13.4426	13.9326	16.5250	14.6585
010097 010098	0.7204 1.0596	0.7933	17.1735 19.6717	16.7548 14.3076	19.4511	17.7707 16.5936
010099	0.9988	0.7664	18.1849	18.7909	20.8383	19.2535
010100 ^h	1.6823	0.7871	20.0027	21.2915	23.8919	21.8071
010101	1.1315	0.7997	21.0085	21.6593	24.2575	22.2800
010102	0.9487	0.7664	19.9196	21.0903	25.6158	22.2527
010103	1.8923	0.8889	24.2201	26.1163	27.8272	26.0578
010104	1.8099	0.8889	24.1929	24.7394	27.6471	25.5331
010108	1.1555	0.7933	23.7803	28.4624	24.6740	25.5797
010109	0.9897	0.8115	21.7128	21.6194	17.6733	20.3002
010110	0.7990	0.7664	19.2706	17.5957	26.0039	20.5257
010112	1.0377	0.7664	17.2963	16.8902	17.1833	17.1259
010113	1.6543	0.7847	20.4181	21.4121	22.3282	21.3874
010114	1.3860	0.8889	21.5319	22.3752	25.6152	23.1874
010115	0.8661	*	17.5985	21.7478	*	19.2200
010118	1.2128	0.8362	18.8560	19.7673	21.4630	20.1843
010119	0.9876	0.7664	21.8215	20.0450	20 0010	21.8215
010120	0.9876	0.7664	20.5855	20.9450	20.9019	20.8146 19.3686
010121 010125	1.0409	0.7664	17.0329 16.8419	24.0867 18.4114	21.5123	18.8320
010126	1.1468	0.7664	23.1856	23.1381	23.9327	23.4131
010128	0.8695	0.7664	17.9354	21.4201	23.6648	21.1327
010129 h	1.0101	0.7968	18.7821	21.3555	22.1574	20.8452
010130	0.9443	0.8889	18.4944	23.2488	23.7528	21.6390
010131	1.3815	0.8967	24.2197	25.7837	26.4297	25.5385
010137	1.2390	0.8889	29.7665	24.7366	27.5782	27.2371
010138	0.6122	0.7664	13.5082	13.8475	16.7601	14.7816

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 ¹	Average hourly wage** (3 years)
010139	1.5771	0.8889	24.9410	25.3014	26.8726	25.7394
010143	1.1687	0.8889	22.1312	22.0215	26.2762	23.4710
010144	1.5743	0.7847	20.6425	20.8209	22.5133	21.3563
010145	1.3832	0.8761	23.1976	24.9531	24.5092	24.2395
010146	1.1039	0.8059	19.9944	20.8917	22.6586	21.2025
010148	0.8960	0.7664	18.5309	20.5589	23.9246	21.0046
010149	1.2672	0.7933	23.1593	26.5854	24.4805	24.6823
010150	1.0581	0.8152	20.6738 22.1626	21.6377 22.6202	23.6081 22.4075	21.9568 22.4009
010152 010157	1.1825 1.1543	0.7847 0.7876	21.3574	24.3560	23.3829	23.0158
010158	1.1398	0.8065	22.4440	24.3531	23.5533	23.4497
010161	***	*	27.5119	*	*	27.5119
010162	***	*	*	*	33.8778	33.8778
010164	1.1726	0.7997	*	*	*	*
010165	1.5088	0.8967	*	*	*	*
010166	1.6844	0.8761	*	*	*	*
020001	1.6874	1.1916	31.6091	32.8120	35.4232	33.3471
020004	1.1410	1.0702	29.9926	32.0966	31.8004	31.3123
020006	1.2700	1.1916	33.4210	36.0540	34.3752	34.6332
020008	1.2785	1.2055	34.5856	35.9236	36.1251	35.5664
020012	1.3355	1.0993	29.3419	31.8995	32.5975	31.2913
020014	1.1955	1.0702	32.1233	32.0893	29.4472	31.1605
020017	1.9901	1.1916	32.9281	33.5852	35.4119	33.9602
020018	0.9378	1.9343	*	*	* .	*
020019	0.9085	1.9343	*	*		*
020020	0.8722	1.0700	07.0700	00.0044	00.5405	00.0000
020024	1.1254	1.0702	27.9799	33.0644	29.5195	30.2029
020026	1.6132 0.8940	1.9343 1.9343	*	*	*	*
020027 030001	1.4281	1.0146	27.7572	29.9840	32.4791	30.1381
030002	2.0911	1.0146	27.9628	29.0519	30.2200	29.0083
030006	1.6285	0.9390	24.0169	25.8872	27.0599	25.7641
030007	1.4071	1.1073	26.9442	29.6174	31.1928	29.3442
030009	***	*	21.4065	22.3992	26.5408	22.6580
030010	1.3731	0.9390	22.8647	24.8275	28.5684	25.4056
030011	1.4469	0.9390	22.8422	25.1361	28.1423	25.5193
030012	1.3762	0.9748	25.5205	26.3859	27.3895	26.4764
030013	1.4295	0.9269	23.5229	25.7050	27.0111	25.4677
030014	1.4878	1.0146	25.1189	25.6259	29.6582	26.7569
030016	1.2207	1.0146	27.1583	26.7003	29.1980	27.7047
030017	2.0849	1.0146	24.4055	26.2452	30.6008	27.1050
030018	1.2384	1.0146	24.4308	28.9476	29.4567	27.3566
030019	1.3107	1.0146	28.4917	27.3156	29.5921	28.5143
030022	1.5662	1.0146	25.1461	26.4404	30.5710	27.4209
030023	1.6988	1.1538	28.4112	33.8333	34.2142	32.1557
030024	2.0618	1.0146	28.3470	31.6658	31.9247	30.7056
030027 030030	0.9474 1.5463	1.0146	21.0527 24.6005	20.4031 30.2712	32.0993	20.7264 28.8311
030033	1.2690	1.1073	26.6009	26.6531	28.7508	27.3705
030036	1.4179	1.0146	26.5708	30.3521	30.9834	29.5043
030037	2.2619	1.0146	30.3907	28.6453	31.2878	30.1945
030038	1.6872	1.0146	26.5178	29.5509	29.9314	28.8772
030040	0.9065	0.9269	22.5130	24.8145	27.5322	24.9809
030043	1.2654	0.9269	26.0825	24.7932	26.5834	25.8015
030044	0.8433	*	19.5714	*	*	19.5714
030055 h	1.4168	1.1148	23.1837	24.5202	27.1473	25.0480
030059	***	*	24.7676	*	*	24.7676
030060	1.1881	0.9269	22.3551	24.3523	24.8373	23.8179
030061	1.6331	1.0146	23.4722	25.5529	28.0696	25.7847
030062	1.2612	0.9269	21.9849	23.8068	26.6881	24.2112
030064	1.9613	0.9390	24.6732	25.4922	28.3853	26.2854
030065	1.5988	1.0146	25.6738	27.1646	29.5883	27.5688
030067	1.0785	0.9269	19.1332	20.4376	20.7590	20.1031
030068	1.1498	0.9269	19.7030	20.8846	23.1394	21.2604
030069 h	1.3722	1.1148	25.6243	26.3518	30.2224	27.2876
030071	0.9150	1.4448	· *	*	*	*

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 1	Average hourly wage** (3 years)
030073	0.8489	1.4448	*	*	*	*
030074	0.9110	1.4448	*	*	*	*
030077	0.8100	1.4448	*	*	*	*
030078	0.9644	1.4448 0.9390	04.0570	25.2077	27.1360	0E E000
030080 030083	1.4636 1.3648	1.0146	24.3573 24.9269	27.5353	27.1360	25.5290 26.6771
030084	0.8727	1.4448	*	ž7.5050 *	*	20.0771
030085	1.5795	0.9390	23.2070	24.5792	26.8364	24.9731
030087	1.5934	1.0146	26.3878	26.6594	29.5962	27.6820
030088	1.3693	1.0146	23.2478	26.6796	27.8604	25.9831
030089	1.5137	1.0146	26.2166	27.1835	28.9068	27.5504
030092 030093	1.4265 1.2271	1.0146 1.0146	25.4127 23.5623	27.3203 25.8955	31.7512 26.4430	28.3500 25.4779
030094	1.3649	1.0146	26.9985	29.5948	31.5422	29.4037
030099	0.8324	0.9269	26.7996	26.3236	27.1402	26.7623
030100	2.0680	0.9390	*	29.0691	31.5628	30.3333
030101 h	1.4490	1.1148	25.0077	26.1927	27.8302	26.3906
030102	2.6120	1.0146	*	29.0942	31.6285	30.4080
030105	1.6687 2.3289	1.0146 1.0146	28.2832	30.1994	31.7322 31.2970	30.0675 30.3890
030105 030106	1.6799	1.0146	27.6900 30.4791	31.3094 34.7222	32.9840	32.3777
030107	1.9370	1.0146	*	*	35.6197	35.6197
030108	2.0799	1.0146	*	*	*	*
030109	2.6500	1.0146	*	*	16.5905	16.5905
030110	1.4264	1.0146	*	*	31.4852	31.4852
030111 030112	1.0600 1.9402	0.9390 1.0146	*	*	*	*
030112	0.9319	1.4448	*	*	*	*
030114	1.3877	0.9390	*	*	*	*
030115	1.3290	1.0146	*	*	*	*
030116	2.1291	*	*	*	*	*
040001	1.0908	0.9027	23.1475	23.7718	22.9327	23.2665
040002	1.2196	0.7475	19.3429	20.1384	21.2021	20.2735
040003 040004	1.2374 1.6187	0.9027	18.5000 23.3504	25.0286	27.1741	18.5000 25.2030
040007	1.7035	0.9704	23.4565	25.7142	40.1291	29.6908
040010	1.3929	0.9027	22.0984	23.0274	24.2315	23.1437
040011	1.0337	0.7475	19.0319	20.3970	21.0968	20.2388
040014	1.4604	0.9265	24.0846	25.3451	26.4777	25.2922
040015 040016	1.0455 1.6832	0.7475	18.0793	19.2831 22.1228	20.4279 25.8056	19.2708 23.5485
040017	1.1272	0.9704 0.8816	22.7219 19.4365	21.9875	21.9147	21.1493
040018	1.0700	0.7850	23.8515	23.6044	24.0026	23.8116
040019	1.1015	0.8984	21.5316	23.7328	23.8705	23.0548
040020	1.5654	0.8984	20.9136	21.6603	22.6497	21.7619
040021	1.2737	0.9704	24.7771	25.6917	25.4047	25.3035
040022 040024	1.5286 0.6959	0.9027	23.7462 20.1101	25.4052	29.5000	26.1298 20.1101
040026	1.5264	0.8829	24.3053	25.4072	27.7931	25.9042
040027	1.4577	0.8412	19.9348	21.1412	21.4252	20.8384
040029	1.5455	0.9704	22.8770	24.0704	24.8409	23.9749
040032	***	*	18.5171	*	*	18.5171
040035	***	*	13.4265	*	*	13.4265
040036 040039	1.6111 1.2926	0.9704 0.8353	24.2851 17.7976	26.3226 19.5998	27.6234	26.1793 19.5845
040039	1.1431	0.9265	22.0188	22.1531	21.2712 23.7787	22.6793
040042	1.3631	0.9307	18.9550	19.9627	21.1716	20.0582
040045	0.9923	*	18.7952	17.2280	*	17.9500
040047	1.1022	0.8353	21.5334	21.9163	22.4250	21.9377
040050	1.1632	0.7475	15.4782	16.3930	17.6906	16.5483
040053	0.9570	0.7475	18.8943	19.1401	21.3342	19.8090
040053 040054	1.0148 1.1388	0.7475	20.8153 16.7370	20.7824 18.2684	18.0510	20.7984 17.6860
040055	1.5959	0.7850	22.2237	23.3156	23.0448	22.8516
040062	1.7015	0.7850	21.6403	23.3083	23.8994	22.9604
040066	***	*	23.4616	*	*	23.4616

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

Provider No. Case-mix index 2 FY 2007 wage index FY 2005 Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 ¹	Average hourly wage** (3 years)
040067 1.0263 0.7475 15.1441	16.8799	19.0471	16.9179
040069	24.4662	24.8060	23.6538
040071	24.3824	25.4680	24.2630
040072 1.0609 0.7475 20.8269	19.9009	22.4741	21.0044
040074 1.1734 0.9704 22.6147	25.2423	25.2700	24.2961
040075 0.9763 * 16.2583	18.3254	*	17.2857
040076	20.6272	23.5742	21.7288
040077	18.2082	23.5915	18.2646 24.1852
040078 1.6285 0.9265 24.4589 040080 1.0358 0.8345 21.3483	24.5378 22.3392	24.1921	22.7065
040081	15.1081	16.8436	15.2255
040084	24.7225	27.7626	25.1456
040085 1.0419 0.7475 18.0756	29.8444	22.9916	22.7039
040088 1.3247 0.8688 21.2974	22.6183	22.4860	22.1468
040091 1.2014 0.8107 23.0252	23.1320	24.2398	23.4639
040100	20.0460	21.3051	20.2851
040105	18.2182	*	16.9121
040109	22.8801	*	20.7540
040114 1.7605 0.9704 23.5628	24.8992	26.7581	25.1160
040118 1.4309 0.8345 24.2547	24.7363	26.0389	24.9780
040119 1.4108 0.9265 20.1631	21.0103	24.3680	21.8564
040126	14.0701	15.6984	14.0818
040132	28.1390	04.0005	32.3748
040134	27.3412	31.9325	29.6807
040137 1.3158 0.9704 23.4672 040138 1.3474 0.9027 23.3615	25.2907 25.7513	25.9979 27.8584	24.8946 25.9401
040140	25.7515	27.0004	25.1224
040140 0.8250 0.9027 *	24.0901	26.1041	25.1761
040142	27.9695	21.4222	24.3073
040143	*	37.1976	37.1976
040144 *** *	*	21.4007	21.4007
040145	*	*	*
040147 1.7154 0.9704 *	*	*	*
050002	34.1948	35.5184	33.9903
050006	30.5373	33.5751	30.3271
050007 1.4646 1.5419 37.5804	38.7033	43.4440	39.9548
050008 1.3293 1.5445 36.9371	39.1539	49.3166	41.9596
050009 1.7661 1.4095 35.5384	39.6393	43.0584	39.5056
050013 1.9243 1.4095 31.7637	31.9837	35.7592	33.1828
050014 1.1607 1.2986 29.5726 050015 1.2479 1.1202 30.1398	33.0373 30.7940	36.0305 32.2188	33.0187 31.0764
050016	26.2162	24.5768	25.4173
050017	36.6593	39.6653	35.6426
050017 1.2000 00.3000 050018 1.1919 1.1686 20.3179	22.3472	23.3204	21.9572
050022	29.8632	31.6467	30.0139
050024	27.5587	29.4062	27.9891
050025	36.1622	33.5466	33.8328
050026	28.3027	31.5250	28.9332
050028 1.2575 1.1202 21.5448	26.6160	27.3826	24.7519
050029 * 34.3934	*	*	34.3934
050030 1.2476 1.1202 22.9148	24.9707	27.2945	25.0204
050036 1.6440 1.1202 27.4915	32.7929	33.8000	31.4474
050038 1.5531 1.5324 35.0441	38.7527	44.2265	39.3929
050039 1.6651 1.1202 29.8179	31.6734	35.2630	32.1614
050040	34.3279 33.9415	35.8322 37.3760	34.0141
050042			33.6941
050043 1.6384 1.5617 39.6054 050045 1.2887 1.1202 22.7051	43.1589 23.8408	45.4887 25.0150	42.6954 23.8863
050045 1.1202 22.7051 050046 1.1821 1.1525 25.2786	25.6875	26.1926	25.7298
050047	40.9874	55.9367	45.8065
050054	24.1262	21.3650	24.0140
050055	37.5879	42.9516	39.0065
050056	27.9330	30.6126	29.3527
050057	29.4351	30.0236	28.5928
050058 1.5474 1.1686 27.3584	33.8215	33.1409	31.4044
050060 1.5254 1.1202 26.5515	27.3282	29.9762	27.9723

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 ¹	Average hourly wage** (3 years)
050061	***	*	*	32.2172	*	32.2172
050063	1.3269	1.1686	32.0515	33.3039	34.0906	33.1167
050065	1.8250	1.1525	33.8223	34.0280	34.9110	34.2663
050067	1.1481	1.1735	29.6982	31.9597	38.8070	33.9918
050069	1.6715	1.1525	28.6752	31.2172	34.6353	31.5321
050070	1.2884	1.5419	40.5645	45.3382	47.4099	44.7713
050071	1.2950	1.5617	41.1036	44.9464	50.7602	46.0847
050072	1.2895	1.5617	40.8108	44.2651	49.4344	45.2871
050073	1.2440	1.5617	41.3430	45.9765	49.9730	46.2034
050075	1.1895 1.7287	1.5617 1.5617	43.7101 43.0845	47.2356 46.4990	54.4089 52.3788	49.0009 47.8548
050076 050077	1.5565	1.1202	29.6264	32.0245	34.8660	32.3083
050078	1.2226	1.1686	25.6814	31.1425	32.0133	29.3832
050079	1.4970	1.5617	42.7385	47.8597	47.3448	46.0427
050082	1.6400	1.1439	28.9139	37.7783	38.2878	35.2197
050084	1.5674	1.2029	28.2664	33.0179	35.5196	32.1347
050088	***	*	26.4093	25.7385	*	26.0862
050089	1.3319	1.1525	29.4884	33.5323	33.9593	32.4106
050090	1.2881	1.5260	31.1774	32.9584	33.8953	32.6836
050091	1.1230	1.1686	30.1534	30.8560	32.1301	31.0759
050093	1.5061	1.1202	31.1083	33.4119	36.9481	33.8765
050096	1.2727	1.1686	24.2277	24.6680	34.9236	28.0644
050097	***	*	26.6788	*	*	26.6788
050099	1.4964	1.1525	28.7711	31.0437	33.4174	31.1779
050100	1.8441	1.1202	28.0303	29.6949	31.4404	29.7728
050101	1.3366	1.5617	35.4655	40.3195	42.4588	39.5443
050102	1.3128	1.1202	24.9381	29.1364	32.0616	28.5338 32.3903
050103 050104	1.5647 1.3779	1.1686 1.1686	28.7375 29.1240	34.2529 29.7326	34.0935 32.3043	30.4154
050107	1.4629	1.1202	27.6002	33.1358	32.5846	31.0605
050108	1.9357	1.2986	31.4271	35.5711	38.8672	35.5484
050110	1.2698	1.1202	20.0769	26.1453	26.8408	24.0659
050111	1.3184	1.1686	26.6345	28.1588	28.7875	27.9310
050112	1.5285	1.1686	34.0258	36.8026	37.7281	36.2500
050113	1.3113	1.5419	34.2851	33.8064	39.4882	35.9070
050114	1.4274	1.1686	29.2858	31.1294	34.0309	31.5876
050115	1.4751	1.1202	27.5207	30.9288	28.8051	29.0865
050116	1.6889	1.1686	28.8193	34.5110	36.8825	33.4540
050117	2.3561	1.1873	28.2227	32.4414	34.2020	31.0046
050118	1.1820	1.2029	33.0650	35.4044	39.9682	36.1405
050121	1.2703	1.1202	25.5962	27.9537	30.6105	28.1711
050122	1.5505	1.2029	29.7629	34.2416	33.9812	32.7589
050124	1.2995 1.3913	1.1686 1.5324	26.7065	28.0288	30.2522	28.3801
050125 050126	1.4154	1.1686	40.9218 29.6203	41.7020 29.3360	44.9523 31.7619	42.5088 30.2508
050127	1.3262	1.2986	23.6208	26.1222	32.0355	26.5981
050128	1.5338	1.1202	28.3278	31.0662	31.1308	30.2212
050129	1.7927	1.1525	27.8488	32.2680	34.7359	31.8447
050131	1.3098	1.5419	38.6834	40.5321	45.3152	41.4420
050132	1.3859	1.1686	29.4317	35.1544	35.9199	33.5661
050133	1.4906	1.1372	27.6030	31.3530	31.9527	30.3390
050135	1.0146	1.1686	24.9415	24.3927	25.1813	24.9002
050136	1.2800	1.5260	35.2834	37.4560	43.3747	38.6810
050137	1.3472	1.1686	36.5409	38.4827	39.1496	38.1206
050138	2.1425	1.1686	43.8671	46.9557	45.3728	45.4025
050139	1.3186	1.1686	35.1013	37.6217	37.8986	36.8930
050140	1.3895	1.1525	37.5473	39.6269	40.9725	39.4753
050144	1.3908	1.1686	32.4042	33.5109	33.6662	33.2263
050145	1.3605	1.4220	39.5676	42.3134	42.2921	41.4134
050148	1.0941	1.1202	24.7063	27.3005	28.2305	26.7960
050149	1.4779	1.1686 1.2986	30.1596	33.2270	35.8821	33.4099
050150 050152	1.2279 1.4758	1.2986	31.5333 40.3464	31.7560 43.6487	33.6583 46.1553	32.3465 43.4147
050153	1.5471	1.5324	40.4446	43.3190	42.8955	42.2727
050155	***	*	21.8829	21.8550	16.9516	19.9648
050158	1.3036	1.1686	33.6400	35.1326	35.7805	34.9098

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 ¹	Average hourly wage** (3 years)
050159	. 1.2083	1.1439	30.8069	31.3199	32.5704	31.6137
050167	. 1.2947	1.2029	25.9850	28.5179	31.4798	28.6280
050168		1.1525	30.8036	33.2506	37.9784	34.1091
050169		1.1686	26.2864	27.4644	29.4693	27.8379
050172		*	27.1497	28.5604	*	27.8554
050173		1.1525	27.6097	30.3582	29.0576	28.9733
050174 050175		1.5260 1.1686	36.3117 31.5615	40.1747	44.4199 33.3061	40.3075 31.8069
050175		1.1000	24.7531	30.5733 25.1442	24.0717	24.6630
050177		1.1735	25.8072	27.1155	30.4973	28.0977
050180		1.5617	40.8101	40.2504	42.0358	41.0704
050188		1.5324	39.3507	39.5110	41.0943	39.9979
050189		1.4220	20.0709	29.1280	30.1155	26.4779
050191	. 1.5121	1.1686	*	34.2091	37.7805	35.9193
050192	. 1.0053	1.1202	21.2448	27.0424	27.1401	25.1605
050193		1.1525	30.7341	29.6421	33.9520	31.4458
050194		1.5108	38.6750	40.9096	44.7107	41.4882
050195		1.5617	43.9696	48.4358	48.8595	47.1589
050196		1.1202	25.2168	32.1933	34.0955	30.7710
050197		1.5617	40.8832	48.9052	50.0728	46.5930
050204 050205		1.1686 1.1686	25.2512 28.0504	28.6423 27.8611	32.0121 29.3334	28.5691 28.4470
050207		1.1202	27.0216	29.5215	30.0062	28.8170
050211		1.5617	38.3319	41.2166	35.0514	38.0606
050214		*	24.4785	23.9972	25.4647	24.6387
050215		1.5324	41.6886	43.7985	48.8112	44.7172
050217		*	23.6286	*	*	23.6286
050219	. 1.2040	1.1686	22.9226	22.4065	26.4143	23.9545
050222	. 1.6335	1.1202	26.3882	29.1094	32.3882	29.4132
050224		1.1525	26.7916	29.3143	32.5010	29.5025
050225		1.1202	29.5184	29.9656	34.0836	31.3086
050226		1.1525	29.2259	30.5867	32.4411	30.8007
050228		1.5617	40.1362	42.4226	43.7939	42.1033
050230 050231		1.1525 1.1686	34.1417 30.1298	32.9555 30.9607	34.0600 32.1813	33.7136 31.1097
050232		1.1305	24.4383	27.4099	26.3004	26.0053
050234		1.1202	29.2421	29.6560	32.3725	30.4116
050235		1.1686	27.8965	29.2979	30.5405	29.2413
050236		1.1439	28.1969	32.1647	33.0686	31.1130
050238		1.1686	29.1481	31.1764	33.3346	31.3169
050239	. 1.5982	1.1686	28.2327	31.0963	33.1148	30.8373
050240	. 1.6431	1.1686	35.2284	35.5735	36.1154	35.6475
050242		1.5108	39.7629	44.3130	46.4844	43.6095
050243		1.1202	31.8153	31.4883	32.9385	32.1106
050245 050248		1.1525	27.0949	28.6527	27.3866	27.7236
050251		1.4220 1.1202	31.6240 26.5021	35.3864 27.2675		33.4763 27.2522
050253		1.1202	22.2450	24.0044	27.8452 23.5381	23.1900
050254		1.2986	24.1512	27.0041	31.2386	27.5193
050256		1.1686	28.4728	29.8194	29.6793	29.3205
050257		1.1202	20.8367	21.3216	20.1830	20.7129
050261		1.1202	25.3005	27.3234	29.2150	27.4408
050262	. 2.0811	1.1686	36.1162	44.0256	39.9946	40.0775
050264		1.5617	41.3478	41.1211	47.7024	43.4930
050267		*	26.7060	*	*	26.7060
050270		1.1202	30.0540	32.4812	33.6855	32.1141
050272		1.1525	25.9103	27.1989	29.4671	27.5457
050276		1.5617	41.2251	39.3778	41.1406	40.5997
050277		1.1686	35.8246	32.5213	35.4443	34.4246
050278 050279		1.1686	28.0351	29.9244	31.8712	30.0483 27.6742
050279		1.1525 1.2450	25.5299 30.6723	27.6573 35.2030	29.7118 38.8341	27.6742 34.8751
050281		1.1686	26.2623	27.3824	29.4882	27.7172
050283		1.5617	38.5600	43.0638	44.3122	42.0650
050286	-	*	19.4973	*	*	19.4973
050289		1.5419	38.6875	41.1774	44.2814	41.4520

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

	Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 ¹	Average hourly wage** (3 years)
		1.5790	1.1686	32.6388	34.5482	37.3563	34.8783
		1.8385	1.5260	29.6162	35.3653	38.4366	34.3153
		1.0979	1.1202	27.0775	26.8879	26.9786	26.9804
		1.4627	1.1202	31.5960	36.1950	34.7383	34.3567
		1.1644	1.5324	34.9952	39.0061	39.9842	38.1164
		1.1633 1.3599	1.1525 1.1686	25.8232 27.7535	27.7416 31.5435	30.2022 35.1249	27.9356 31.6510
		1.4916	1.1525	28.3862	30.7148	30.2874	29.8366
		1.3253	1.1202	28.5769	31.9995	35.9490	32.3183
		1.4147	1.5617	40.9978	44.8630	44.9681	43.6141
		1.4700	1.5324	38.0564	43.0691	43.7413	41.6020
		1.4129	1.2986	28.9181	34.4145	38.2659	34.1832
		***	*	32.6846	33.9022	36.8498	34.2537
		1.2209	1.2029	27.5321	31.8003	35.0479	31.7666
		1.3325	1.1202	26.1224	28.5933	33.2038	29.4498
		1.2498	1.5617	36.3252	40.2352	45.7686	40.6332
		1.8676	1.1202	30.9958	32.9792	34.5503	32.9848
		1.1370	1.1378	30.2280	30.6117	31.3730	30.7522
		1.7458	1.1525	29.8327	33.0087	33.9507	32.3300
050329		1.2527	1.1202	26.8021	26.2120	23.2927	25.4012
050331		1.2280	*	20.9847	20.2692	*	20.6171
050333		1.1134	1.1202	15.3119	23.4009	19.6352	18.9052
050334		1.6668	1.4220	38.7635	40.7467	43.9656	41.1996
050335		1.4584	1.1378	27.4046	28.9403	30.9928	29.1535
050336		1.2343	1.2029	25.3062	28.5659	30.4664	28.2054
		1.2359	1.1202	24.7654	26.8507	29.2244	27.0322
		1.6978	1.1525	33.2676	37.7898	31.5156	34.1296
		0.9599	1.1202	16.9251	17.4791	24.4864	19.6872
		1.3676	1.1686	29.4262	31.1833	31.0136	30.5845
		1.5247	1.1686	29.3082	30.8661	30.6599	30.2977
		1.3521	1.2986	24.2931	33.9362	36.7673	31.5149
		1.5321	1.1686	26.6332	31.8291	29.4215	29.2166
			1 1000	11.2498	00 0005	00.0700	11.2498
		1.4364	1.1202	26.7265	32.3095	32.6763	30.1138 26.4944
		1.2192 1.5305	1.1202 1.5419	23.6030 38.8658	25.7739 37.0769	29.8345 47.4497	41.1219
		1.2087	1.1202	25.7692	31.1854	33.6715	30.0643
		1.4254	1.5617	34.4959	38.7727	38.6329	37.5738
		1.4148	1.1686	27.1327	29.5697	30.6439	29.1392
		1.3742	1.1686	32.2315	31.9271	35.1380	33.1243
		1.5441	1.1686	30.7562	32.9393	34.3539	32.7049
		***	*	20.2484	*	*	20.2484
050378		0.9844	1.1686	33.9087	34.2417	37.9904	35.4690
050379		***	*	31.7645	32.9575	*	32.3515
050380		1.6100	1.5324	39.1098	42.0782	46.0276	42.2717
050382		1.3879	1.1686	26.0927	29.4323	30.4014	28.6935
		1.3152	1.5260	25.5735	34.5184	36.8107	32.2632
		1.1621	1.1202	28.7761	26.0066	27.3183	27.2656
		***	*	21.3012	18.1004	17.2141	18.6587
		1.2020	*	22.7209	*	*	22.7209
		1.4296	1.1686	28.2369	30.0661	34.1743	30.7057
		1.5878	1.1439	26.0074	27.5061	27.4861	27.0365
		1.5934	1.1202	30.5470	33.5699	32.4918	32.2135
		0.8803	1.1202	27.4716	28.1640	28.3671	28.0135
		1.1762	1.5445	35.6035	37.9066	42.2749	38.7172
			4 4000	19.4995	21.3814	20,000,	20.4290
		1.5452	1.1686	37.3817	37.8064	38.8294	38.0498
		1.2911 1.2514	1.2986 1.1202	28.8561	34.6672 29.5031	38.7585 32.9341	34.0180 29.2963
		1.2514	1.1202	25.2930 28.4471	33.3125	J∠.9341 *	29.2963 30.8677
		1.3320	1.1686	26.1838	24.9401	35.2869	28.4351
		0.9632	1.1202	28.5944	30.6416	28.3768	29.2408
		2.0029	1.1202	29.9133	31.0730	34.5680	31.9323
		1.3412	1.2986	38.5317	42.4177	49.2245	43.9305
		1.3733	1.1525	30.0077	30.6899	33.2030	31.2980
		1.07.00	1.1020	00.0077	00.0009	00.2000	01.2000

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

0.9633	Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 ¹	Average hourly wage** (3 years)
050434	050432	1.6418	1.1686	30.3547	30.8030	33.1876	31.4607
1.1466		0.9337	1.1202	20.7565	23.0806	21.3574	21.7258
1,5700 1,1686 26,4686 3,27662 36,326 30,1498 30,5044 3,1900 3,1878 3,1888 3,1988							28.5792
1.5624 1.5624 38.2825 4.5694 4.15905 4.15905 4.5694 4.15905							30.1967
1,300							
0.59447							
050448							
0.00454							
1.5956							
1.1261							
050464							21.9834
0.00468	050457	1.6077	1.5445	40.2725	45.5829	47.8947	44.5967
1.1467	050464	1.6823	1.1735	37.1342	37.3692	38.3058	37.5977
505070		1.5043		29.4280		31.1111	30.0666
050471 1.7553 1.1686 34.5484 34.5211 35.4768 34.8480 050476 1.3492 1.1489 30.9974 36.8585 38.7866 34.8480 050477 1.3492 1.1686 34.6400 34.6995 37.7668 35.7868 050481 1.2004 1.1686 31.9177 33.7446 36.1394 33.9368 050485 1.6266 1.1686 31.9177 33.7446 36.1394 33.9365 050488 1.3226 1.5617 40.5313 42.9904 42.6854 42.1042 050492 1.5153 1.1202 27.4933 27.1540 28.0826 27.5900 050494 1.1749 1.5617 38.2871 42.2672 48.2467 43.0259 050496 1.7749 1.5617 38.2871 42.2672 48.2467 43.0259 050502 1.7123 1.1668 28.7200 30.998 37.1667 32.0928 050503 1.3425 1.1202 2.9201 31.6418		-					28.9560
14352							
550477							
1,0004							
1,4204 1,1686 31,9177 33,746 36,1394 33,3956 36,50485 16,266 1,1686 28,8459 31,4233 34,233 32,1400 35,1486 31,4233 32,1370 34,3597 32,1132 32,1370 34,3597 32,1132 32,1370 34,3597 32,1132 32,1370 34,3597 32,1132 32,1370 34,3597 32,1132 32,1370 34,3597 32,1132 32,1370 34,3597 32,1132 32,1370 34,3597 32,1132 35,1457 35,1457 35,1457 35,1457 35,1457 35,1457 35,1457 35,1457 35,1457 35,1457 35,1457 35,1457 35,1457 35,1457 35,1457 35,1457 35,1457 36,1457							
1,6266							
1.3296							
650491 "" 1, 20 30,6461 32,1379 34,3597 32,1132 050492 1,5153 1,1202 27,9390 38,1177 36,4266 050494 1,4200 1,2817 35,1457 35,999 38,1177 36,4266 050497 1,749 1,5617 38,2817 42,267 48,2467 15,9501 050498 1,3322 1,11866 28,7200 29,5615 28,706 29,0092 050503 1,4525 1,1202 29,2001 31,6418 34,0994 31,7841 050506 1,6735 1,1305 32,4509 36,0164 37,7420 35,522 050510 1,2151 1,5617 41,3883 1,4625 35,522 5,5376 48,6080 050515 1,3793 1,1202 37,4251 38,9978 38,9543 38,4957 050516 1,3793 1,1202 37,4251 38,9978 38,9543 38,4957 050516 1,3793 1,15617 4,3883 3,9878 38,9543							
050492 1,5153 1,1202 27,4933 27,1540 28,0826 27,5900 50,090 31,177 36,4266 50,0496 1,7749 1,5617 38,2871 42,2672 48,2467 43,0259 43,0259 43,0259 48,2467 43,0259 43,0259 50,0497 * * 1,5961 * * 1,5961 * * 1,5961 * * 1,5961 * * 1,5962 \$ 1,5153 1,1986 28,2667 33,0298 37,1667 32,9092 29,6615 28,7046 29,0014 31,618 34,0994 31,7841 50,006 1,1565 1,15617 44,8881 47,5510 52,5376 48,6080 50,0071 1,15617 41,8821 46,9233 50,9264 47,2122 50,0071 1,17120 1,17120 37,421 36,933 50,9264 47,2122 30,947 20,0213 22,554 50,0051 1,17120 37,421 38,957 36,943 38,4957 50,0561 1,17120 37,4251 38,967 39,8161			*				
1,4200		1.5153	1.1202				27.5900
050497 "**	050494	1.4200	1.2817	35.1457	35.9909	38.1177	36.4266
1.332	050496		1.5617	38.2871	42.2672	48.2467	43.0259
050502 1.7123 1.1866 28.7200 29.5615 28.7046 29.0024 050503 1.4525 1.1202 29.2001 31.6418 34.0994 31.7841 050506 1.6735 1.1305 32.4509 36.0164 37.7420 35.5222 050510 1.2151 1.5617 44.3883 47.5510 52.5376 48.6080 050515 1.3793 1.1202 37.4251 38.9978 38.9543 38.4957 050516 1.4811 1.2986 29.4936 36.2772 39.8161 35.0756 050517 1.2133 1.1525 23.6034 23.9007 20.0213 22.2540 050526 1.2474 1.1525 29.9495 31.3744 28.1997 29.7074 050528 1.2474 1.1525 29.9495 31.3744 28.1997 29.7074 050531 1.0315 1.1660 1.1202 28.7546 29.8603 31.46143 33.2056 050537 1.4619 1.296 27.4196	050497	***	*	15.9501	*	*	15.9501
050503 1,4525 1,1202 29,2001 31,6418 34,0994 31,7841 050506 1,6735 1,1305 32,4509 36,0164 37,7420 35,5222 050510 1,2151 1,5617 44,3883 47,5510 52,5376 48,6080 050512 1,3525 1,5617 41,8921 46,9233 50,9264 47,2122 050515 1,3793 1,1202 39,4936 36,2772 39,8161 38,0756 050517 1,2133 1,1525 29,4936 36,2772 39,8161 35,0756 050523 1,3275 1,5617 34,7491 35,5452 40,6535 36,9799 050526 1,2474 1,1525 29,9495 31,3744 28,1997 29,7074 050528 1,1660 1,202 28,6273 29,6803 31,4941 30,084 050531 1,0315 1,1686 25,0157 26,9420 27,1974 26,4070 050534 1,4912 1,525 32,3646 32,3723							32.9092
050506 1.6735 1.1305 32.4509 36.0164 37.7420 35.5222 050510 1.2151 1.5617 44.3883 47.5510 52.5376 48.6080 050512 1.3525 1.5617 41.8921 46.9233 50.9264 47.2122 050515 1.3793 1.1202 37.4251 38.9978 38.9543 38.9457 050516 1.4811 1.2996 36.2772 39.8161 35.0756 050517 1.2133 1.1525 23.6034 23.9007 20.0213 22.2544 050523 1.3275 1.5617 34.7491 35.5452 40.6535 36.9799 050526 1.2474 1.1525 29.9495 31.3744 28.1997 29.7074 050528 1.1660 1.1202 28.6273 29.6838 31.4941 30.0546 050531 1.0315 1.1680 5.0157 26.9420 27.1974 26.4070 050534 1.4912 1.1525 32.3646 32.3723 34.6143							
050510 1.2151 1.5617 44.3883 47.5510 52.5376 48.6080 050512 1.3525 1.5617 41.8921 46.9233 50.9264 47.2122 050515 1.3793 1.1202 37.4251 38.9978 38.9543 38.4957 050516 1.4811 1.2986 29.4936 36.2772 39.8161 35.0756 050517 1.2133 1.1525 23.6034 23.9007 20.0213 22.2544 050523 1.3275 1.5617 34.7491 35.5452 40.6535 36.9799 050526 1.2474 1.1525 29.9495 31.3744 28.1997 29.0734 050528 1.1660 1.1202 28.6273 29.6838 31.4941 30.0548 050531 1.0315 1.1686 25.0157 26.9420 27.1974 26.4070 050533 1.4619 1.2986 27.4196 31.3844 33.2035 050537 1.4619 1.2986 27.4196 31.3844 34.9931							
1,3625							
Description		_					
050516 1,4811 1,2986 29,4936 36,2772 39,8161 35,0756 050517 1,2133 1,1525 23,6034 23,9007 20,0213 22,2544 050523 1,3275 1,5617 34,7491 35,5452 40,6535 36,9799 050526 1,2474 1,1525 29,9495 31,3744 28,1997 29,7074 050528 1,1660 1,1202 28,6273 29,6838 31,4941 30,0548 050531 1,0315 1,1686 25,0157 26,9420 27,1974 26,4070 050534 1,4460 1,1202 29,7546 29,8603 31,46143 33,2035 050535 1,4912 1,1525 32,3646 32,3723 34,6143 33,2035 050537 1,4619 1,2986 27,4196 31,3844 34,9931 31,3766 050541 1,503 1,5617 43,7765 46,1121 52,5908 47,7289 050545 0,7329 1,1525 25,7161 26,1103							
1,2133							
050523 1,3275 1,5617 34,7491 35,5452 40,6535 36,9799 050526 1,2474 1,1525 29,9495 31,3744 28,1997 29,7074 050528 1,1660 1,1202 28,6273 29,6838 31,4941 30,0548 050531 1,0315 1,1686 25,0157 26,9420 27,1974 26,4070 050534 1,4460 1,1202 29,7546 29,8603 33,1666 30,9274 050535 1,4912 1,1525 32,3646 32,3723 34,6143 33,2035 050537 1,4619 1,2986 27,4196 31,3844 34,9931 31,3764 050539 1,2494 * 28,0586 29,8242 * 29,003 050541 1,5030 1,5617 43,7765 46,1121 52,5908 47,7289 050543 0,7329 1,1525 25,7161 26,1103 29,4443 27,0500 050545 0,7250 1,686 42,9451 30,2554 31,3							
050526 1,2474 1,1525 29,9495 31,3744 28,1997 29,7074 050528 1,1660 1,1202 28,6273 29,6838 31,4941 30,0548 050531 1,0315 1,1686 25,0157 26,9420 27,1974 26,64070 050534 1,4460 1,1202 29,7546 29,8603 33,1666 30,9274 050535 1,4912 1,1525 32,3646 32,3723 34,6143 33,2035 050537 1,4619 1,2986 27,4196 31,3844 34,9931 31,3766 050539 1,2494 * 28,0586 29,8242 * 29,0033 050541 1,5030 1,5617 43,7765 46,1121 52,5988 47,7289 050545 0,7329 1,1525 25,7161 26,1103 29,4443 27,0500 050546 0,7178 1,1202 52,7180 30,2329 33,2245 38,3907 050547 0,8992 1,5260 45,1842 33,2055 3							36.9799
050531 1.0315 1.1686 25.0157 26.9420 27.1974 26.4070 050534 1.4460 1.1202 29.7546 29.8603 33.1666 30.9274 050535 1.4912 1.1525 32.3646 32.3723 34.6143 33.2035 050537 1.4619 1.2986 27.4196 31.3844 34.9931 31.3766 050539 1.2494 * 28.0586 29.8242 * 29.0033 050541 1.5030 1.5617 43.7765 46.1121 52.5908 47.7289 050543 0.7250 1.1686 42.9451 30.5554 31.3079 35.1359 050546 0.7250 1.1686 42.9451 30.2554 31.3079 35.1359 050547 0.9892 1.5260 45.1842 33.2205 34.8400 38.0953 050549 0.7079 1.1525 37.1314 30.3775 39.2233 35.6910 050549 1.5798 1.2818 33.8288 34.9818 35.2792 34.7104 <th></th> <th>1.2474</th> <th>1.1525</th> <th>29.9495</th> <th>31.3744</th> <th>28.1997</th> <th>29.7074</th>		1.2474	1.1525	29.9495	31.3744	28.1997	29.7074
050534 1.4460 1.1202 29.7546 29.8603 33.1666 30.9274 050535 1.4912 1.1525 32.3646 32.3723 34.6143 33.2035 050537 1.4619 1.2986 27.4196 31.3844 34.9931 31.3766 050539 1.2494 * 28.0586 29.8242 * 29.0033 050541 1.5030 1.5617 43.7765 46.1121 52.5908 47.7289 050543 0.7329 1.1525 25.7161 26.1103 29.4443 27.0500 050546 0.7250 1.1686 42.9451 30.5554 31.3079 35.1359 050547 0.9892 1.5260 45.1842 33.2205 34.8400 38.0957 050549 0.9892 1.5260 45.1842 33.2205 34.8400 38.0953 050549 1.5798 1.2818 33.8288 34.9818 35.2792 34.7104 050550 1.3091 1.1525 31.918 30.2302 30.9612 30.7860	050528	1.1660	1.1202	28.6273	29.6838	31.4941	30.0548
050535 1.4912 1.1525 32.3646 32.3723 34.6143 33.2035 050537 1.4619 1.2986 27.4196 31.3844 34.9931 31.3766 050539 1.2494 * 28.0586 29.8242 * 29.0033 050541 1.5030 1.5617 43.7765 46.1121 52.5908 47.7289 050543 0.7329 1.1525 25.7161 26.1103 29.4443 27.0500 050546 0.7250 1.1686 42.9451 30.5554 31.3079 35.1359 050547 0.9892 1.5260 45.1842 33.2205 34.8400 38.0953 050548 0.7079 1.1525 37.1314 30.3775 39.2233 35.6910 050549 1.5798 1.2818 33.8288 34.9818 35.2792 34.7104 050550 1.3091 1.1525 31.6165 34.0467 32.4688 050551 1.525 1.1525 31.6782 31.6165 34.0467 32.	050531	1.0315	1.1686	25.0157		27.1974	26.4070
050537 1.4619 1.2986 27.4196 31.3844 34.9931 31.3766 050539 1.2494 * 28.0586 29.8242 * 29.0033 050541 1.5030 1.5617 43.7765 46.1121 52.5908 47.7289 050543 0.7329 1.1525 25.7161 26.1103 29.4443 27.0500 050545 0.7250 1.1686 42.9451 30.5554 31.3079 35.1359 050546 0.7178 1.1202 52.7180 30.2329 33.2245 38.3907 050547 0.9892 1.5260 45.1842 33.2205 34.8400 38.0953 050548 0.7079 1.1525 37.1314 30.3775 39.2233 35.6910 050549 1.5798 1.2818 33.8288 34.9818 35.2792 34.7104 050550 1.3091 1.1525 31.1918 30.2302 30.9612 30.7860 050551 1.525 1.525 31.6782 31.6165 34.0							30.9274
050539 1.2494 * 28.0586 29.8242 * 29.0033 050541 1.5030 1.5617 43.7765 46.1121 52.5908 47.7289 050543 0.7329 1.1525 25.7161 26.1103 29.4443 27.0500 050545 0.7250 1.1686 42.9451 30.5554 31.3079 35.1359 050546 0.7178 1.1202 52.7180 30.2329 33.2245 38.3907 050547 0.9892 1.5260 45.1842 33.2205 34.8400 38.0953 050548 0.7079 1.1525 37.1314 30.3775 39.2233 35.6910 050550 1.3091 1.1525 31.1918 30.2302 30.9612 30.7860 050551 1.3091 1.1525 31.6782 31.6165 34.0467 32.4689 050552 1.0915 1.1686 26.8274 27.1744 33.0711 29.0925 050557 1.5384 1.1735 28.3111 31.8048 33							
1.2494 1.5030 1.5617 43.7765 46.1121 52.5908 47.7289 0.50543 0.7329 1.1525 25.7161 26.1103 29.4443 27.0500 0.50545 0.7250 1.1686 42.9451 30.5554 31.3079 35.1359 0.50546 0.7178 1.1202 52.7180 30.2329 33.2245 38.3907 0.50547 0.9892 1.5260 45.1842 33.2205 34.8400 38.0953 0.50548 0.7079 1.1525 37.1314 30.3775 39.2233 35.6910 0.50549 0.50549 0.50549 0.50549 0.50550			1.2986				
050543 0.7329 1.1525 25.7161 26.1103 29.4443 27.0500 050545 0.7250 1.1686 42.9451 30.5554 31.3079 35.1359 050546 0.7178 1.1202 52.7180 30.2329 33.2245 38.3907 050547 0.9892 1.5260 45.1842 33.2205 34.8400 38.0953 050548 0.7079 1.1525 37.1314 30.3775 39.2233 35.6910 050549 1.5798 1.2818 33.8288 34.9818 35.2792 34.7104 050550 1.3091 1.1525 31.1918 30.2302 30.9612 30.7860 050551 1.3252 1.1525 31.6782 31.6165 34.0467 32.4689 050552 1.0915 1.1686 26.8274 27.1744 33.0711 29.0925 050557 1.5384 1.1735 28.3111 31.8048 33.3654 31.3154 050569 *** * * * *			1 5617				
050545 0.7250 1.1686 42.9451 30.5554 31.3079 35.1359 050546 0.7178 1.1202 52.7180 30.2329 33.2245 38.3907 050547 0.9892 1.5260 45.1842 33.2205 34.8400 38.0953 050548 0.7079 1.1525 37.1314 30.3775 39.2233 35.6910 050549 1.5798 1.2818 33.8288 34.9818 35.2792 34.7104 050550 1.3091 1.1525 31.1918 30.2302 30.9612 30.7860 050551 1.3252 1.1525 31.6782 31.6165 34.0467 32.4689 050552 1.0915 1.1686 26.8274 27.1744 33.0711 29.0925 050559 1.5384 1.1735 28.3111 31.8048 33.3654 31.3154 050569 *** * 26.9662 * * * 26.9662 050567 1.5530 1.1525 30.1167 32.9829							
050546 0.7178 1.1202 52.7180 30.2329 33.2245 38.3907 050547 0.9892 1.5260 45.1842 33.2205 34.8400 38.0953 050548 0.7079 1.1525 37.1314 30.3775 39.2233 35.6910 050549 1.5798 1.2818 33.8288 34.9818 35.2792 34.7104 050550 1.3091 1.1525 31.1918 30.2302 30.9612 30.7860 050551 1.3252 1.1525 31.6782 31.6165 34.0467 32.4889 050552 1.0915 1.1686 26.8274 27.1744 33.0711 29.0925 050557 1.5384 1.1735 28.3111 31.8048 33.3654 31.3154 050569 *** * * * * * * * 26.9662 * * * * * 26.9662 * * * * * 26.9662 * * *							
050547 0.9892 1.5260 45.1842 33.2205 34.8400 38.0953 050548 0.7079 1.1525 37.1314 30.3775 39.2233 35.6910 050549 1.5798 1.2818 33.8288 34.9818 35.2792 34.7104 050550 1.3091 1.1525 31.1918 30.2302 30.9612 30.7860 050551 1.3252 1.1525 31.6165 34.0467 32.4689 050552 1.0915 1.1686 26.8274 27.1744 33.0711 29.925 050557 1.5384 1.1735 28.3111 31.8048 33.3654 31.3154 050559 *** * 26.9662 * * * 26.9662 050561 1.2834 1.1686 37.5863 38.8651 38.0196 38.1604 050567 1.5530 1.1525 30.1167 32.9829 35.7063 33.0025 050569 1.1784 1.1264 22.5008 24.4061 25.2337							
050548 0.7079 1.1525 37.1314 30.3775 39.2233 35.6910 050549 1.5798 1.2818 33.8288 34.9818 35.2792 34.7104 050550 1.3091 1.1525 31.1918 30.2302 30.9612 30.7860 050551 1.3252 1.1525 31.6782 31.6165 34.0467 32.4689 050552 1.0915 1.1686 26.8274 27.1744 33.0711 29.0925 050557 1.5384 1.1735 28.3111 31.8048 33.3654 31.3154 050559 *** *							
050550 1.3091 1.1525 31.1918 30.2302 30.9612 30.7860 050551 1.3252 1.1525 31.6782 31.6165 34.0467 32.4689 050552 1.0915 1.1686 26.8274 27.1744 33.0711 29.0925 050557 1.5384 1.1735 28.3111 31.8048 33.3654 31.3154 050559 *** 26.9662 * * 26.9662 050561 1.2834 1.1686 37.5863 38.8651 38.0196 38.1604 050567 1.5530 1.1525 30.1167 32.9829 35.7063 33.0025 050568 1.1784 1.1264 22.5008 24.4061 25.2337 24.0827 050569 1.2251 1.4116 30.4874 33.0259 31.6785 31.7510 050570 1.5461 1.1525 32.6896 34.0171 34.5161 33.7750 050571 1.2096 1.1686 32.1656 33.6156 34.7627 33.5372 050573 1.6877 1.1202 30.5249 34.1991							35.6910
050551 1.3252 1.1525 31.6782 31.6165 34.0467 32.4689 050552 1.0915 1.1686 26.8274 27.1744 33.0711 29.0925 050557 1.5384 1.1735 28.3111 31.8048 33.3654 31.3154 050559 *** 26.9662 * * 26.9662 050561 1.2834 1.1686 37.5863 38.0651 38.0196 38.1604 050567 1.5530 1.1525 30.1167 32.9829 35.7063 33.0025 050568 1.1784 1.1264 22.5008 24.4061 25.2337 24.0827 050569 1.2251 1.4116 30.4874 33.0259 31.6785 31.7510 050570 1.5461 1.1525 32.6896 34.0171 34.5161 33.7750 050571 1.2096 1.1686 32.1656 33.6156 34.7627 33.5372 050573 1.6877 1.1202 30.5249 34.1991 34.7279 33.1788	050549	1.5798	1.2818	33.8288	34.9818	35.2792	34.7104
050552 1.0915 1.1686 26.8274 27.1744 33.0711 29.0925 050557 1.5384 1.1735 28.3111 31.8048 33.3654 31.3154 050559 *** * 26.9662 * * * 26.9662 050561 1.2834 1.1686 37.5863 38.8651 38.0196 38.1604 050567 1.5530 1.1525 30.1167 32.9829 35.7063 33.0025 050568 1.1784 1.1264 22.5008 24.4061 25.2337 24.0827 050569 1.2251 1.4116 30.4874 33.0259 31.6785 31.7510 050570 1.5461 1.1525 32.6896 34.0171 34.5161 33.7750 050571 1.2096 1.1686 32.1656 33.6156 34.7627 33.5372 050573 1.6877 1.1202 30.5249 34.1991 34.7279 33.1788	050550	1.3091	1.1525	31.1918	30.2302	30.9612	30.7860
050557 1.5384 1.1735 28.3111 31.8048 33.3654 31.3154 050559 *** * 26.9662 * * * 26.9662 050561 1.2834 1.1686 37.5863 38.8651 38.0196 38.1604 050567 1.5530 1.1525 30.1167 32.9829 35.7063 33.0025 050569 1.1784 1.1264 22.5008 24.4061 25.2337 24.0827 050570 1.5461 1.1525 32.6896 34.0171 34.5161 33.7750 050571 1.2096 1.1686 32.1656 33.6156 34.7627 33.5372 050573 1.6877 1.1202 30.5249 34.1991 34.7279 33.1788	050551	1.3252	1.1525	31.6782	31.6165	34.0467	32.4689
050559 *** * 26.9662 * * 26.9662 050561 1.2834 1.1686 37.5863 38.8651 38.0196 38.1604 050567 1.5530 1.1525 30.1167 32.9829 35.7063 33.0025 050568 1.1784 1.1264 22.5008 24.4061 25.2337 24.0827 050569 1.2251 1.4116 30.4874 33.0259 31.6785 31.7510 050570 1.5461 1.1525 32.6896 34.0171 34.5161 33.7750 050571 1.2096 1.1686 32.1656 33.6156 34.7627 33.5372 050573 1.6877 1.1202 30.5249 34.1991 34.7279 33.1788							29.0925
050561 1.2834 1.1686 37.5863 38.8651 38.0196 38.1604 050567 1.5530 1.1525 30.1167 32.9829 35.7063 33.0025 050568 1.1784 1.1264 22.5008 24.4061 25.2337 24.0827 050569 1.2251 1.4116 30.4874 33.0259 31.6785 31.7510 050570 1.5461 1.1525 32.6896 34.0171 34.5161 33.7750 050571 1.2096 1.1686 32.1656 33.6156 34.7627 33.5372 050573 1.6877 1.1202 30.5249 34.1991 34.7279 33.1788			1.1735		31.8048	33.3654	31.3154
050567 1.5530 1.1525 30.1167 32.9829 35.7063 33.0025 050568 1.1784 1.1264 22.5008 24.4061 25.2337 24.0827 050569 1.2251 1.4116 30.4874 33.0259 31.6785 31.7510 050570 1.5461 1.1525 32.6896 34.0171 34.5161 33.7750 050571 1.2096 1.1686 32.1656 33.6156 34.7627 33.5372 050573 1.6877 1.1202 30.5249 34.1991 34.7279 33.1788			* 4000		*		
050568 1.1784 1.1264 22.5008 24.4061 25.2337 24.0827 050569 1.2251 1.4116 30.4874 33.0259 31.6785 31.7510 050570 1.5461 1.1525 32.6896 34.0171 34.5161 33.7750 050571 1.2096 1.1686 32.1656 33.6156 34.7627 33.5372 050573 1.6877 1.1202 30.5249 34.1991 34.7279 33.1788							
050569 1.2251 1.4116 30.4874 33.0259 31.6785 31.7510 050570 1.5461 1.1525 32.6896 34.0171 34.5161 33.7750 050571 1.2096 1.1686 32.1656 33.6156 34.7627 33.5372 050573 1.6877 1.1202 30.5249 34.1991 34.7279 33.1788							
050570 1.5461 1.1525 32.6896 34.0171 34.5161 33.7750 050571 1.2096 1.1686 32.1656 33.6156 34.7627 33.5372 050573 1.6877 1.1202 30.5249 34.1991 34.7279 33.1788							
050571 1.2096 1.1686 32.1656 33.6156 34.7627 33.5372 050573 1.6877 1.1202 30.5249 34.1991 34.7279 33.1788							
050573							
							33.1788
	050575						24.6365

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

	Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 ¹	Average hourly wage** (3 years)
		***	*	28.7060	30.8841	32.3744	30.7024
		1.4763	1.1686	31.5953	33.8825	35.2390	33.5020
		***	*	40.2740	39.4976	42.5081	40.6599
		1.2604	1.1525	29.4337	31.6256	31.5806	30.8643
		1.4067	1.1686	32.0823	32.1801	34.0136	32.7981
		1.6855 1.4318	1.1202 1.1525	33.5209 24.5757	33.3697 24.8180	34.5747 30.3434	33.8027 26.6143
		1.2170	1.1525	27.2982	22.7121	22.2521	23.7456
		1.2743	1.1525	25.3551	27.4173	26.4782	26.3460
		1.2716	1.1686	32.3603	32.8212	32.7556	32.6569
		1.2035	1.1525	30.6273	30.9547	34.5100	32.0611
		1.3728	1.2986	31.5987	32.2142	38.4971	34.2056
		1.1708	1.1686	28.5915	28.8549	30.6106	29.3830
050592		1.1327	1.1525	32.5000	24.4542	27.3606	27.8692
050594		1.9222	1.1525	34.6747	34.7946	36.5256	35.3266
050597		1.2186	1.1686	25.4868	27.5691	28.8295	27.3013
		1.8973	1.2986	30.8420	38.1975	32.7835	33.9374
		1.5102	1.1686	35.0325	34.7409	36.0572	35.2836
		1.3782	1.1525	28.6982	30.2464	34.0275	31.1144
		1.3849	1.5324	45.4433	49.9429	55.0821	50.5390
		1.3380	1.1202	22.1999	23.3630	30.4169	25.2399
		1.3781	1.1525	38.4561	41.1797	41.7208	40.5323
		1.0078	1.5419	00.0700	00.0000	42.8105	42.8105
		1.0963	1.1686	32.8786	33.2909	35.9547	34.0424
		1.3821	1.1439	28.5636 25.4500	36.9017	37.7284	34.6404
		0.9782	1.1202	29.6550	27.4539 32.0627	31.3183	28.1589 30.7447
		1.2715	1.1686	28.1941	32.2907	33.9594	31.5331
		1.7561	1.1686	33.5137	36.3631	38.6591	36.2037
		***	*	28.0726	30.9410	*	29.5481
		1.2263	1.1305	33.4771	35.3734	36.8303	35.2594
		1.3118	1.1202	27.2360	30.5156	32.5576	30.1670
		1.1720	1.1686	20.4720	21.4612	39.6921	25.1547
		0.9033	1.1686	25.6614	27.6547	28.8237	27.4079
		0.8777	1.5324	47.5065	32.6362	33.2447	38.3228
050663		1.1413	1.1686	25.1493	25.7747	27.7334	26.1922
050667		0.8949	1.4095	25.9250	26.3937	24.2771	25.5661
050668		1.0956	1.5445	*	31.8065	56.6555	40.5623
050674		1.2957	1.2986	38.4454	42.6866	48.0894	43.5231
		1.4891	1.1686	37.3389	38.7984	38.5770	38.2896
		1.3229	1.1525	29.1159	30.7220	32.4473	30.8749
		1.2209	1.5617	35.6614	38.3946	38.2871	37.6296
050681		1.7997	1.1686	× 7004	*	47.0077	*
050682		0.9902	1.1202	21.7264	21.7791	17.9077	20.1030
		1.1436	1.1202	25.2575	26.4234	27.5256	26.4105
		1.2893 1.2391	1.1202 1.5324	38.5595	40.9486 41.9325	41.0188 44.1511	40.2696 42.5500
		1.4993	1.5324	41.3305 40.3815	42.2018	45.0951	42.5500 42.6213
		1.2757	1.5260	43.9228	47.2769	50.9094	47.7953
		1.3127	1.1525	34.8040	35.0621	34.5798	34.8155
		1.0811	1.1202	26.7041	28.9544	30.7858	28.8478
		1.0919	1.2029	30.1226	35.6549	39.6004	35.5145
		2.1349	1.1686	36.9314	35.9220	37.3837	36.7347
		1.0815	1.2450	19.2603	25.1984	16.6605	19.8559
		1.0543	1.1202	*	*	*	*
		***	*	25.6818	26.8210	28.9082	27.1586
		1.3401	1.1202	29.6896	29.6253	31.9529	30.7478
		1.0476	1.1686	24.6609	25.3488	29.7740	26.8344
		1.1988	1.5419	32.4877	34.0550	35.7311	34.0717
		1.6962	1.1202	21.2163	22.5034	30.5860	24.5174
		1.4049	1.1525	21.9079	25.6119	26.8549	24.7524
		1.3641	1.1202	34.8311	39.9858	45.8021	40.7733
		***	*	20.7448	20.2803	21.1273	20.6573
		1.3795	1.5108	32.4491	33.6676	31.9527	32.6539
บ50717		1.6681	1.1686	34.5519	38.0796	39.3227	37.1972
~=~=·-		1.1405	1.1202	15.4037	21.4996	25.5140	20.3162

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

	Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 1	Average hourly wage** (3 years)
050720		0.9434	1.1525	24.8117	30.0812	29.4726	28.3760
		0.9491	1.1202	*	*	31.4867	31.4867
		1.2769	1.1686	34.9814	35.0119	38.5446	36.2599
		1.9863	1.1202	*	34.4267	31.6910	32.9742
		0.9894 1.5734	1.1686 1.1735	22.0946 27.0928	21.7816 27.8433	24.3100 30.6479	22.6726 28.7808
		1.3048	1.1686	23.7179	24.3026	33.9118	27.6309
		1.3608	1.5260	31.4768	36.0820	39.3581	35.2411
050729		1.4064	1.1686	*	34.2580	36.5432	35.4092
		1.1559	1.1686	*	51.5425	37.0629	43.8573
		2.4544	1.1202	*	*	*	*
		1.5502	1.2450	*	*	*	*
		1.4627 1.2134	1.1686 1.1686	*	*	*	*
		1.4924	1.1686	*	*	*	*
		1.3628	1.1686	*	*	*	*
		1.6628	1.1686	*	*	*	*
050740		1.2672	1.1686	*	*	*	*
050741		1.4585	1.1686	*	*	*	*
		1.4555	1.1686	*	*	*	*
		1.1726	1.1686	*	*	*	*
		2.0256	1.1379	*	*	*	*
		1.2873	1.1379	*	*	*	*
		1.7748 1.3755	1.1379 1.1379	*	*	*	*
		1.2621	1.1439	*	*	*	*
		2.3783	1.1735	*	*	*	*
		1.9927	1.1686	*	*	*	*
050752		1.3824	1.1686	*	*	*	*
		1.5405	1.0555	24.9410	26.8470	29.6191	27.1542
		1.4532	1.0555	24.7856	24.2224	29.4809	26.1917
		1.3034	1.0719	28.0656	29.9649	32.4609	30.2066
		1.4080	0.9091	22.7493 21.4792	24.5704	25.2139	24.1949 21.4792
		1.2490	0.9091	21.8037	23.3859	23.0947	22.7895
		1.4538	1.0719	27.0511	28.7645	31.5210	29.1966
		1.7117	0.9386	27.2290	28.9850	27.1916	27.7894
060011		1.5312	1.0719	26.1958	27.2833	35.1573	29.4531
060012		1.4921	0.9091	24.1557	26.2469	27.3885	25.9174
		1.4258	0.9091	24.9708	24.5994	26.8676	25.4904
		1.8045	1.0719	29.6744	31.2588	31.0542	30.6493
060015		1.6893 1.2537	1.0719 0.9091	30.1158 23.9655	30.4533 25.6527	32.5285 26.5428	30.9302 25.4113
		1.2920	0.9091	23.6620	25.7628	24.1086	24.5180
060020		1.5924	0.9091	22.2052	22.6748	24.5992	23.1908
		1.6182	0.9475	25.7832	26.5238	28.2944	26.8827
060023		1.7037	1.0555	26.7285	27.7644	29.5760	28.0282
		1.8007	1.0719	28.7231	29.0130	30.0279	29.2786
		1.5713	1.0555	26.6348	28.0909	29.6121	28.2088
		1.4292	1.0719	27.9686	30.0448	31.6900	29.9400
		1.3866 1.5479	0.9386 0.9475	26.0011 25.6207	26.6251 26.3650	27.8642 27.8345	26.8679 26.6058
		1.5218	1.0719	28.2234	30.4247	31.0686	29.8864
		1.6709	1.0719	28.4604	29.8445	30.9359	29.7630
		1.1556	0.9091	20.4635	20.7131	20.3226	20.5024
060041		0.9159	0.9091	22.7123	23.4978	24.6142	23.6373
		1.0578	0.9091	20.0939	18.7896	18.2142	19.0158
		1.1647	1.0555	25.2471	25.0360	26.5611	25.6008
		1.3863	0.9233	26.8089	29.0598	29.3724	28.4549
		1.4653	0.0767	21.9108	20.2400	24 2200	21.9108
		1.4003	0.9767	23.5803 26.9891	22.3490	24.3389	23.4176 26.9891
		1.6763	1.0719	30.0963	31.3105	32.3681	31.2601
		1.3928	1.0719	28.5282	31.1987	32.4735	30.6917
		1.1611	0.9091	20.2706	25.7248	27.6658	24.7362
060075		1.2848	1.0378	30.7835	32.7563	32.2545	31.9445

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

	Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 ¹	Average hourly wage** (3 years)
		1.2450	0.9091	25.5406	26.8236	26.5631	26.3246
		1.5427	1.0555	27.4085	30.0602	32.1310	29.8666
		1.7198	1.0719	29.7690	32.1537	32.6104	31.5134
		1.3046	1.0555	28.8063	30.3002	31.6314	30.2903
		1.3928 1.4001	1.0719 1.0719	30.8625	32.0889 26.1883	32.4232	31.7749
		1.4001	1.0719	26.8267 31.2571	20.1003	26.8388	26.6135 31.2571
		1.6920	1.0719	*	*	34.9272	34.9272
		1.2801	1.0719	*	*	*	*
		1.2895	1.0719	*	*	*	*
		0.8229	0.9091	*	*	*	*
		1.2586	1.0284	*	*	*	*
060117		1.2771	0.9091	*	*	*	*
070001		1.6277	1.2851	32.2718	34.0302	35.8958	34.0563
070002		1.8171	1.1988	29.0663	31.1530	33.4398	31.2193
		1.0815	1.1988	31.3716	32.4197	34.1352	32.6566
		1.1931	1.1988	27.3004	29.2544	29.4448	28.6613
		1.3646	1.2851	29.3265	32.1668	33.7813	31.8765
		1.3639	1.3124	33.9310	36.8469	37.9148	36.2310
		1.3022	1.2031	30.3648	31.7125	35.9617	32.7355
		1.2429	1.1988	24.9176	26.4806	28.5506	26.6856
		1.2252 1.7838	1.1988	28.8649	30.2706	32.9299 35.3730	30.7068 33.7345
		1.3944	1.3124 1.1988	33.1535 27.5391	32.5798 29.9105	31.8987	29.7848
		1.1780	1.1988	40.3337	44.1424	29.4216	36.6050
		1.3750	1.1988	30.9728	33.4595	35.3385	33.3123
		1.3832	1.2851	29.6662	31.0903	31.4930	30.7535
		1.3804	1.2851	30.3951	31.7223	34.0490	32.0928
		1.3399	1.3124	35.7189	37.6081	39.7515	37.8041
070019		1.3176	1.2851	29.6290	31.8148	34.5125	32.0051
070020		1.3725	1.2061	29.9507	31.0935	33.6453	31.5617
070021		1.2493	1.1997	31.4397	33.2357	36.9241	33.8921
070022		1.7511	1.2851	32.3625	35.4120	39.0462	35.6388
		1.3625	1.2031	31.0243	32.0430	35.2323	32.7934
		1.7937	1.1988	29.2540	30.9938	32.4085	30.9015
		1.3370	1.1988	27.3487	31.8018	29.8513	29.7253
		1.6327	1.3124	29.5653	31.5036	35.1966	32.1039
		1.3097 1.3067	1.1988 1.2851	26.3871 27.2359	27.7213 28.9190	30.9299 30.1915	28.3559 28.8298
		1.3587	1.3124	35.5355	37.1929	40.1594	37.7106
		1.4051	1.3124	35.6831	36.3899	38.3965	36.8448
		1.2927	1.1988	27.1816	27.5585	30.7440	28.4859
070036		1.6615	1.2536	34.0555	36.1610	38.3413	36.2392
		1.1293	1.2399	31.1133	25.7516	25.7914	26.4172
070039		0.9388	1.2851	35.0164	31.2269	36.1368	34.0454
080001		1.6237	1.0633	30.2463	30.0242	32.0105	30.7967
		***	*	26.4192	27.7932	29.6800	27.9942
080003		1.5782	1.0633	27.1131	29.2266	30.7697	29.0947
		1.4760	1.0570	26.0092	27.4921	30.1094	27.9303
		1.2843	1.0009	24.4204	25.6160	27.4749	25.8999
		1.4513	1.0336	24.6485	27.0074	30.1100	27.3014
		1.7673	1.0977	31.3552	35.0413	36.6577	34.3712
			1 0077	29.6780	00.0000	04.0440	29.6780
		1.2576	1.0977	27.0514	29.2660	31.0419	29.1969
		1.9193 1.3406	1.0977 1.0977	29.9785 30.2504	32.2021 30.7728	35.6964 33.0178	32.6312 31.3326
		1.4551	1.0977	25.9086	29.5590	29.4912	28.3058
		***	*	30.1419	25.5550	*	30.1419
		1.3936	1.0977	29.6744	29.1059	32.0745	30.1717
		2.0633	1.0977	32.4412	34.0693	36.7579	34.3904
		1.5464	0.9281	25.2381	24.4060	26.4631	25.3882
		1.4095	0.9535	22.1269	25.3389	27.2350	24.9594
		0.8950	*	16.2637	16.5974	*	16.4390
100006		1.6312	0.9575	26.2372	26.3789	29.1505	27.2566
100007		1.6674	0.9575	25.4333	26.5378	28.5702	26.9172
		1.7223	0.9821	25.7377	27.4314	29.1705	27.5517

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 ¹	Average hourly wage** (3 years)
100009	1.4600	0.9821	24.4666	25.9381	27.4424	25.9449
100010	***	*	26.9486	*	*	26.9486
100014	1.6716	0.9460	24.5762	26.3788	28.4600	26.5368
100014 100015	1.3936 1.3953	0.9321 0.9265	22.3054 22.5781	24.5862 24.6038	25.1524 26.0916	24.0248 24.3631
100017	1.6141	0.9203	22.9545	26.1580	27.9654	25.7954
100018	1.6468	1.0107	27.8582	28.1481	30.2423	28.7763
100019	1.6747	0.9547	25.5566	27.6179	28.6630	27.3589
100020	***	*	23.6106	23.9414	27.1257	24.9125
100022	1.6889	1.0320	29.0519	29.9345	32.8088	30.7076
100023	1.5049	0.9575	21.4015	23.0074	25.2652	23.1917
100024	1.2664	0.9821	27.6476	30.2395	29.1894	28.9778
100025	1.6759	0.8733	21.1174	22.1580	23.3843	22.2470
100026	1.5933	0.8733	21.3533	21.4703	23.4730	22.1335
100027 100028	0.9083 1.3355	0.8733	12.0314	16.1223	18.9433	15.6380 26.1615
100029	1.2695	0.9547 0.9821	23.7818 26.9307	26.8661 27.5844	27.7497 28.8842	27.8024
100029	1.3127	0.9575	22.4887	24.0943	24.6314	23.8140
100032	1.7818	0.9265	23.0174	25.2450	26.8162	25.0796
100034	1.9037	0.9821	24.4064	25.9415	28.1280	26.0553
100035	1.5586	0.9743	25.3590	26.9407	29.4803	27.2447
100038	1.9601	1.0320	27.4422	29.8583	31.3403	29.6015
100039	1.4632	1.0320	26.6016	28.4627	28.2531	27.7905
100040	1.7005	0.9281	23.5372	23.6443	26.2429	24.4804
100043	1.3480	0.9265	22.8963	25.2273	26.4221	24.8888
100044	1.4396	0.9866	26.3208	28.3596	30.3659	28.3803
100045	1.3377	0.9575	23.0520	26.9641	29.7375	26.6960
100046 100047	1.2870 1.7647	0.9265 0.9738	26.6169 24.4212	26.3673 25.0404	26.9469 26.7674	26.6450 25.4543
100047	0.9433	0.8733	18.3767	18.8771	19.3226	18.8647
100049	1.1970	0.9056	22.9532	22.9810	24.0385	23.3402
100050	1.1346	0.9821	20.6893	19.8713	21.5101	20.6851
100051	1.3474	0.9575	22.3311	23.1940	28.0945	24.5496
100052	1.3124	0.9056	20.9078	22.3920	23.6796	22.3593
100053	1.2507	0.9821	27.3383	27.3224	28.5118	27.7190
100054	1.2320	0.8733	25.7279	28.0512	28.7646	27.4784
100055	1.3545	0.9265	22.1051	23.5332	25.6243	23.6414
100056		0.0575	25.7945	0E 2007	04.0040	25.7945
100057 100061	1.5520 1.5485	0.9575 0.9821	22.6038 26.7673	25.3897 29.2565	24.8010 31.4413	24.2932 29.1651
100062	1.7005	0.8793	24.1413	25.2340	25.1280	24.8453
100063	1.2623	0.9265	21.5566	24.7026	25.5097	23.9301
100067	1.4089	0.9265	23.9333	26.1213	26.8628	25.6148
100068	1.7592	0.9321	24.9025	25.9202	26.1341	25.6436
100069	1.3305	0.9265	22.4386	24.7442	25.7450	24.2629
100070	1.7307	0.9743	23.7746	24.8883	26.8461	25.1171
100071	1.2351	0.9265	23.4176	24.9682	26.3768	24.9867
100072	1.3773	0.9321	24.2934	26.0459	25.7962	25.4285
100075	1.7645	1.0320	25.3685	30.3358	30.5845	28.7448
100075 100076	1.4896 1.2186	0.9265 0.9821	23.3503 21.0777	25.1691 21.9483	25.7612 23.4551	24.7961 22.0827
100077	1.3555	0.9738	24.3478	26.0347	30.6925	26.9874
100079	1.6357	*	*	*	*	*
100080	1.8116	0.9535	26.3596	27.0126	28.2188	27.2307
100081	1.0726	0.8733	16.9168	15.6662	16.9756	16.5056
100084	1.7983	0.9575	25.4140	26.3393	27.4947	26.3972
100086	1.2726	1.0320	26.4817	28.2641	28.5971	27.7722
100087	1.8922	0.9743	25.9909	27.1531	29.5823	27.6390
100088	1.6379	0.9281	24.8729	25.9182	26.7574	25.8681
100090	1.5337	0.9281	24.0501	24.2422	26.5703	24.9740
100092	1.5375	0.9547	26.0856	28.4789	27.8341	27.4734
100093 100098	1.7528	0.8733	21.1547	21.3524	21.6438	21.3874
100098	1.0833	0.9056	21.2505 20.4328	21.3036	25.8454	21.2505 22.5611
100102	1.1386	0.8858	22.8850	23.8596	26.1015	24.2912
100103	0.9737	*	21.7494	*	20.1010	21.7494
	3.0707	,			. '	_ 17 ¬О¬

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

100106 100107 100108 100110 100113 100114 100117 100122 100124 100125 100126 100127 100128 100130 100131 100132 100131 100132 100134 100135 100137 100139 100140 100150 100151 100156 100156 100156 100166 100167 100168 100168 100172 100173 100175 100176 100177 100178 100179 100179 100180 100181 100183 100183 100181 100189 100200 100206 100206 100208	1.4701 0.9704 1.2033 0.8099 1.3123 1.6054 1.9748 1.3111 1.1933 1.3355 1.1049 1.2251 1.1802 1.2462 1.3357 1.6100 2.1062 1.1701	0.9886 0.8733 0.9460 0.8733 0.9575 0.9575 0.9420 0.9821 0.9281 0.9131 0.9056 0.8733 0.8733 0.9821 0.9265	24.9503 20.2882 24.4484 16.3757 23.8836 28.3699 25.0067 27.7413 26.0451 23.6669 24.0937 21.2597 21.6483	26.8091 24.0389 26.1337 22.0750 24.9951 29.1494 26.3806 29.2195 26.4536 28.0569 24.8579 23.4751	29.9745 24.7650 27.4760 21.3540 25.5669 29.4788 28.0440 29.2862 27.7198 27.6438 26.2990	27.2337 23.0934 26.0486 19.9366 24.8206 29.0275 26.5361 28.7488 26.7684 26.7909
100107 100108 100109 100110 100113 100114 100117 100122 100125 100126 100127 100128 100131 100131 100132 100134 100135 100137 100139 100140 100150 100151 100156 100156 100157 100166 100166 100167 100168 100172 100173 100175 100176 100177 100179 100179 100179 100180 100181 100183 100187 100189 100200 100200 100200 100206	1.2033 0.8099 1.3123 1.6054 1.9748 1.3111 1.1933 1.3355 1.1049 1.2251 1.1802 1.2462 1.3357 1.6100 2.1062	0.9460 0.8733 0.9575 0.9575 0.9420 0.9821 0.9281 0.9131 0.9056 0.8733 0.8733	24.4484 16.3757 23.8836 28.3699 25.0067 27.7413 26.0451 23.6669 24.0937 21.2597 21.6483	26.1337 22.0750 24.9951 29.1494 26.3806 29.2195 26.4536 28.0569 24.8579	27.4760 21.3540 25.5669 29.4788 28.0440 29.2862 27.7198 27.6438	26.0486 19.9366 24.8206 29.0275 26.5361 28.7488 26.7684
100108 100109 100110 100113 100114 100117 100122 100125 100126 100127 100128 100131 100131 100132 100131 100135 100137 100139 100139 100140 100150 100151 100156 100156 100157 100166 100167 100168 100172 100173 100175 100176 100177 100178 100179 100179 100179 100180 100181 100183 100183 100183 100189 100200 100206 100206	0.8099 1.3123 1.6054 1.9748 1.3111 1.1933 1.3355 1.1049 1.2251 1.1802 1.2462 1.3357 1.6100 2.1062	0.8733 0.9575 0.9575 0.9420 0.9821 0.9281 0.9131 0.9056 0.8733 0.8733	16.3757 23.8836 28.3699 25.0067 27.7413 26.0451 23.6669 24.0937 21.2597 21.6483	22.0750 24.9951 29.1494 26.3806 29.2195 26.4536 28.0569 24.8579	21.3540 25.5669 29.4788 28.0440 29.2862 27.7198 27.6438	19.9366 24.8206 29.0275 26.5361 28.7488 26.7684
100109 100110 100113 100114 100117 100118 100122 100124 100125 100126 100127 100128 100131 100132 100131 100132 100134 100137 100139 100140 100150 100151 100156 100156 100157 100166 100167 100168 100172 100173 100175 100176 100177 100178 100179 100179 100189 100189 100200 100201	1.3123 1.6054 1.9748 1.3111 1.1933 1.3355 1.1049 1.2251 1.1802 1.2462 1.3357 1.6100 2.1062	0.9575 0.9575 0.9420 0.9821 0.9281 0.9131 0.9056 0.8733 0.8733	23.8836 28.3699 25.0067 27.7413 26.0451 23.6669 24.0937 21.2597 21.6483	24.9951 29.1494 26.3806 29.2195 26.4536 28.0569 24.8579	25.5669 29.4788 28.0440 29.2862 27.7198 27.6438	24.8206 29.0275 26.5361 28.7488 26.7684
100110 100113 100114 100117 100118 100122 100126 100126 100127 100131 100132 100132 100134 100135 100137 100139 100139 100140 100150 100151 100156 100157 100160 100161 100168 100173 100173 100173 100175 100176 100177 100179 100179 100179 100179 100180 100181 100183 100187 100189 1001000 100200 100200 100206 100206	1.6054 1.9748 1.3111 1.1933 1.3355 1.1049 1.2251 1.1802 1.2462 1.3357 1.6100 2.1062	0.9575 0.9420 0.9821 0.9281 0.9136 0.9056 0.8733 0.8733	28.3699 25.0067 27.7413 26.0451 23.6669 24.0937 21.2597 21.6483	29.1494 26.3806 29.2195 26.4536 28.0569 24.8579	29.4788 28.0440 29.2862 27.7198 27.6438	29.0275 26.5361 28.7488 26.7684
100113 100114 100117 100118 100121 100122 100125 100126 100127 100128 100131 100131 100132 100134 100135 100137 100139 100139 100150 100151 100156 100157 100156 100157 100160 100161 100163 100165 100177 100179 100179 100179 100179 100180 100181 100183 100187 100189 100204 100206 100206 100206	1.9748 1.3111 1.1933 1.3355 1.1049 1.2251 1.1802 1.2462 1.3357 1.6100 2.1062	0.9420 0.9821 0.9281 0.9131 0.9056 0.8733 0.8733	25.0067 27.7413 26.0451 23.6669 24.0937 21.2597 21.6483	26.3806 29.2195 26.4536 28.0569 24.8579	28.0440 29.2862 27.7198 27.6438	26.5361 28.7488 26.7684
100114 100117 100118 100121 100124 100125 100126 100127 100128 100130 100131 100132 100132 100134 100135 100137 100140 100151 100156 100157 100160 100161 100163 100164 100177 100178 100179 100179 100180 100181 100183 100187 100189 100206 100206	1.3111 1.1933 1.3355 1.1049 1.2251 1.1802 1.2462 1.3357 1.6100 2.1062	0.9821 0.9281 0.9131 0.9056 0.8733 0.8733 0.9821	27.7413 26.0451 23.6669 24.0937 21.2597 21.6483	29.2195 26.4536 28.0569 24.8579	29.2862 27.7198 27.6438	28.7488 26.7684
100118 100121 100122 100125 100126 100127 100128 100130 100131 100132 100134 100135 100137 100142 100150 100151 100154 100156 100156 100161 100166 100167 100168 100172 100173 100175 100176 100177 100178 100179 100179 100180 100181 100183 100183 100187 100189 100200 100200 100206	1.3355 1.1049 1.2251 1.1802 1.2462 1.3357 1.6100 2.1062	0.9131 0.9056 0.8733 0.8733 0.9821	23.6669 24.0937 21.2597 21.6483	28.0569 24.8579	27.6438	
100121 100122 100125 100126 100127 100128 100130 100131 100132 100134 100137 100139 100139 100140 100150 100151 100154 100156 100157 100161 100165 100167 100168 100172 100173 100175 100176 100177 100178 100179 100180 100181 100183 100183 100187 100189 100200 100204 100206	1.1049 1.2251 1.1802 1.2462 1.3357 1.6100 2.1062	0.9056 0.8733 0.8733 0.9821	24.0937 21.2597 21.6483	24.8579		26.7909
100122 100124 100125 100126 100127 100130 100131 100132 100134 100137 100139 100140 100150 100151 100154 100156 100166 100167 100168 100168 100172 100173 100175 100176 100177 100178 100179 100181 100183 100183 100187 100189 100200 100204 100206	1.2251 1.1802 1.2462 1.3357 1.6100 2.1062	0.8733 0.8733 0.9821	21.2597 21.6483		26.2990	
100124 100125 100126 100127 100128 100130 100131 100132 100135 100137 100139 100142 100150 100151 100156 100157 100166 100167 100168 100173 100173 100175 100179 100179 100179 100180 100181 100183 100187 100189 100191 100200 100204 100206	1.1802 1.2462 1.3357 1.6100 2.1062	0.8733 0.9821	21.6483	23.4/51	l	25.0954
100125 100126 100127 100128 100130 100131 100132 100135 100139 100140 100150 100151 100156 100157 100160 100161 100168 100168 100173 100173 100175 100179 100179 100179 100180 100181 100183 100187 100189 100189 100200 100204 100206	1.2462 1.3357 1.6100 2.1062	0.9821		00.7000	24.6285	23.1068
100126 100127 100128 100130 100131 100132 100134 100135 100139 100140 100150 100151 100156 100157 100160 100166 100167 100168 100173 100175 100175 100176 100177 100178 100179 100179 100180 100181 100183 100187 100189 100200 100204 100206	1.3357 1.6100 2.1062		25.3532	22.7023 26.7452	24.0333 29.7750	22.8131 27.4535
100127 100128 100130 100131 100132 100133 100134 100135 100139 100140 100150 100151 100156 100157 100160 100161 100163 100175 100176 100176 100177 100178 100179 100179 100180 100181 100183 100187 100189 100200 100204 100206	1.6100 2.1062	0.0200	23.2996	24.4515	29.6247	25.8173
100128 100130 100131 100132 100135 100137 100139 100140 100150 100151 100156 100157 100160 100161 100168 100172 100173 100175 100176 100177 100178 100179 100179 100180 100181 100183 100183 100189 100200 100204 100206	2.1062	0.9265	21.3223	24.4485	26.0923	24.0085
100130 100131 100132 100134 100137 100139 100140 100150 100151 100156 100156 100161 100166 100167 100168 100172 100173 100175 100176 100177 100178 100180 100181 100183 100183 100189 100200 100204 100206	1.1701	0.9265	25.6763	29.4979	29.2566	28.2264
100132 100134 100135 100137 100139 100140 100150 100151 100156 100156 100166 100167 100168 100173 100173 100179 100179 100179 100180 100181 100183 100187 100189 100189 100204 100206		0.9535	22.8324	24.2046	26.0268	24.3054
100134 100135 100137 100139 100140 100150 100151 100156 100157 100160 100161 100168 100172 100173 100175 100175 100177 100178 100179 100180 100181 100183 100187 100189 100204 100206	1.3340	0.9821	25.8316	29.2462	27.8164	27.6277
100135 100137 100139 100140 100150 100151 100156 100157 100160 100161 100163 100165 100167 100173 100175 100175 100176 100177 100178 100179 100180 100181 100183 100187 100189 100200 100204 100206	1.2356	0.9265	23.0428	24.3293	26.0526	24.5196
100137 100139 100140 100142 100150 100151 100156 100161 100167 100168 100172 100175 100176 100177 100178 100179 100180 100181 100183 100183 100189 100189 100204	0.8984	0.8733	19.5337	20.9244	20.7366	20.4127
100139 100140 100142 100150 100151 100156 100161 100166 100167 100173 100175 100176 100177 100176 100177 100178 100180 100181 100183 100183 100189 100189 100200 100204	 1.6167 1.2153	0.8959 0.9056	22.3071 23.3692	24.0024 25.1974	26.7030 24.8519	24.2814 24.5488
100140 100142 100150 100151 100154 100156 100160 100161 100168 100172 100175 100176 100177 100178 100181 100183 100187 100189 100200 100204	0.8417	0.9036	14.5046	17.5489	18.2197	16.8625
100142 100150 100151 100154 100156 100157 100160 100161 100168 100172 100173 100175 100176 100177 100179 100180 100181 100183 100187 100189 100191 100200 100206	1.1403	0.9281	24.8165	26.4720	26.1352	25.8497
100151 100154 100156 100157 100160 100161 100168 100172 100173 100175 100176 100177 100179 100180 100181 100183 100187 100189 100191 100204 100206	1.2146	0.8733	20.7219	22.9577	24.8853	22.8722
100154 100156 100157 100160 100161 100168 100172 100173 100175 100176 100177 100179 100180 100181 100183 100187 100189 100191 100204 100206	 1.3085	0.9821	25.7122	26.1990	26.8492	26.2510
100156 100157 100160 100161 100166 100168 100172 100173 100175 100176 100177 100179 100180 100181 100183 100187 100189 100200 100204 100206	 1.8217	0.9281	26.1848	28.1322	30.6447	28.4405
100157 100160 100161 100166 100168 100172 100173 100176 100176 100177 100180 100181 100183 100187 100189 100191 100200 100204 100206	 1.5616	0.9821	26.3703	27.6127	28.2506	27.4698
100160 100161 100166 100168 100173 100175 100176 100177 100179 100181 100183 100187 100189 100189 100191 100200 100204 100206	 1.1229	0.8858	22.2757	26.7092	27.5706	25.5636
100161 100166 100167 100168 100172 100173 100175 100176 100177 100180 100181 100183 100187 100189 100189 100191 100200 100204 100206	 1.5921 1.2343	0.9265 0.8733	25.9133 27.2019	27.3851 26.9851	29.7455 30.7454	27.7488 28.3902
100166 100167 100168 100172 100173 100175 100176 100177 100180 100181 100183 100187 100189 100191 100200 100204 100206	1.5324	0.9575	28.3607	28.8077	28.0545	28.4084
100167 100168 100172 100173 100175 100177 100179 100180 100181 100183 100187 100189 100191 100200 100204 100206	1.4991	0.9743	24.4251	27.9618	28.8685	27.0088
100172 100173 100175 100176 100177 100180 100181 100183 100187 100189 100191 100200 100204 100206	 1.2687	1.0320	26.8584	30.3694	30.2166	29.1294
100173 100175 100176 100177 100180 100181 100183 100187 100189 100191 100200 100204 100208	 1.4247	0.9535	26.0864	27.1292	27.6739	26.9486
100175 100176 100177 100180 100181 100183 100187 100189 100191 100200 100204 100206	 1.3332	0.9821	18.4651	18.2735	20.7857	19.1686
100176 100177 100179 100180 100181 100183 100187 100189 100200 100204 100206	1.7335	0.9265	22.4866	24.8721	26.5436	24.6249
100177 100179 100180 100181 100183 100187 100189 100191 100200 100204 100206	0.9868	0.8964	22.0666 29.8326	23.5455	23.9665	23.2366
100179 100180 100181 100183 100187 100191 100200 100204 100206	1.9619 1.2940	0.9866 0.9547	25.3973	31.2694 26.6781	30.7087 28.0089	30.6163 26.7699
100180 100181 100183 100187 100189 100191 100200 100204 100206	1.7746	0.9281	26.6537	29.5619	29.1111	28.4820
100183 100187 100189 100191 100200 100204 100206	1.3300	0.9265	26.3299	27.1804	29.9238	27.8921
100187 100189 100191 100200 100204 100206	 1.0971	0.9821	19.5022	21.8540	24.3708	22.2363
100189 100191 100200 100204 100206 100208	 1.2054	0.9821	26.7893	27.4951	29.0270	27.7882
100191 100200 100204 100206 100208	 1.2353	0.9821	26.1394	27.3653	27.8144	27.1054
100200 100204 100206 100208	1.2957	1.0320	26.5763	28.4136	28.8320	27.9981
100204 100206 100208	1.2912 1.4194	0.9265 1.0320	24.3553 28.0926	26.6340 29.8963	28.3710 28.7694	26.5244 28.9347
100206 100208	1.5539	0.9420	24.4697	25.7537	27.4763	25.9442
100208	1.3170	0.9265	23.0340	25.2196	27.0295	25.1380
100209	 ***	*	24.9854	*	*	24.9854
	 1.3780	0.9821	25.0778	26.6246	26.8473	26.2262
	 1.5743	1.0320	28.6449	28.9486	29.8515	29.1402
	 1.1966	0.9265	*	24.7095	24.7533	24.7320
	1.5442	0.8793	24.2669	24.7566	26.1846	25.1112
	 1.5878 1.2291	0.9743 0.9866	25.1893 25.2635	27.1936 25.2907	27.9282 27.3989	26.7868 26.0415
	1.6503	0.9460	25.2633	26.0905	28.3868	26.5820
	1.5397	0.8733	23.4556	24.7015	25.0332	24.4003
	1.2347	1.0320	23.3593	24.8077	26.6446	24.9810
		1.0320	27.9473	28.4316	28.5259	28.2940
	1.2268	0.9281	27.8003	29.3317	28.8165	28.6850
	1.2326		27.2873	29.8952	28.1396 29.8493	28.4955
100230		1.0320 1.0320	26.3690	28.1703		28.0929

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

1,00234	Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 1	Average hourly wage** (3 years)
100256	100232 h	1.2507	0.9281	23.9405	24.9322	28.5537	25.7586
100237	100234	1.3905	0.9535	25.2574	26.3601	27.4456	26.3418
100238		1.4137	0.9738	25.9282	26.6585	28.9955	27.2146
100239							29.3573
100240							
100242							
100244							
100244							
100246							
100248							
100269							27.5357
100252							23.8607
100254		1.2191	0.9866	24.9860	25.8540	27.8256	26.2449
100255 1.2759 0.9265 22.934 24.4808 26.5570 24.4491 24.000268 1.5510 1.0320 31.8772 31.2482 31.2203 31.4362 31.00259 1.2661 0.9265 24.9404 26.175 27.4809 26.172 100260 1.3662 0.9866 25.2630 27.5188 26.7129 26.542 26.342 27.5188 26.7129 26.542 27.5188 26.7129 26.542 27.5188 26.7129 26.542 27.5188 26.7129 26.542 27.5188 26.7129 26.542 27.5188 26.7129 26.542 27.5188 26.7129 26.542 27.5188 26.7129 26.542 27.5188 26.7129 26.542 27.5188 26.7129 26.542 27.5188 26.7129 26.542 27.5188 26.7129 26.542 27.5188 27.5189 26.542 27.5188 26.7129 26.542 27.5188 27.5189	100253	1.3737	0.9535	24.4051	25.7121		25.9011
100256	100254		0.8959				25.6593
100258				-			24.4495
100259							28.4725
1,066c							
100262							
100264			0.9866		27.5188	26.7129	
100265			0.0265		25 5480	26 8216	
100266							
100267							
100268							27.4997
100275							29.3827
100276	100269	1.3968	0.9535	25.3228	26.7450	26.6047	26.2648
1.4184	100275	1.3032	0.9535	24.3059	26.0361	26.8943	25.8067
1,00279	100276	1.2537	1.0320	27.2589	30.0576	29.7606	29.0605
100281							22.3428
1,0852							27.1157
1,2180							
1,6225				22.5927	23.81/0	22.3134	22.9032
1,3360				07 1051	20 4294	20 2645	00 2401
1.5523							
1,7459							
1.1712							29.1710
100292				*		27.1011	25.2897
100293	100291	1.2990	0.9547	*	*	28.4722	28.4722
100294	100292		0.8733	*	*	26.7063	26.7063
100295			*	*	*		32.7963
100296			*	*			
100298 0.8795 0.8959 *					*	26.1984	26.1984
100299 1.2958 0.9743 * * * * * 1 1 *				*	*	*	*
100300 1.3542 0.9743 * * * * * 1 1 *				*	*	*	*
110001 1.2731 0.9793 25.1164 25.3102 26.4338 25.624 110002 1.3410 0.9793 21.8616 25.3897 26.4715 24.618 110003 1.2581 0.9281 20.0968 21.4002 22.7066 21.428 110004 1.2773 0.8948 22.7929 23.9911 24.9978 23.908 110005 1.2279 0.9793 22.3645 22.9000 28.1209 24.585 110006 1.4658 0.9456 25.0719 28.6090 28.3839 27.310 110007 1.5951 0.9056 30.7430 23.8729 26.6396 26.658 110010 2.1808 0.9793 23.4662 27.1711 29.2947 26.695 110011 2.1808 0.9793 25.4620 26.0899 28.0599 26.531 110015 1.2365 0.9793 25.5661 26.6610 28.1274 26.868 110016 0.7825 18.8376 21.7610 22.7263 21.055 110018 0.9793 25.6485 28.2431 26.8016 <th></th> <th></th> <th></th> <th>*</th> <th>*</th> <th>*</th> <th>*</th>				*	*	*	*
110002 1.3410 0.9793 21.8616 25.3897 26.4715 24.6180 110003 1.2581 0.9281 20.0968 21.4002 22.7066 21.428 110004 1.2773 0.8948 22.7929 23.9911 24.9978 23.908 110005 1.2279 0.9793 22.3645 22.9000 28.1209 24.585 110006 1.4658 0.9456 25.0719 28.6090 28.3839 27.310 110007 1.5951 0.9056 30.7430 23.8729 26.6396 26.6585 110008 1.2927 0.9793 23.4662 27.1711 29.2947 26.695 110010 2.1808 0.9793 28.7690 29.7142 31.7185 30.089 110015 2.1808 0.9793 25.4620 26.0899 28.0599 26.531 110016 1.1256 0.9793 25.5661 26.6610 28.1274 26.868 110018 1.1837 0.9793 25.6485 28.2431 26.8016 26.706 110023 1.3216 0.9793 25.6485 <th></th> <th></th> <th></th> <th>25.1164</th> <th>25.3102</th> <th>26,4338</th> <th>25.6244</th>				25.1164	25.3102	26,4338	25.6244
110003 1.2581 0.9281 20.0968 21.4002 22.7066 21.428 110004 1.2773 0.8948 22.7929 23.9911 24.9978 23.908 110005 1.2279 0.9793 22.3645 22.9000 28.1209 24.585 110006 1.4658 0.9456 25.0719 28.6090 28.3839 27.310 110007 1.5951 0.9056 30.7430 23.8729 26.6396 26.658 110018 1.2927 0.9793 23.4662 27.1711 29.2947 26.695 110010 2.1808 0.9793 28.7690 29.7142 31.7185 30.089 110015 2.1808 0.9793 25.4620 26.0899 28.0599 26.5310 110015 0.9793 25.5661 26.6610 28.1274 26.865 110016 1.1750 0.7825 18.8376 21.7610 22.7263 21.050 110018 1.1837 0.9793 25.6485 28.2431 26.8016 26.909 110020 1.3216 0.9793 25.3746 27.3029 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>24.6188</th>							24.6188
110005 1.2279 0.9793 22.3645 22.9000 28.1209 24.585 110006 1.4658 0.9456 25.0719 28.6090 28.3839 27.310 110007 1.5951 0.9056 30.7430 23.8729 26.6396 26.658 110018 1.2927 0.9793 23.4662 27.1711 29.2947 26.695 110010 2.1808 0.9793 28.7690 29.7142 31.7185 30.089 110011 1.2365 0.9793 25.4620 26.0899 28.0599 26.5310 110015 1.1256 0.9793 25.5661 26.6610 28.1274 26.868 110016 1.1750 0.7825 18.8376 21.7610 22.7263 21.050 110018 1.1837 0.9793 25.6485 28.2431 26.8016 26.909 110020 1.3216 0.9793 24.8735 26.8501 28.3822 26.778 110023 1.3232 0.9793 25.3746 27.3029 29.8062 27.571 110024 1.4005 0.9139 23.8091							21.4287
110006 1.4658 0.9456 25.0719 28.6090 28.3839 27.310 110007 1.5951 0.9056 30.7430 23.8729 26.6396 26.658 110008 1.2927 0.9793 23.4662 27.1711 29.2947 26.695 110010 2.1808 0.9793 28.7690 29.7142 31.7185 30.089 110011 1.2365 0.9793 25.4620 26.0899 28.0599 26.5310 110015 1.1256 0.9793 25.5661 26.6610 28.1274 26.868 110016 1.1750 0.7825 18.8376 21.7610 22.7263 21.0502 110018 1.1837 0.9793 25.6485 28.2431 26.8016 26.909 110020 1.3216 0.9793 24.8735 26.8501 28.3822 26.778 110023 1.3232 0.9793 25.3746 27.3029 29.8062 27.571 110024 1.4005 0.9139 23.8091 25.7205 27.0225 25.4850	110004	1.2773	0.8948	22.7929	23.9911	24.9978	23.9083
110007 1.5951 0.9056 30.7430 23.8729 26.6396 26.6586 110008 1.2927 0.9793 23.4662 27.1711 29.2947 26.6956 110010 2.1808 0.9793 28.7690 29.7142 31.7185 30.0896 110011 1.2365 0.9793 25.4620 26.0899 28.0599 26.5316 110015 1.1256 0.9793 25.5661 26.6610 28.1274 26.8686 110016 1.1750 0.7825 18.8376 21.7610 22.7263 21.6899 110018 1.1837 0.9793 25.6485 28.2431 26.8016 26.9099 110020 1.3216 0.9793 24.8735 26.8501 28.3822 26.7781 110023 1.3232 0.9793 25.3746 27.3029 29.8062 27.571 110024 1.4005 0.9139 23.8091 25.7205 27.0225 25.4850	110005	1.2279	0.9793	22.3645	22.9000	28.1209	24.5854
110008 1.2927 0.9793 23.4662 27.1711 29.2947 26.6953 110010 2.1808 0.9793 28.7690 29.7142 31.7185 30.0899 110011 1.2365 0.9793 25.4620 26.0899 28.0599 26.5319 110015 1.1256 0.9793 25.5661 26.6610 28.1274 26.868 110016 1.1750 0.7825 18.8376 21.7610 22.7263 21.0503 110018 1.1837 0.9793 25.6485 28.2431 26.8016 26.906 110020 1.3216 0.9793 24.8735 26.8501 28.3822 26.778 110023 1.3232 0.9793 25.3746 27.3029 29.8062 27.571 110024 1.4005 0.9139 23.8091 25.7205 27.0225 25.4850	110006	1.4658	0.9456	25.0719	28.6090	28.3839	27.3103
110010 2.1808 0.9793 28.7690 29.7142 31.7185 30.0899 110011 1.2365 0.9793 25.4620 26.0899 28.0599 26.5310 110015 1.1256 0.9793 25.5661 26.6610 28.1274 26.8684 110016 1.1750 0.7825 18.8376 21.7610 22.7263 21.0503 110018 1.1837 0.9793 25.6485 28.2431 26.8016 26.9096 110020 1.3216 0.9793 24.8735 26.8501 28.3822 26.7786 110023 1.3232 0.9793 25.3746 27.3029 29.8062 27.571 110024 1.4005 0.9139 23.8091 25.7205 27.0225 25.4850							26.6582
110011 1.2365 0.9793 25.4620 26.0899 28.0599 26.5310 110015 1.1256 0.9793 25.5661 26.6610 28.1274 26.8684 110016 1.1750 0.7825 18.8376 21.7610 22.7263 21.0503 110018 1.1837 0.9793 25.6485 28.2431 26.8016 26.9096 110020 1.3216 0.9793 24.8735 26.8501 28.3822 26.7786 110023 1.3232 0.9793 25.3746 27.3029 29.8062 27.571 110024 1.4005 0.9139 23.8091 25.7205 27.0225 25.4850							26.6955
110015 1.1256 0.9793 25.5661 26.6610 28.1274 26.8684 110016 1.1750 0.7825 18.8376 21.7610 22.7263 21.0503 110018 1.1837 0.9793 25.6485 28.2431 26.8016 26.9096 110020 1.3216 0.9793 24.8735 26.8501 28.3822 26.7786 110023 1.3232 0.9793 25.3746 27.3029 29.8062 27.571 110024 1.4005 0.9139 23.8091 25.7205 27.0225 25.4850							
110016 1.1750 0.7825 18.8376 21.7610 22.7263 21.0503 110018 1.1837 0.9793 25.6485 28.2431 26.8016 26.9096 110020 1.3216 0.9793 24.8735 26.8501 28.3822 26.7786 110023 1.3232 0.9793 25.3746 27.3029 29.8062 27.571 110024 1.4005 0.9139 23.8091 25.7205 27.0225 25.4850							
110018 1.1837 0.9793 25.6485 28.2431 26.8016 26.9090 110020 1.3216 0.9793 24.8735 26.8501 28.3822 26.7780 110023 1.3232 0.9793 25.3746 27.3029 29.8062 27.571 110024 1.4005 0.9139 23.8091 25.7205 27.0225 25.4850							
110020 1.3216 0.9793 24.8735 26.8501 28.3822 26.7780 110023 1.3232 0.9793 25.3746 27.3029 29.8062 27.571 110024 1.4005 0.9139 23.8091 25.7205 27.0225 25.4850							
110023 1.3232 0.9793 25.3746 27.3029 29.8062 27.571 110024 1.4005 0.9139 23.8091 25.7205 27.0225 25.4850							26.7786
110024							27.5717
							25.4856
110025 1.4670 1.0478 31.5253 26.1311 31.0703 29.3676	110025	1.4670	1.0478	31.5253	26.1311	31.0703	29.3670

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

	Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 ¹	Average hourly wage** (3 years)
		1.1055	0.7825	20.5740	21.2826	21.8018	21.2258
		1.0719	0.8212	19.2323	20.2175	22.6058	20.5759
		1.8256	0.9640	25.1836	28.1619	30.4641	27.9113
		1.7459	0.9793	25.2335	24.8893	27.3618	25.9487
		1.2271	0.9793	25.0842	26.4770	29.6841	27.2126
		1.2787	0.9793	24.1711	24.7874	27.1989	25.4247
		1.1284	0.7825	20.7211	21.9407	23.2586	21.9694
		1.3700	0.9793	25.2326 24.4141	28.3210	30.3415 27.2338	28.0866
		1.6784 1.6167	0.9640 0.9793	25.7562	26.9986 27.4583	28.9408	26.2690 27.4538
		1.8136	0.9139	25.4854	26.8789	26.6664	26.3681
		1.4929	0.8489	20.5880	21.2138	22.2720	21.3810
		1.4454	0.9640	19.4032	24.7248	26.3503	23.2514
		1.1186	0.9793	18.8744	19.7509	20.9487	19.8426
		1.2480	0.9456	21.5402	23.4074	24.8864	23.2210
		1.0820	0.9793	26.8321	28.6873	34.9954	30.1769
		1.7845	0.9139	25.2788	26.6323	27.8477	26.5830
		1.1532	0.7825	19.6940	20.9654	23.3039	21.2906
		1.1325	0.9793	21.3922	24.9821	24.4275	23.6022
		1.1529	0.9793	24.0022	23.8292	26.7464	24.8445
110049		***	*	19.8706	*	*	19.8706
110050		1.1084	0.8955	25.6020	26.1320	27.5985	26.4636
110051		1.1406	0.7825	19.0995	19.4276	20.1756	19.6094
110054		1.3977	0.9793	22.2250	25.7085	28.9254	25.6688
110056		0.9186	*	23.0080	*	*	23.0080
110059		1.1330	0.7825	18.7097	20.5565	23.2138	20.6555
		***	*	20.3760	*	*	20.3760
		1.4831	0.8530	23.8739	24.2739	24.1219	24.0962
		1.2904	0.9443	22.3006	24.1669	26.2085	24.2858
		1.0425	0.7825	13.3731	18.0224	21.3963	17.3306
		1.0765	0.7825	16.3610	18.6336	18.5753	17.7815
		1.5359	0.9456	27.5836	27.1207	27.9190	27.5465
		1.2854	0.9023	20.9973	22.0935	23.7585	22.3216
		1.4229	0.9793	25.2424	26.3506	28.7871	26.8106
		2.0301	0.9793	27.8627	29.5779	29.9625	29.1837
		1.4423	0.9793	24.5255	23.1024	26.8412	24.7843
		1.2828 1.9031	0.9793 0.9793	21.5482 28.9731	22.3213 29.8366	18.4714 30.8320	20.7691 29.9122
		1.9213	0.9793	26.2604	27.8245	30.4287	28.2139
		1.2855	0.7825	20.8557	21.1509	21.6898	21.2396
		1.4602	0.7623	26.2872	28.0471	28.1633	27.5194
		1.1177	0.7825	21.2013	21.9509	23.9026	22.3784
		1.2769	0.9793	26.3857	26.5523	29.5337	27.6143
		1.0499	0.7825	18.7397	18.5527	20.8911	19.3785
110095		1.4359	0.8632	21.8709	23.4846	26.3075	23.9099
110096		0.9724	*	19.4498	*	*	19.4498
110100		0.9648	0.7825	16.5833	16.5600	16.2575	16.4514
		1.0859	0.7825	14.4630	16.4270	19.4256	16.6428
110104		1.0425	0.7825	19.5575	18.7951	20.3777	19.5859
110105		1.2943	0.7825	20.6270	21.1077	23.1405	21.6320
110107		1.9344	0.9798	26.0763	26.2526	28.9352	27.1700
		0.9988	0.7825	20.4726	21.4280	23.0376	21.7482
		1.1905	0.9640	20.5577	29.2190	25.1270	24.4796
		0.9195	0.7825	21.0612	24.2463	22.7672	22.5600
		1.0313	0.9640	16.7641	19.1753	21.3417	19.1306
		1.7085	0.9793	29.8699	32.0197	31.5074	31.1529
		1.0256	0.7825	21.2534	21.6637	26.2336	23.1172
		1.5462	0.8802	22.0210	23.7589 22.7058	25.1934	23.6859
		1.0268	0.8253	20.9334		22.9212	22.1901
		1.3198	0.9443	22.1458	22.4238	23.7834	22.7748
		1.2475	0.9023	23.2576	24.4596	25.7839	24.5520
		1.5065 0.9196	0.8530 0.7825	22.4202 17.6529	23.3631 18.7549	25.9625 19.1284	23.9322 18.5478
		1.0220	0.7825	18.9927	19.2307	20.2502	19.4901
		1.2396	0.7825	20.0057	20.4411	22.5346	21.1020
11()125			U.1020			LL.JJ40	Z 1. 10ZU

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 1	Average hourly wage** (3 years)
110142	0.9619	0.7825	17.3328	18.1980	21.3935	19.0415
110143	1.3859	0.9793	25.4932	27.7055	28.6583	27.3468
110146	1.0797	0.8630	19.9221	23.9067	27.0987	23.5994
110149	***	*	24.7686	27.1477	28.4040	26.9572
110150	1.2473	0.9793	23.8157	22.6624	25.3742	23.8995
110153	1.1488	0.9443	22.8660	24.5368	25.7467	24.4337 29.1179
110161	1.4855 1.3814	0.9793	27.4435 25.5461	29.3201 26.0764	30.4885	
110163 110164	1.5878	0.9056 0.9798	26.4450	27.0600	28.2169 28.8946	26.5897 27.4989
110165	1.3710	0.9793	24.3897	26.8378	27.0977	26.1136
110166	***	*	25.2264	26.8070	*	26.0253
110168	1.8671	0.9793	24.6321	27.0022	28.5700	26.7717
110172	1.2061	0.9793	27.0240	29.1703	31.1234	29.1343
110177	1.7152	0.9640	25.0129	26.7504	28.8356	26.9030
110179	***	*	26.1173	26.0759	*	26.0961
110183	1.2171	0.9793	27.6020	29.6133	28.6209	28.6681
110184	1.1745	0.9793	25.5420	26.5240	28.3545	26.9173
110186	1.3395	0.8530	23.2348	25.0299	27.4925	25.2601
110187	1.2422	0.9793	22.5730	24.2933	25.2139	24.1099
110189	1.0972	0.9793	23.9404	26.7653	26.1418	25.6509
110190	1.0640	0.8007	19.1054	14.2517	23.3204	18.4486
110102	1.2821 1.3475	0.9793	25.8409 25.7406	26.8277 26.7852	27.7760	26.8257
110192 110193	1.3473	0.9793	27.8223	27.3341	28.8267 27.9161	27.1606 27.6860
110194	0.9307	0.7825	16.3148	18.4776	19.1919	18.0639
110198	1.3364	0.7623	30.8014	31.7748	31.0557	31.2165
110200	1.8336	0.8530	21.2177	22.3249	24.9236	22.7176
110201	1.4301	0.9798	27.0388	28.2232	31.0841	28.8164
110203	0.9786	0.9793	25.8951	26.8768	29.7888	27.5748
110205	1.1484	0.9793	20.6150	19.7409	22.0207	20.8493
110209	0.5449	0.7825	19.1000	19.0450	21.1534	19.8407
110212	1.0916	0.8632	20.9365	40.5120	*	32.6453
110214	***	*	*	*	37.1448	37.1448
110215	1.2879	0.9793	23.9657	25.7886	27.5566	25.8696
110218		*	26.1073	*	*	26.1073
110219	1.3686	0.9793	27.1880	27.0362	28.8814	27.7093
110220 110221	***	*	*	*	37.5739 28.0500	37.5739 28.0500
110222	***	*	*	*	35.6189	35.6189
110224	1.2679	0.9798	*	*	*	*
110225	1.1580	0.9793	*	*	*	*
110226	1.1751	0.9793	*	*	*	*
120001	1.7470	1.0911	31.7108	34.7715	34.1385	33.5501
120002	1.1929	1.0627	26.9900	29.9913	32.3784	29.9272
120004	1.2404	1.0911	28.3569	28.6527	30.0668	28.9863
120005	1.2997	1.0627	26.9053	29.3405	31.1985	29.0894
120006	1.2452	1.0911	29.6751	31.2285	31.6786	30.8697
120007	1.6780	1.0911	28.7964	30.4247	30.2473	29.8341
120010	1.8793	1.0911	27.1265	30.1659	29.5714	28.8285
120011	1.4124 1.2894	1.0911	31.7447	34.1643	37.1792	34.4536
120014 120016	1.2094 ***	1.0627	28.0786 52.1034	28.6416 19.6034	30.3463	29.0519 31.3542
120019	1.1559	1.0627	28.9661	30.3809	30.4257	29.9613
120022	1.8325	1.0911	24.7875	26.6100	29.9527	27.0886
120024	0.8986	*	*	*	*	*
120025	***	*	48.7148	30.2358	*	39.4887
120026	1.3757	1.0911	28.5048	30.3293	32.4566	30.5540
120027	1.3069	1.0911	26.4630	28.6717	28.7905	27.9738
120028	1.3517	1.0911	31.3195	30.3794	32.4847	31.4126
120029	2.0189	1.0911	*	*	*	*
130002	1.4008	0.9313	21.6626	23.6078	24.7871	23.4445
130003	1.3799	0.9978	25.4904	27.6345	28.6158	27.2882
130005	***	*	25.2550	25.7523	*	25.4954
130006	1.7910	0.9445	24.3982	25.3221	27.2158	25.7084
130007 130011	1.7747	0.9445	24.8764	24.9562	28.7246	26.1776
130011	1.1958		22.9336			22.9336

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 ¹	Average hourly wage** (3 years)
130013	1.3191	0.9445	26.3118	27.9209	30.9609	28.4102
130014	1.2907	0.9445	23.4789	24.3884	27.2543	25.0229
130018		0.9204	23.9798	26.4125	27.3439	25.9628
130021		*	18.9400	16.1658	*	17.6183
130024		0.8843	21.7853	23.3347	23.6212	22.9207
130025		0.8568	19.7066	20.1452	21.1998	20.3710
130026		0.0004	25.4020	06 2442	27.2195	25.4020 26.4364
130028 130036		0.9204	25.2938 16.7907	26.3443	27.2195	26.4364 16.7907
130049		1.0244	24.5841	26.9749	27.3597	26.3413
130060		*	26.7516	20.07 40	*	26.7516
130062		0.9127	16.7951	20.6642	25.6467	20.2308
130063		0.9445	20.9502	22.5904	26.0955	23.1804
130065	1.8549	0.9127	*	*	21.9792	21.9792
130066	2.0224	0.9576	*	*	*	*
130067		0.9127	*	*	*	*
140001		0.8358	21.4779	22.3170	22.3001	22.0343
140002		0.8998	24.4908	24.6954	27.0165	25.3917
140003		4 0070	22.6230	00.0400	00.7070	22.6230
140007		1.0670	26.7943	28.3482	30.7378	28.6514 28.3071
140008 140010		1.0670 1.0670	27.2211 31.5774	28.5297 35.1024	29.1767 31.8806	32.8561
140010		0.8358	20.6338	22.4091	23.8575	22.3078
140012		1.0564	24.3675	28.6564	29.0336	27.3314
140013		0.9126	22.6022	23.3065	23.9269	23.2600
140015		0.8889	22.2266	23.0600	24.4687	23.2637
140016	1.0262	*	17.1372	18.1242	*	17.6389
140018		1.0670	27.3334	27.7548	26.3533	27.1487
140019		0.8358	18.4554	18.9228	21.3438	19.5637
140024		*	16.9672	17.5249	*	17.2349
140026		0.8704	21.6847	23.0470	25.9669	23.5256
140027 140029		1.0670	22.6208 27.7304	28.6565	30.2688	22.6208 28.9563
140030		1.0670	28.7623	29.7771	30.2776	29.6264
140032		0.8889	22.8157	24.0574	26.7310	24.5432
140033		1.0798	26.1553	25.6068	27.9993	26.5352
140034		0.8889	22.1003	23.0034	24.0470	23.0607
140040	1.1746	0.8966	20.0269	22.2969	23.2293	21.7520
140043		0.9828	26.0330	26.7996	27.3470	26.7278
140045		*	21.0042	20.6548	*	20.8316
140046		0.8889	22.5022	23.2127	24.7334	23.5891
140048		1.0670	27.0874	28.2222	29.3877	28.2118
140049 140051		1.0670 1.0670	26.6533 27.9935	27.4009 27.7901	29.0976 30.9696	27.7293 28.9022
140052		0.8998	22.2588	23.5662	25.9617	23.9400
140053		0.8951	23.5477	24.8455	27.4518	25.2478
140054		1.0670	31.7265	31.8564	33.1406	32.2116
140058	1.2184	0.8889	22.1269	22.8423	24.6058	23.1976
140059	1.1145	0.8998	22.7121	22.4651	22.6743	22.6149
140061		*	30.9925	20.8063	*	25.9797
140062		1.0670	31.2359	34.7704	34.1230	33.3538
140063		1.0670	26.5584	27.8306	28.6559	27.7359
140064		0.8966	21.7470	22.0407	23.8639	22.5902
140065 140066		1.0670 0.8998	26.1904 20.4353	29.4678 21.9771	30.1856 22.1524	28.6478 21.5121
140067		0.8996	23.5906	25.3986	28.3506	25.8096
140068		1.0670	25.8963	27.3956	28.3938	27.2467
140075		1.0670	26.9257	27.9325	26.2626	27.0784
140077		0.8998	19.0922	19.1363	20.3999	19.5250
140079		*	29.3040	*	*	29.3040
140080		1.0670	26.0109	23.2575	28.8791	25.8555
140082		1.0670	26.8077	25.6645	28.3429	26.9404
140083		1.0670	24.6491	26.2972	26.8919	25.9773
140084		1.0798	27.6819	29.2515	30.5036	29.1891
140088		1.0670	31.0364	32.4978	30.5450	31.3321
140089	1.1873	0.8358	22.1227	23.3401	24.1066	23.1482

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 ¹	Average hourly wage** (3 years)
140091	1.8211	0.9582	26.1075	26.8518	27.8536	26.9704
140093	1.1799	0.9554	22.1540	25.3127	28.3299	24.9634
140094	1.0394	1.0670	25.3678	27.9273	27.3841	26.9242
140095	1.2495	1.0670	29.9746	27.6799	28.7617	28.8255
140100	1.2994	1.0798	32.8743	37.0819	41.3374	37.5441
140101	1.1667	1.0670	25.4784	28.5365	29.4081	27.9410
	1.1007	1.0670	21.2278	20.0000	29.4061	21.2278
140102 140103	1.1933	1 0670		22 2250	23.6406	22.9147
		1.0670	21.7512	23.3258		
140105	1.2772	1.0670	26.3054	27.4531	29.5274	27.7174
140109	1.0886	1.0564	17.8103	19.5675	00.6064	18.6923
140110	1.0875	1.0564	25.6561	27.9844	28.6364	27.4425
140113	1.5713	0.9582	23.5337	26.7969	29.5452	26.4452
140114	1.4152	1.0670	25.7968	28.3014	28.2151	27.4930
140115	1.0859	1.0670	26.3677	25.1498	26.0383	25.8616
140116	1.2914	1.0670	30.5166	31.9902	34.5537	32.4348
140117	1.5368	1.0670	25.6314	26.8802	27.7201	26.7483
140118	1.6169	1.0670	27.7392	29.7570	32.5518	29.9912
140119	1.7689	1.0670	33.6302	36.1419	34.2118	34.6281
140120	1.2168	0.9126	22.5795	22.7375	23.9724	23.1437
140122	1.4292	1.0670	26.4991	28.4188	30.5653	28.4691
140124	1.3358	1.0670	35.2798	36.1327	35.7563	35.7220
140125	1.1965	0.8998	20.7189	20.4014	22.7571	21.2893
140127	1.6235	0.9140	22.8172	24.1658	25.6668	24.2120
140130	1.2441	1.0798	26.3518	29.5247	32.6210	29.6539
140133	1.2976	1.0670	26.1599	28.0339	31.0269	28.2512
140135	1.4700	0.8358	21.2104	22.3264	23.3196	22.3265
140137	1.0247	0.8998	20.5053	21.4700	23.4173	21.8843
140140	***	*	21.4710	*	* .	21.4710
140141	1.0468	*	23.0515	21.7871	*	22.4305
140143	1.2220	0.8966	23.8255	26.2954	27.4498	25.8938
140144	***	*	27.8046	*	*	27.8046
140145	1.0887	0.8998	21.6168	23.4608	26.0875	23.7613
140147	1.0976	0.8358	19.5896	19.8541	21.0686	20.1703
140148	1.7291	0.8951	23.0022	24.7031	25.5677	24.3492
140150	1.6333	1.0670	33.9013	35.2711	52.0970	40.8033
140151	0.8184	1.0670	22.4842	23.4879	27.0312	24.3445
140152	1.0939	1.0670	29.6882	27.6086	30.2209	29.1503
140155	1.2892	1.0564	27.6610	28.9724	29.5734	28.7857
140158	1.4147	1.0670	23.8542	27.0986	27.3722	25.9304
140160	1.2535	0.9828	22.7002	24.5373	25.8684	24.4086
140161	1.1453	1.0564	24.1071	23.1647	25.2898	24.1984
140162	1.6053	0.9140	26.0312	27.4472	29.4121	27.6488
140164	1.7878	0.8889	22.0424	23.7457	24.6009	23.4644
140165	1.0582		15.9312	16.6304		16.2816
140166	1.1850	0.8358	21.7776	23.1005	26.4800	23.8158
140167	1.1217	0.8358	19.7610	22.8911	22.8703	21.8280
140168		*	20.0225	_ *		20.0225
140170	0.9592	4 0070	17.1608			17.1608
140172	1.4070	1.0670	27.1121	29.8568	32.1220	30.0105
140174	1.4703	1.0670	24.7011	27.8131	30.5905	27.6886
140176	1.2002	1.0670	28.9378	31.3490	32.9794	31.1817
140177	0.9911	1.0670	19.3328	22.5610	26.4340	23.0166
140179	1.3023	1.0670	26.3200	27.6376	29.3657	27.7872
140180	1.2039	1.0670	27.4366	28.3629	27.8887	27.8969
140181	1.1966	1.0670	23.6034	25.0100	25.0226	24.5453
140182	1.5610	1.0670	28.0337	28.2211	30.1755	28.6376
140184	1.2352	0.8358	20.1279	21.1802	25.2327	22.4037
140185	1.4516	0.8998	22.0222	23.8531	25.2423	23.7296
140186	1.5500	1.0564	28.1977	30.6951	29.8022	29.6224
140187	1.5300	0.8998	22.0674	23.2892	24.8332	23.4161
140189	1.1765	0.9096	25.6954	23.7198	22.5965	24.0163
140190	1.0748	*	18.8530	19.8297	*	19.3398
140191	1.2979	1.0670	25.2817	25.8678	28.5836	26.6009
140193	***	*	22.9443	*	*	22.9443
140197	1.3210	1.0670	21.8060	23.0684	24.0463	22.8812
140199	1.0471	*	21.3464	22.0315	· *	21.6914

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

	Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 ¹	Average hourly wage** (3 years)
140200		1.4725	1.0670	24.9217	26.3379	28.8435	26.6579
		1.5687	1.0798	27.4336	29.7870	32.7915	30.2241
		***	*	28.2212	*	*	28.2212
		1.7125	1.0211	*	*	*	*
		1.0864	1.0670	27.5481	30.6561	29.7953	29.3812
		1.2426	1.0670	25.7331	24.1048	26.0535	25.2825
140208		1.6504	1.0670	27.6586	29.4708	29.5380	28.9138
140209		1.5769	0.9126	23.3886	24.5376	26.3230	24.7727
140210		1.1302	0.8358	16.6729	19.2639	20.6954	18.8291
		1.2952	1.0670	29.5114	29.7054	30.3286	29.8828
		1.2114	1.0670	29.1649	30.2945	31.6926	30.3982
		***	*	22.3097	*	*	22.3097
		1.4960	1.0670	29.3711	31.5324	32.1277	30.9714
		1.4778	1.0670	29.2540	30.4923	31.7267	30.4940
		1.3623	1.0670	29.0350	28.2177	29.6181	28.9621
		1.5659 1.4835	1.0048 1.0670	25.0074 28.3545	25.6419 30.6410	27.9456 30.0236	26.1931 29.7211
		1.6157	1.0564	27.3379	28.6305	29.7093	28.6138
		1.0927	0.8966	23.2604	23.6928	24.5476	23.8450
		1.5446	1.0048	24.2112	29.0092	31.1879	28.1166
		1.4016	1.0670	27.2654	28.7310	31.5637	29.1193
		1.4813	1.0670	30.4005	32.0522	34.6120	32.4400
140245		***	*	16.0772	*	*	16.0772
140250		1.1848	1.0670	27.4628	28.5971	29.6305	28.5866
140251		1.3410	1.0670	26.7266	27.1687	28.0622	27.3178
140252		1.3921	1.0670	30.2656	33.3351	34.4268	32.7497
140258		1.5354	1.0670	27.9478	30.2639	34.2333	30.9152
		0.8890	*	18.8535	*	*	18.8535
		1.3319	0.8836	25.2824	26.1473	27.8186	26.4002
		1.8198	1.0670	27.5936	29.8325	31.6359	29.7289
		1.4341 1.6800	0.8836 1.0670	21.9302 29.2602	23.4447 30.4838	24.9401 33.3903	23.3818 31.0381
		1.0000	1.0070	17.7824	20.7576	*	19.1679
		1.1244	1.0670	28.4378	29.1543	30.3237	29.3213
		1.5563	1.0670	26.9581	29.3988	31.5197	29.3022
		1.3118	0.8998	22.3274	22.6211	23.8452	22.9498
140290		1.3524	1.0670	28.6926	31.7341	31.8135	30.8270
140291		1.5010	1.0564	28.2338	29.8958	31.9052	30.1168
		1.1576	1.0670	26.1781	27.6285	28.5094	27.4893
		1.1608	0.8358	22.6123	23.4504	24.0750	23.3919
		1.1256	1.0670	33.3983	34.8568	35.1494	34.4550
		1.2606	1.0670	*	31.7073	49.9507	37.2543
		1.8630	1.0670	07 1001	29.6844	29.6470	29.6470 28.5842
		1.1113 1.4352	0.9769 1.0564	27.1021 23.3804	25.0063	28.9076 26.6222	24.9683
		1.6225	0.8777	23.3196	25.3458	26.7586	25.1237
		1.4916	1.0564	24.8884	26.8458	28.7336	26.8380
		1.1814	0.9769	25.4443	27.2369	29.5371	27.5141
150006		1.3516	0.9721	24.8976	26.4061	25.6265	25.6444
150007		1.3519	0.9657	23.5841	26.6073	29.4971	26.6826
150008		1.4462	1.0564	23.6953	26.6928	27.5703	26.0637
150009		1.3856	0.9155	20.4993	22.2147	25.4496	22.7673
		1.4095	0.9657	23.9740	26.8524	27.2272	25.9937
		1.1796	0.9619	23.2249	24.3490	25.3178	24.3148
		1.5616	0.9914	22.9314	27.3029	30.0348	26.5266
		1.0068	*	19.7689	21.8465	*	20.8053
		1.3194	1.0564	26.5785 24.3015	26.2434	28.0931	26.5785 26.2255
		1.7796	0.9283	23.7180	25.2342	26.3973	25.1400
		1.6551	0.9376	24.7048	26.3289	27.3689	26.1456
		1.7596	0.9283	27.8168	29.6967	28.9196	28.8209
		1.1126	0.8813	22.8035	22.6773	23.1041	22.8651
		1.5344	0.8806	23.1253	23.7159	26.9095	24.3494
150024		1.4036	0.9769	24.7879	27.1589	28.1656	26.7187
		1.2898	0.9376	23.7185	28.1127	28.6517	26.9683
150027		1.0217	*	21.2855	17.4862	*	19.1736

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 ¹	Average hourly wage** (3 years)
150029	1.3955	0.9914	23.4103	26.9680	28.7187	26.0327
150030	1.1543	0.9619	24.4361	26.9533	29.1493	26.8916
150033	1.6423	0.9769	25.8851	27.9995	28.6838	27.5306
150034	1.5435	1.0564	23.9388	26.0465	28.6429	26.3135
150035	1.5470	0.9480	26.0952	26.6620	26.9700	26.5906
150037	1.3021	0.9769	27.7009	28.5451	31.0935	29.1215
150038	1.1294	0.9769	24.4188	28.8054	29.3156	27.5259
150042	1.4437	0.8564 0.9155	21.9917 23.1200	23.0102	22.8786	22.6362
150044	1.3829 1.0469	0.9699	24.2899	23.7065 25.2225	25.2137 26.9818	24.0706 25.5105
150046	1.4064	0.8806	21.0417	21.9369	24.5593	22.5538
150047	1.7515	0.9283	24.5455	25.8349	25.5194	25.3061
150048	1.3731	0.9522	24.5864	27.1817	27.1233	26.2805
150049	1.2079	*	20.2178	22.3370	*	21.2543
150051	1.5936	0.9619	22.6866	23.7061	26.5655	24.3118
150052	1.0624	*	19.6073	20.6339	*	20.1223
150056	1.9001	0.9769	27.6754	28.2842	28.8727	28.2800
150057	2.0303	0.9769	22.7804	24.8605	28.9529	25.4129
150058	1.5500	0.9914	26.9753	27.5341	29.1445	27.9361
150059	1.5327	0.9769	27.0792	28.5715	31.4987	29.0629
150060	1.0850	0.0564	23.2409	24.8544	01.0711	24.0586
150061 150062	1.1346 1.0875	0.8564	21.3640 23.5550	22.2822 24.6088	21.3711	21.6717 24.0884
150063	1.0075	*	19.0377	24.0000	*	19.0377
150064	1.2094	0.8564	21.6370	23.7707	25.4987	23.6332
150065	1.2357	0.9619	24.4451	25.9461	27.9283	26.1247
150069	1.2455	0.9522	25.3445	25.2655	26.2028	25.6133
150070	***	*	22.6260	*	*	22.6260
150072	1.1543	0.8564	20.3191	20.5111	21.2120	20.6926
150074	1.4535	0.9769	24.4374	25.2586	25.9321	25.2121
150075	1.0892	0.9283	24.2085	24.0745	25.1568	24.4755
150076	1.2756	0.9721	24.1434	28.1874	29.3249	27.1556
150078	1.0091	*	21.2476	01 4007		21.2476
150079	1.1106 1.7142	0.8898	20.6486	21.4067	28.3494	21.0466 25.3487
150082 150084	1.7587	0.8696	22.2054 28.7722	25.5860 29.3905	31.1720	29.7450
150086	1.1986	0.9522	22.4471	23.9404	25.1992	23.9069
150088	1.2537	0.9619	23.0998	23.6253	27.2103	24.6426
150089	1.5788	0.8564	22.6545	25.0449	24.7233	24.0903
150090	1.5435	1.0564	24.6758	26.2899	30.4835	27.1134
150091 h	1.1169	0.9856	27.8087	30.6209	30.4235	29.7411
150096	0.9101	*	21.9091	*	*	21.9091
150097	1.1189	0.9769	24.4179	25.0367	27.7468	25.7862
150100	1.7129	0.8898	22.2687	24.3530	25.7997	24.0897
150101 150102	1.0796 1.0335	0.9283 0.9397	27.9745 22.6870	29.1657 24.5923	29.0300	28.7724 24.3784
150104	1.0333	0.9397	21.8172	25.5871	25.7424 28.2552	25.1795
150106	1.0601	0.9709 *	20.9955	20.9387	*	20.9659
150109	1.4360	0.8777	24.3786	23.5865	25.3367	24.4270
150112	1.4112	0.9619	24.7455	26.5643	28.0068	26.4823
150113	1.2571	0.9619	23.0450	24.8760	24.7960	24.2644
150115	1.4456	0.8564	20.5215	19.3411	22.0747	20.5908
150122	1.1591	0.9619	24.2471	26.0173	*	25.1559
150123	***	*	15.3050	*	*	15.3050
150124	1.1006	*	18.8218	21.3933	*	20.1237
150125	1.4955	1.0564	24.3872	26.7666	27.6535	26.2866
150126	1.4314	1.0564	25.5585	26.9887	28.9454	27.2077
150128 150129	1.4221 1.1677	0.9769 0.9769	23.1660 35.4311	26.4976 29.9099	28.7810 29.7398	26.1051 31.3352
150130	1.0936	*	21.5678	21.7399	23.1330 *	21.6494
150132	***	*	24.2559	25.6257	27.6560	25.8491
150133	1.2284	0.9283	21.8839	22.7293	25.1322	23.2323
150134	1.0654	0.9155	22.1085	23.8526	26.3248	24.0103
150136	***	*	25.7004	26.2703	*	25.9880
150146	1.0527	0.9283	26.1168	29.3383	29.5256	28.3979
150147	1.2949	1.0564	32.3336	22.8456	27.2339	26.5823

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

150148	27.2081		FY 2007 ¹	wage** (3 years)
150149 0.9789 0.8898		*	*	27.2081
150150	23.8554	23.6361	23.7026	23.7280
150150	26.5138	25.5331	27.0542	26.3875
150151	*	38.1446 44.7143	*	38.1446 44.7143
150152	*	44.7143	32.1022	32.1022
150154	*	*	29.8514	29.8514
150155	*	*	45.0125	45.0125
150156	*	*	25.9681	25.9681
150157 1.5340 0.9769	*	*	*	*
150158 1.1765 0.9769	*	*	*	*
150159 0.9340 0.8564	*	*	*	*
150160		^ 0E 1000	04 5100	04 4001
160001	23.8657 19.0037	25.1220	24.5108	24.4801 19.0037
160005	21.1745	21.8950	23.1034	22.0673
160008	19.8066	20.7200	22.1402	20.8765
160013	23.0163	23.7163	24.0956	23.5930
160014 0.9603 *	19.2447	20.5882	*	19.9190
160016 1.5514 0.9009	21.2785	23.3619	24.5338	23.0645
160020 1.1036 *	19.0043	19.5554	*	19.2901
160024 1.6000 0.9170	24.2385	26.2392	27.4158	25.9688
160026 1.0127 *	24.2045	24.7424	*	24.4805
160028	26.0052	26.2948	27.8535	26.8171
160029 1.6096 0.9598 160030 1.4171 0.9745	24.9493 24.9920	27.9277 26.7068	28.7324 28.7786	27.2104 26.8184
160031 0.9885 *	18.5281	19.7368	*	19.1263
160032 1.0670 0.8981	22.3837	23.4727	25.4662	23.8323
160033 1.7526 0.8836	23.4148	24.6768	26.5315	24.9144
160034 0.9761 *	19.4837	19.3503	*	19.4156
160039 0.9847 *	20.9623	22.1180	*	21.5414
160040 1.2762 0.8709	21.8187	23.9053	25.9032	23.9141
160044	19.5635	oc 4450	*	19.5635
160045 1.7219 0.8756 160047 1.4020 0.9399	24.4957 24.5000	25.4153 25.2072	26.6463 26.0227	25.5518 25.2497
160047 1.4020 0.9599	19.5701	19.5832	20.0227	19.5767
160050	23.8830	24.5403	*	24.2221
160057 1.2427 0.9454	22.0472	23.0937	25.1272	23.4614
160058 1.9602 0.9598	25.5244	27.1646	28.4167	27.0670
160064 1.5239 0.9491	27.6301	28.6139	28.7669	28.4068
160066 1.0583 *	21.4631	22.7709	*	22.1300
160067 1.3113 0.8709	21.9418	23.4060	24.8137	23.5158
160069	22.7514 20.2418	25.3402	27.4473	25.2028 20.2418
160074	20.9749	*	*	20.9749
160079	22.5299	23.7234	24.7372	23.6850
160080 1.3034 0.8836	23.5721	23.1837	25.8252	24.2266
160081 1.1639 *	21.3614	23.1930	*	22.2788
160082 1.8118 0.9170	23.8181	26.4398	27.4718	25.8854
160083 1.6842 0.9170	25.0617	28.2193	27.3004	26.8898
160089 1.2916 0.9009	21.5693	22.6551	23.2149	22.4971
160090	21.2753 18.0630	17.9862	*	21.2753 18.0240
160091	22.0841	17.9002	*	22.0841
160101	24.2309	25.1000	25.0503	24.7943
160104	24.0075	24.9134	28.1891	25.7176
160106	21.4912	*	*	21.4912
160107*	21.3754	*	*	21.3754
160110 1.5216 0.8709	24.1762	24.9434	26.6633	25.2722
160112	21.8901	23.0672	24.7957	23.3023
160113	18.6599	*	*	18.6599
160115	19.5764 22.2019	*	· *	19.5764 22.2019
160116	22.2019	25.0278	25.4659	24.6501
160118	18.3322	19.7764	25.4659	19.0436
160122	22.9565	22.5872	23.9177	23.1647

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 1	Average hourly wage** (3 years)
160124	1.1569	0.8709	22.7223	23.1690	22.5482	22.8123
160126	1.0168	*	20.3748	19.8323	*	20.1046
160140	1.0468	*	22.5230	*	*	22.5230
160146	1.4552	0.9062	20.9583	22.9897	22.6949	22.1903 27.3539
160147 160153	1.3425 1.6240	0.9009 0.9062	26.6577 26.3671	26.6438 28.9881	28.6303 29.9378	28.4563
160154	0.8245	0.500 <u>2</u>	20.0071	20.5001	25.5576	20.4300
170001	1.2230	0.8018	20.9837	21.9131	23.1260	21.9964
170006	1.2544	0.8626	20.6460	21.9019	24.2068	22.3015
170009	1.0730	0.9345	29.1979	29.2588	30.9025	29.7689
170010	1.2042	0.8310	21.2131	24.0008	23.9707	23.0819
170012 170013	1.6403 1.5197	0.8776 0.8776	22.6869 23.1159	24.7392 25.0419	26.1367 25.2476	24.4947 24.4806
170014	1.0370	0.9345	22.9772	23.5960	23.8135	23.4738
170015	1.0219	*	19.1902	20.2367	*	19.7243
170016	1.6343	0.8763	24.2336	25.9482	25.8061	25.3473
170017	1.1055	0.9016	23.3030	24.7771	26.9657	25.0890
170018	0.9384	*	17.9497	*	*	17.9497
170019	1.1578 1.5647		20.3243 22.2571	22.0251	23.2757	21.1885 22.9031
170020 170022	1.1216	0.8776	22.2371	23.1800 22.2878	23.2757	22.6058
170023	1.4424	0.8776	23.2690	23.9808	24.0561	23.7670
170027	1.4371	0.8018	21.4678	22.5103	23.1766	22.3745
170033	1.3350	0.8776	20.0801	20.7865	21.9709	20.9382
170039	0.9529	0.9016	20.1983	21.5203	26.9852	22.6024
170040	1.9231	0.9345	27.1771	28.2856	28.4458	27.9951
170049 170052	1.4626 1.2007	0.9345	24.1208 17.3794	24.7895 18.5291	25.2070	24.7282 17.9769
170054	***	*	17.5500	*	*	17.5500
170058	1.0573	0.9345	22.0398	23.3398	22.9209	22.7663
170068	1.2227	0.9248	20.8771	22.6087	23.0635	22.2050
170070	0.9776	*	16.4767	16.0162	*	16.2556
170074	1.2346	0.8018	20.4936	21.0565	23.7829	21.8361
170075 170085	0.8407 0.9089	0.8018	16.2047 18.4867	16.5444	19.7760	17.4870 18.4867
170086	1.5628	0.8763	22.7737	24.0812	26.1362	24.3755
170090	***	*	15.9807	*	*	15.9807
170093	0.8364	*	16.8710	16.5553	*	16.7116
170094	0.9776	0.8018	20.3678	21.3887	21.5295	21.2055
170097	*** 0.0001	*	20.3391	20 1040	*	20.3391
170098 170103	0.9881 1.2325	0.9016	20.0078 21.4985	20.1242 22.8707	23.8042	20.0657 22.7657
170104	1.5046	0.9345	26.1866	26.9671	26.2990	26.4895
170105	1.0170	0.8018	19.6687	21.4422	21.9606	21.0348
170109	1.0424	0.9345	22.7166	23.2626	23.1089	23.0341
170110	0.9595	0.8018	21.8904	22.9195	23.3260	22.7144
170114 170116	0.8803	*	18.1610	18.9158	*	18.5532
170120	1.3342	0.8626	23.1127 19.8723	21.0499	22.0253	23.1127 20.9846
170122	1.6347	0.9016	24.6532	25.3981	26.6605	25.5592
170123	1.6504	0.9016	26.4676	27.2239	27.6653	27.0980
170133	1.0473	0.9345	21.7748	22.9309	23.1226	22.6168
170137	1.2362	0.8018	22.7676	23.8863	24.7096	23.8060
170142	1.3490	0.8639	22.4095	22.5778	23.9527	23.0055
170143 170144	1.1942	*	19.7643 24.4259	20.4459	*	20.1017 24.5144
170145	1.0743	0.8018	21.4472	24.6260 21.5756	23.2162	22.0629
170146	1.4609	0.9345	28.1965	29.1358	29.8858	29.0716
170147	2.0068	0.9016	23.1610	21.4753	22.4974	22.3452
170150	1.1855	0.8018	17.4916	18.5744	20.9448	19.0505
170166	1.0178	0.8018	18.5978	19.2842	21.0762	19.6365
170175 170176	1.3744 1.4949	0.8776 0.9345	23.6262 24.2283	23.9304 26.2366	25.6281 27.2332	24.4016 25.8724
170178	1.4949	0.3345 *	*	25.1366	32.5016	27.5336
170182	1.4645	0.9345	24.3820	25.7443	27.3503	25.8409
170183	1.9822	0.9016	22.8633	24.5539	25.8340	24.4112

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

	Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 1	Average hourly wage** (3 years)
		1.3211	0.9345	24.8478	26.7797	27.8139	26.6943
		2.6912	0.9016	30.5157	31.7896	32.8392	31.7827
		1.4503	0.8018	21.0780	23.3702	22.8493	22.4498
		2.0361 1.0363	0.9345 0.8639	27.2225 22.4865	29.9751 22.8729	30.6844 22.9540	29.3821 22.7638
		1.6075	0.8018	24.9599	21.3069	22.1197	22.8235
		2.0024	0.9016	*	27.9704	26.2724	27.0528
		1.6307	0.8776	*	24.7430	20.6821	22.6027
170194		1.3761	0.9345	*	27.9904	29.9014	29.1704
		2.0115	0.9345	*	*	30.1001	30.1001
		2.2556	0.9016	04.7047	05 4047	07.0017	^ ^ ^
		1.2877	0.9522	24.7647	25.4217	27.6917	25.9876
		1.0773 1.0803	0.7805 0.7805	21.6843 19.0834	22.9727 19.5437	25.7862 22.0798	23.5332 20.2498
		1.0872	0.8681	22.8871	24.5561	24.9779	24.1687
		0.8758	*	15.7136	14.8011	*	15.2405
180007		1.4567	0.8965	21.8724	22.7606	25.7042	23.4417
		1.6459	0.8828	24.0971	25.3837	26.4101	25.3074
		1.9202	0.8965	26.4116	24.7256	25.6153	25.5471
		1.3634 1.4663	0.8643 0.9155	22.3183 22.9096	22.7364 24.6642	25.5463	23.5535 24.4113
		1.4623	0.9550	22.9096	22.9512	25.6000 23.7075	22.7169
		1.3119	0.9155	22.2148	23.1832	24.8408	23.4361
		1.2736	0.8144	19.0694	20.8630	21.8885	20.6079
		1.3813	0.8643	18.3314	19.0992	20.9857	19.4553
		1.1119	0.9522	22.0379	24.1342	24.0283	23.3932
		1.0626	0.7805	22.3477	21.9494	24.6953	23.0320
		0.9566	0.7805	17.9346	18.5966	20.7950	19.1192
		1.1103 1.1078	0.9155 0.9155	23.6826 17.4781	32.1824 19.1543	31.1159 22.6897	28.8617 19.7126
		1.0667	0.9133	15.8431	18.2120	*	17.0401
		1.1918	0.8014	22.1072	23.8763	20.8303	22.1687
180028		0.9369	*	21.4766	24.7968	*	23.0070
		1.3613	0.8215	21.2110	23.0536	25.6479	23.3608
		1.6181	0.9522	26.7702	29.8438	31.0794	29.2980
		1.2003 1.2535	0.8828 0.9155	23.1636 24.4451	25.1154 25.7361	25.2972 26.3132	24.4850 25.4961
		1.4731	0.8783	22.2750	24.6348	26.0440	24.2668
		2.0443	0.9155	24.5590	26.2125	27.9979	26.3498
180041		***	*	18.5483	*	*	18.5483
		1.1644	0.7805	18.8436	19.0617	20.9326	19.5996
		1.6041	0.8681	21.6837	23.0971	24.4569	23.0785
		1.3358	0.9522	24.5856	25.8349	27.4732	25.9866
180046		1.0512 0.9201	0.8965	24.7562 20.4768	27.2244 21.8037	27.1034	26.3870 21.1276
		1.2648	0.9155	22.3601	21.6571	23.9230	22.6272
	h	1.3774	0.8965	19.4488	23.3407	22.4769	21.7967
		1.1551	0.7805	21.7150	22.6473	26.3604	23.5163
		1.2714	0.8420	19.2100	21.3312	23.5299	21.4111
		1.0067	0.7805	18.6610	19.1578	21.3044	19.7765
			*	19.0657	00.7007	*	19.0657
		1.1303 1.1053	0.8898	21.1989 21.4695	20.7237 22.8910	24.3074	20.9496 22.8882
		1.1270	*	15.9185	17.9741	24.5074	17.0063
		1.2602	0.7805	15.3819	16.2638	17.1010	16.2746
		1.1315	0.9550	24.6359	24.9543	22.2713	23.9117
		2.0437	0.8965	24.0551	25.4080	26.0238	25.1529
		1.0849	0.8681	20.8797	22.3674	26.3701	23.2754
		1.1710	0.7805	17.4266	20.1308	20.6741	19.4068
		1.1193 1.1196	0.8681 0.7805	25.4196 19.5783	26.2636 19.7791	27.6806 20.2100	26.4807 19.8774
		1.2862	0.7803	20.1651	21.7380	21.5818	21.1535
		1.1961	0.7805	17.7758	18.4331	20.8841	19.0598
		1.6309	0.9155	24.6053	27.5767	28.0916	26.7964
180092		1.1822	0.8965	22.4864	22.5679	23.7909	22.9525
.0000				19.2748	20.5422		

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 ¹	Average hourly wage** (3 years)
180095	1.0526	0.7805	17.1354	17.9677	17.9146	17.6813
180101	1.1141	0.8965	24.2242	25.4796	27.4505	25.7555
180102	1.6191	0.8014	19.1136	18.4388	21.0896	19.5180
180103	2.1786	0.8965	25.1577	26.9407	28.4583	26.8131
180104	1.6182	0.8014	22.8911	24.9441	25.6157	24.5153
180105	0.8727	0.7805	19.5364	19.7615	21.6002	20.2965
180106	0.9324	0.7805	15.7851	17.8020	20.2884	18.1134
180115	0.9398	0.7805	19.9316	20.9831	20.5539	20.4877
180117	1.2062 0.9702	0.8248	21.8698	22.7353	23.5354 22.8469	22.7278 21.5379
180117 180124	1.2974	0.7805 0.9550	20.5952 21.4270	21.1854 23.1917	24.8292	23.1576
180126	1.0694	0.9550	15.1776	20.1917	Z4.0292 *	15.1776
180127	1.2937	0.9155	21.4633	23.4765	24.6774	23.2297
180128	0.9157	0.8087	20.5575	20.8406	22.6056	21.3498
180130	1.6564	0.9155	24.8441	26.0278	27.8900	26.2745
180132	1.4773	0.8643	22.2101	23.7652	24.5105	23.5278
180134	1.0266	*	17.3449	18.6779	*	18.0324
180138	1.2251	0.9155	25.1789	27.3400	28.1901	26.9211
180139	1.0358	0.8643	21.3797	23.5363	23.3569	22.7612
180141	1.8316	0.9155	24.3140	25.3042	25.3358	25.0026
180143	1.6110	0.8965	23.9125	25.1613	28.1924	25.9094
180144	***	*	*	*	29.5053	29.5053
180147	1.6512	0.8082	*	*	*	*
180148	1.8464	0.7805	*	*	*	*
180149	0.9801	0.7805	*	*	*	*
190001	1.1108	0.8649	19.5680	19.7516	22.1394	20.6159
190002	1.6691	0.8408	21.7000	22.0056	23.3368	22.3427
190003	1.4723	0.8408	21.8156	23.4977	25.8294	23.7039
190004	1.3170	0.8185	22.1835	23.3290	25.3473	23.6439
190005	1.4546	0.8649	20.7987	22.3208	22.6029	21.9167
190006	1.3351	0.8408	19.4573	22.2467	22.7979	21.4568
190007	1.1639	0.7660	18.7854	19.7528	21.8206	20.0897
190008	1.7441	0.8185	21.4137	24.0111	24.6074	23.4003
190009 190010	1.1756 1.0742	0.7961	18.8295 19.9788	19.8404 21.6889	21.1005	19.8550 20.8295
190010	1.0616	0.8074	18.1525	19.7319	21.4052	19.7587
190013	1.4955	0.7922	19.6346	20.8626	21.4573	20.6529
190014	1.2468	0.7660	17.4740	22.4596	22.7151	20.7373
190015	1.3197	0.8649	22.1046	22.8875	23.7789	22.9635
190017 h	1.3276	0.8643	18.6962	21.5033	24.5390	21.4075
190019	1.7264	0.7961	23.0704	23.7168	24.0468	23.6134
190020	1.1659	0.8085	19.8505	21.6136	22.1967	21.1781
190025	1.1943	0.7660	20.4651	20.8950	23.5007	21.6221
190026	1.5818	0.7961	21.3386	22.5087	23.7702	22.5754
190027	1.7065	0.7922	21.2449	21.2526	24.3007	22.2353
190034	1.1159	0.7660	17.5002	19.6943	20.7334	19.3253
190036	1.7084	0.8649	23.7356	24.8152	25.4164	24.6493
190037	1.0152	0.7922	16.7629	18.6393	19.4071	18.1994
190039	1.4772	0.8649	23.3105	25.6665	24.4386	24.4904
190040	1.3321	0.8649	23.8076	26.7428	28.6297	26.2612
190041 190043	1.4753	0.8848	23.9082	24.6734	28.5376	25.5929
190044 h	0.9745 1.2786	0.8408	16.8944 19.5304	17.3477 19.5567	20.9993	17.1195 20.0144
190045	1.5975	0.8649	24.0490	25.3854	25.8238	25.0923
190046	1.4254	0.8649	22.2884	24.2128	23.8552	23.4370
190048	1.0931	*	18.6148	19.6288	*	19.1025
190049	***	*	20.1229	*	*	20.1229
190050	1.1067	0.7660	18.5287	19.1076	21.0259	19.5664
190053	1.0858	0.7660	15.7258	16.4968	17.9788	16.7792
190054	1.3101	0.7767	20.3525	20.1108	23.1471	21.2261
190059	0.8305	*	19.2396	*	*	19.2396
190060	1.4859	0.7922	22.2517	23.6278	23.7393	23.2026
190064	1.5764	0.8085	21.5514	23.3617	23.1358	22.7104
190065	1.5175	0.8085	23.0523	23.7450	22.1880	22.9778
190077	0.9229	*	18.4043	18.8409	*	18.6185
190078 h	1.0615	0.8643	21.5782	21.3786	22.2432	21.7436

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

	Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 1	Average hourly wage** (3 years)
		1.2813	0.8649	21.8158	21.2546	24.0985	22.4209
		0.8860	0.7660	14.9141	15.6146	20.0122	16.8709
		0.8253	*	19.2683	*	*	19.2683
	h	1.2378	0.8074	18.8306	19.8823	22.0610	20.2693
	h	1.0650	0.9553	22.5045	22.3480	23.8562	22.8805
		1.0009 1.0438	0.7660	16.2961 20.0745	20.2045	23.1241	16.2961 21.2141
		1.0430	0.7000	18.7302	18.0174	23.1241	18.3606
		1.6553	0.8848	23.0802	24.6353	25.6854	24.4830
		0.9915	0.8085	21.1657	20.4597	22.0610	21.2491
		1.5576	0.8408	23.4618	25.2267	27.3126	25.3096
190106		1.1755	0.7961	21.5643	21.7228	23.5376	22.2922
190109		1.1008	*	17.4842	18.6524	*	18.0560
		0.9269	*	19.0611	*	*	19.0611
		1.6347	0.8848	25.2370	24.4998	25.5729	25.0944
		1.0617	0.7660	14.6258	15.8031	17.2677	15.9330
		1.1204	0.8848	26.0272	26.6295	28.2067	26.9308
		1.2672 0.9545	0.7660 0.8848	18.6074	20.3844	22.3710 22.8809	20.4868 20.5837
		1.2834	0.8085	19.0200 19.3131	19.7025 23.7082	22.0072	21.5659
		1.5832	0.8649	23.4862	24.6675	26.0032	24.7034
		1.6555	0.8074	22.3976	23.9649	25.5463	23.9119
		1.0067	0.8085	24.7842	27.9136	28.3257	27.0431
		1.0390	*	16.6910	*	*	16.6910
		1.1780	0.8649	22.5032	25.1917	27.8465	25.2415
		0.9374	0.7898	14.3089	13.6266	18.2044	15.9159
190135		1.4966	0.8649	26.9920	26.8238	27.7540	27.1854
190140		1.0113	0.7660	17.0371	17.6936	18.9652	17.9144
190144	h	1.1488	0.9553	21.1658	21.7547	22.9181	21.9664
		0.9687	0.7660	17.3361	18.9678	19.9265	18.7714
		1.5834	0.8649	23.7721	26.1792	27.4824	25.7165
		***	*	20.8321	*	*	20.8321
		0.9361	0.7000	17.1671	18.8819		17.9835
		0.9783	0.7660	17.8741	18.6293	18.7467	18.4210
		1.3713 0.8841	0.8649	27.4708 18.3702	27.6099	28.1334	27.7337 18.3702
		1.5509	0.8649	26.2352	26.3042	26.4787	26.3387
		1.5686	0.8074	20.0025	21.6740	22.9325	21.4638
		1.0937	0.7922	17.8794	19.1022	22.6187	19.7054
		***	*	22.1781	25.0328	25.2952	24.1135
		1.0912	0.7961	21.4247	22.8599	25.2560	23.2755
190167		1.1962	0.7660	17.8604	24.3185	26.4669	22.7193
190175		1.3762	0.8649	24.6790	27.1531	26.0547	26.0095
		1.7623	0.8649	25.8482	25.6997	25.8826	25.8092
190177		1.6937	0.8649	25.4769	27.4621	27.7792	26.9287
		1.0531	0.8649	25.0837	28.4799	27.1682	26.8223
		1.1291	0.8185	18.3151	19.8084	22.6928	20.1357
		0.9625	0.7821	21.3191	23.9609	24.9476	23.4329
		1.4395	0.8649	24.4176	24.7912	25.6394	24.9988
	h	0.8828 1.3171	0.7821 0.8085	14.0052 22.3755	16.1195 23.5734	24.3328 24.1923	19.1578 23.4096
		0.9256	0.8408	21.9355	24.7135	24.0385	23.5870
		1.3938	0.8074	22.9631	24.3735	25.8071	24.3487
		1.0924	0.8085	18.5317	14.1410	27.3304	19.2137
		***	*	26.4258	27.5681	28.8173	27.4415
		1.4429	0.7922	22.5588	24.5877	25.1010	24.1146
		1.3470	0.8085	21.8900	24.7944	27.6084	24.9263
190203		5.8369	0.8649	26.9099	26.8795	28.1832	27.2998
190204		1.4639	0.8649	28.8777	28.3684	28.1033	28.4525
		1.7275	0.8408	21.7696	24.4540	26.6832	24.2969
		1.5338	0.8649	26.9117	26.0139	26.7401	26.5489
		0.8155	0.7660	24.8409	24.2586	28.7306	26.0391
		1.1787	0.8688	23.9182	25.0356	26.7262	25.2399
		1.4242	0.8848	23.8233	23.6824	24.7142	24.0796
		***	*	13.9888	*	*	13.9888
190241		1.4547	0.8185	28.9620	23.9700	25.2123	25.8649

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

	Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 1	Average hourly wage** (3 years)
		1.1385	0.8085	20.5937	23.0072	24.8461	22.9349
		1.6195	0.8074	30.6060	27.1786	25.5751	30.6060 26.4103
		1.6846	0.7821	*	ž7.1700 *	*	20.4100
		***	*	*	*	32.7499	32.7499
		***	*	*	*	23.2221	23.2221
190249		1.3588	0.8085	*	*	20.0468	20.0468
		2.2896	0.8649	*	*	31.5102	31.5102
		1.3358	0.8085	*	*	21.4464	21.4464
			0.0040	*	*	23.6921	23.6921
		1.0057	0.8649	*	*	22.8060 32.9289	22.8060 32.9289
		0.7976	0.8408	*	*	22.2413	22.2413
		1.0317	0.8649	*	*	*	*
		1.6566	0.7660	*	*	*	*
190258		1.6648	0.8848	*	*	31.3712	31.3712
190259		1.6861	0.8408	*	*	*	*
		1.4933	0.8649	*	*	*	*
		0.8547	0.8074	*	*	*	*
		1.4612	0.8649	*	*	*	*
		2.3858	0.8408	*	*	*	*
		0.8850 1.7399	0.7660 0.8074	*	*	*	*
		2.1688	0.8085	*	*	*	*
		1.2267	0.8649	*	*	*	*
		1.0791	0.8408	*	*	*	*
190272		1.3853	0.8408	*	*	*	*
		1.3795	0.9612	23.2210	25.1145	25.2542	24.5664
		1.1618	0.8522	24.1446	25.7478	25.7212	25.1676
		1.0627	0.0000	22.3920	07.4440	07 7107	22.3920
		1.3474 1.9092	0.9862 0.9862	25.1741 28.1409	27.4412 31.1056	27.7137 30.7510	26.7659 29.9948
		1.2208	0.9002	24.1243	25.7623	30.7510	24.9713
		1.0873	*	23.9048	24.4131	*	24.1576
		1.3054	0.8393	24.3294	23.6337	23.5632	23.8074
200019		1.2797	0.9862	24.0926	25.1367	25.6649	24.9808
		1.2476	1.0237	28.7351	31.7083	32.6436	31.0873
		1.2292	0.9862	25.1027	24.5519	27.1380	25.6456
		1.5488	0.9472	24.6484	26.0080	27.5410	26.1631
200025		1.1535	0.9862	24.3646 21.9997	26.0573	26.3124	25.5690 21.9997
		1.2026	*	23.2912	26.3118	*	24.7659
200028		1.0031	*	24.3061	24.3271	*	24.3172
		1.2782	0.8393	20.6202	21.9489	21.2370	21.2688
200032		1.1773	0.8859	24.2221	25.5227	26.3322	25.3678
		1.8616	0.9612	26.8727	28.6479	29.3109	28.2775
		1.3301	0.9472	26.1150	26.2926	27.0582	26.4957
		1.1683	0.8393 0.9472	23.3490	23.2333	24.1732	23.5989 24.7718
		1.2819 1.2346	0.9472	24.0474 23.6791	25.1196 25.5405	25.1179 25.9893	25.0498
		1.1669	0.8393	23.6797	24.5532	24.9670	24.4227
		1.2140	0.9612	25.5233	26.4992	27.6825	26.5809
		1.1178	0.8393	22.7763	21.8726	22.5159	22.3874
200063		1.1531	0.9472	24.7235	25.0167	25.8623	25.2032
		1.1290	*	21.6354	*	*	21.6354
		1.4094	0.9443	26.3144	27.7561	28.2858	27.4567
		1.9797	0.9922	25.2859	26.4992	32.3005	27.8930
		1.6765 1.4263	1.0977 1.0888	32.3042	29.8684 34.2392	34.1109 33.6056	32.0785 32.4277
		1.4263	1.0888	29.4300 27.1276	34.2392 28.7557	28.9554	32.4277 28.2840
		1.0947	0.9922	25.6396	25.4081	25.9005	25.6506
		1.9020	0.9922	28.4496	30.2548	31.8767	30.2102
		1.3683	0.9922	26.3008	25.2833	24.3341	25.2443
		1.7601	0.9922	24.6332	26.2360	27.7900	26.2273
		***	*	24.5071	25.7775	*	25.1483
210011		1.4000	0.9922	24.8373	27.5031	30.8575	27.8034

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

	Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 1	Average hourly wage** (3 years)
		1.6649	0.9922	25.7934	27.4103	30.3078	27.9645
		1.3042	0.9922	23.9875	25.1348	28.5327	25.8589
		1.3239	0.9922	25.8532	28.2029	29.9261	28.0246
		1.8457 1.2232	1.0888 0.8881	28.6992 21.3983	32.2081 23.2168	32.3506 25.1890	31.0721 23.3045
		1.2039	1.0888	27.5431	29.1870	29.5533	28.7862
		1.7900	0.8881	24.9252	26.1824	27.3731	26.1640
		1.3750	1.0888	30.1470	33.8015	35.4727	33.0908
210023		1.4346	1.0131	29.0844	30.4656	32.1812	30.6344
210024		1.7257	0.9922	27.1756	29.5579	30.6359	29.1340
		1.2558	0.8881	23.8943	26.0771	23.8552	24.4884
		1.4335	0.8881	23.9255	26.0111	24.6343	24.8754
		1.1088 1.2765	0.9393 0.9922	24.1265 31.2888	25.9221 27.9741	26.3469 31.0266	25.4770 29.9864
		1.3401	0.8881	27.5507	29.5635	26.9764	28.0053
		1.1394	1.0570	25.7138	26.1829	27.0727	26.3385
		1.1855	0.9922	26.6113	29.0420	28.5534	28.0912
210034		1.2987	0.9922	26.3896	28.4308	30.2908	28.4088
210035		1.2624	1.0977	24.5198	26.1082	28.6484	26.4956
		1.2117	0.8881	24.1913	27.0973	27.3287	26.3152
		1.1800	0.9922	28.3414	29.5980	29.8121	29.2809
		1.1329	1.0977	25.8415	27.6940	30.4991	28.0360
		1.2314 1.3294	0.9922 1.0131	28.3723 24.3070	29.3514 27.5657	28.3559 26.6524	28.7007 26.1522
		1.3531	0.9922	24.8083	28.8700	29.7339	27.7789
		1.0580	0.8881	15.0867	15.6380	14.2223	14.9750
210048		1.3008	1.0209	25.0617	28.4638	27.5043	27.0601
		1.2077	0.9922	25.9342	26.9656	26.0900	26.3249
		1.3111	1.0977	27.3692	29.2998	29.8892	28.8773
		1.3541	1.0977	24.6658	26.2295	27.4328	26.1740
		1.2013 1.2833	1.0977 0.9922	28.0014 26.6884	29.9708 28.6091	30.6941 30.0810	29.5880 28.5239
		1.4087	1.0888	29.2233	32.2883	31.6787	31.1224
		1.0870	0.9922	24.8576	29.7841	31.0873	28.8006
210060		1.1529	1.0977	28.7531	28.5087	27.1764	28.0775
		1.3212	0.8881	24.1369	23.6662	23.1645	23.6063
		1.2571	1.1343	27.3238	29.0014	30.6070	28.9932
		1.3255	1.1343	28.9722	30.3598	32.4356	30.6685
		1.0789	*	20.5790 29.5946	22.0549 30.8599	30.7673	21.3294 30.4550
		1.2811	1.1343	27.1675	30.1043	31.3385	29.5889
		1.2576	1.1343	27.4161	29.7998	30.7804	29.3611
		1.1839	1.1343	32.6624	34.4064	34.7655	33.9600
220012		1.5044	1.2589	32.9791	35.7872	37.8763	35.6334
220015		1.1777	1.0757	25.5449	28.3397	29.6315	27.9301
		1.1124	1.0757	26.8798	28.0609	30.4813	28.4997
		1.2640 1.1445	1.1765 1.1343	28.8264 22.2294	29.7108 23.2544	31.6170 24.4009	30.0573 23.3159
		1.1741	1.1343	24.2279	26.5305	28.5288	26.4682
		1.3141	1.0757	25.5837	27.3488	28.7342	27.2019
		1.0668	1.1343	24.5186	23.0637	25.6478	24.4025
		1.5225	1.1343	31.3592	32.0980	31.7122	31.7174
		1.1166	1.1343	28.1432	28.6970	30.6935	29.2047
		1.1035	1.0757	23.6257	24.4289	26.8849	25.0306
		1.6599	1.1765	32.2660	34.8183	36.8477	34.6797
		1.1722 1.4001	1.1343 1.1343	26.8049 27.5533	28.2539 28.6238	31.8249 31.4470	28.9540 29.2909
		1.5276	1.1765	29.6296	31.5184	33.1436	31.4741
		***	*	29.7464	*	*	29.7464
		1.4368	1.1050	27.7726	28.1396	30.4460	28.8367
		1.2182	1.1343	27.0464	27.7517	30.4740	28.4587
		1.1374	1.0757	24.9945	26.3768	28.3434	26.6118
		1.2550	1.0757	26.5575	29.8380	30.2552	28.8630
		1.1654 1.0047	1.1765 1.1343	28.0925 25.0598	29.8577 24.9642	32.4130 25.7247	30.0033 25.2429
220000		1.1930	1.2156	30.8242	32.3362	32.5477	31.9429

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 ¹	Average hourly wage** (3 years)
220062	0.5767	1.1343	21.9489	24.2779	25.0766	23.7777
220063	1.2313	1.1343	25.5840	27.3967	30.2866	27.7358
220065	1.2384	1.0757	24.8737	26.5513	27.6008	26.3514
220066	1.3649 1.1644	1.0757 1.1765	26.2561 28.5220	27.1317 29.8911	27.8073 30.2222	27.0980 29.5765
220070	1.1710	1.1763	28.9100	31.9283	33.1299	31.1606
220071	1.8443	1.1765	31.8322	32.2936	36.5065	33.6250
220073	1.2140	1.1343	29.2399	31.3566	34.2989	31.5750
220074	1.2997	1.1765	27.5763	28.4930	30.5607	28.9335
220075	1.5908	1.1765	27.9503	29.1588	30.9176	29.3379
220076		1 0070	27.2534	29.7507	27.5148	28.1088
220077	1.7132 1.2124	1.0970 1.1343	28.0935 27.1578	30.2684 28.9835	31.7325 29.9595	30.0900 28.7641
220082	1.2837	1.1343	24.8060	26.9841	30.0611	27.3261
220083	1.1496	1.1765	29.9001	32.9143	34.5118	32.3792
220084	1.2299	1.1343	29.0505	32.5711	30.9527	30.8898
220086	1.8113	1.1765	31.7482	34.3667	34.2388	33.4363
220088	1.8517	1.1765	28.5711	28.5462	35.8255	30.6287
220089 220090	1.2972 1.1951	1.1252 1.1343	32.4409 29.7945	31.1708 30.8685	32.6305 32.9011	32.0650 31.2877
220090	1.1323	1.1343	24.9871	27.4273	28.0673	26.8577
220098	1.1206	1.1343	26.8538	28.8314	30.5869	28.7807
220100	1.3384	1.1765	28.4848	29.6912	31.9859	30.1232
220101	1.2602	1.1343	31.0834	33.1690	35.3464	33.3404
220105	1.2376	1.1343	30.0892	31.9421	33.2625	31.8413
220108	1.1458	1.1765	29.0804	30.6252	32.6131	30.7736
220110 220111	1.9956 1.1994	1.1765 1.1765	35.4242 28.9092	36.6084 31.1850	39.2167 33.6167	37.1574 31.3228
220116	1.9509	1.1765	32.2337	32.9988	36.4149	33.8060
220119	1.1208	1.1765	27.8372	30.1056	30.9965	29.7091
220126	1.1709	1.1765	26.7660	28.7805	31.4882	29.0005
220133	***	*	31.2981	33.6003	29.4855	31.4913
220135	1.3341	1.2589	31.3246	33.9866	36.0204	33.8724
220153	0.9848 0.9275	1.0757	18.9267 30.9009	00 6460	*	18.9267 29.8324
220163	1.6447	1.1765 1.1343	30.5056	28.6462 33.6484	34.4874	32.8033
220171	1.7913	1.1343	28.9733	30.4036	32.7414	30.7623
220174	1.1970	1.1343	30.3356	31.7572	30.0406	30.6618
220176	1.5403	1.0852	*	*	*	*
230001	1.0768	*	24.3660	*	*	24.3660
230002	1.2924 1.2105	1.0411 1.0280	27.0305	29.1410	32.9010 27.5824	29.6675 26.3760
230003	1.7219	1.0451	25.2596 25.5573	26.1278 26.7206	29.3933	27.2951
230005 h	1.2738	1.0678	22.1018	24.1902	25.8768	23.9997
230006	1.1131	*	22.7656	23.8835	*	23.3472
230013	1.3542	1.0442	22.7014	23.7822	24.6511	23.6944
230015	1.0340	0.9387	23.4512	24.6570	26.2782	24.8017
230017	1.6748	1.0797	27.3259	29.5178	31.8821	29.6573
230019 230020	1.5655 1.7229	1.0442 1.0502	27.6563 26.8516	28.4575 29.2869	32.3401 28.5646	29.4214 28.2520
230021	1.5575	0.9164	23.4663	24.9551	26.5659	25.0307
230022	1.2785	0.9896	22.2528	23.3000	25.6683	23.7468
230024	1.5454	1.0502	27.6555	30.0813	32.1483	29.9620
230027	1.1116	*	22.5736	23.5511	*	23.0457
230029	1.6042	1.0442	27.9012	29.0935	32.3538	29.7300
230030	1.2780	0.9028	20.9867	22.3174	23.8082	22.4064 25.9464
230031 230034	1.3662 1.3322	1.0108 0.9028	23.2910 20.9195	25.4678 26.7967	29.7232 24.4846	24.0745
230035	1.3003	0.9554	20.9197	21.2317	24.8822	22.3344
230036	1.3772	1.0323	26.5854	28.3622	29.3754	28.0904
230037	1.2798	1.0502	24.7875	26.2000	28.9244	26.6763
230038	1.7584	1.0176	25.2499	26.3480	28.2012	26.6334
230040	1.2051	0.9554	21.9813	24.2349	25.5154	23.9790
230041 230042	1.5361 1.2203	1.0161	25.2518 24.3640	26.1760 26.2037	27.8853	26.4751 25.3026
230042	1.8667	1.0678	29.2683	30.3591	31.6235	30.4859
	1.0007	1.5070	. 20.2000		01.0200	JU. 1003

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

	Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 ¹	Average hourly wage** (3 years)
230047		1.4851	1.0331	26.2447	28.1351	31.1771	28.5765
230053		1.6033	1.0502	28.3030	29.8703	32.5711	30.1870
		1.9975	0.9573	24.0137	24.9905	25.7591	24.9339
		1.2481	0.9028	23.7671	25.4143	27.4349	25.5202
		1.1661	0.9028	21.9308	24.0657	25.9291	23.9790
		1.5538	1.0176	23.1451	25.5350	27.9091	25.6093
		1.2059	0.9028	24.5073	25.5015	28.2873	26.0729
		1.3033	1.0451	27.9179 25.8517	28.4631 27.4928	32.6255 30.6184	29.1713 28.1658
		1.1384	1.0602	27.6815	29.5556	30.2663	29.1683
		1.6440	0.9211	25.1587	24.2342	25.6778	25.0070
		0.8889	1.0442	24.7707	26.3907	28.3064	26.5185
		1.4159	1.0280	24.1560	24.4933	26.2838	25.0178
230075		1.3099	0.9811	24.1482	27.6193	28.2540	26.6577
230077		2.0231	1.0602	27.3117	27.6157	29.8538	28.2916
230078		1.0344	0.9028	21.9200	23.9901	25.6809	23.9487
		1.2969	0.9028	21.2840	21.2314	24.1573	22.2347
		1.1996	0.9028	20.6777	23.0788	24.7374	22.8590
		0.9762	*	23.1240	22.2165	*	22.6498
		1.2326	1.0797	22.2569	22.7314	23.4959	22.8465
		1.1553	*	20.8759	16.9168	*	20.8759 16.9168
		1.3467	1.0502	23.9486	28.7015	31.0522	27.8258
		1.3456	1.0106	24.3768	26.3584	28.6829	26.5066
		1.2117	0.9554	24.5055	26.4967	25.5804	25.5235
		1.3539	0.9028	19.2244	21.3915	22.8681	21.1860
		1.1629	1.0797	26.7578	28.7681	30.6024	28.6974
230097		1.7856	1.0176	25.2104	26.5773	28.2526	26.7006
230099		1.2237	1.0502	25.0390	26.4882	29.0221	26.8789
		1.2241	0.9028	20.4565	21.8895	24.1881	22.1951
		1.1571	0.9028	23.1349	24.3772	25.4839	24.3698
		1.0628	*	18.4304	21.6609	*	19.9258
		1.6297	1.0502	27.8864	30.5570	32.4634	30.2435
		1.9751	1.0062	24.6853	27.2705	32.4583	28.1815
		1.0950 1.1243	1.0191 0.9028	24.1128 22.4966	24.3980 18.4063	25.3243 20.2538	24.6281 20.2585
		1.2875	0.9028	22.7621	28.7704	27.0040	26.2349
		1.8669	1.0797	29.6361	29.4775	32.7994	30.5541
		1.0673	0.9028	21.4886	22.3636	23.6110	22.4945
		1.3053	1.0502	29.2509	30.2441	30.7488	30.0939
230120		1.1119	*	21.7894	24.1485	*	22.9553
		1.2714	0.9896	23.4394	24.5220	26.4940	24.8132
		1.3714	*	23.0508	*	*	23.0508
		1.7482	1.0442	26.9907	26.6076	30.1608	27.9567
		1.4073	1.0798	29.9106	30.5318	32.3939	30.9251
		1.3676	0.9028	21.2273 23.9000	24.3175	23.9442 25.9583	23.1996 25.2612
		1.1854 1.6252	1.0502 1.0798	30.4643	25.8406 28.6326	31.6152	30.2243
		1.2969	1.0790	25.6044	26.9433	27.8377	26.8202
		1.2815	*	19.5387	21.4083	*	20.4663
		1.5305	1.0678	*	*	*	*
		***	*	17.2181	*	*	17.2181
230146		1.3044	1.0502	24.3891	26.3432	26.8156	25.8932
230149		***	*	21.4753	*	*	21.4753
230151		1.3166	1.0442	26.4669	28.2243	27.4546	27.3846
		1.0027	*	22.3404	22.8644	*	22.6169
		***	*	24.0404	*	*	24.0404
		1.5875	1.0678	29.4855	31.1909	32.3755	31.0315
		1.7104	1.0502	27.3164	28.9636	29.6375	28.6462
		1.5804	1.0068	26.6828	27.4562	29.8071	27.9942 29.3455
		***	*	27.1172 22.0635	31.8442	*	22.0635
		1.2644	*	24.0236	25.7402	*	24.8835
		1.3198	1.0280	26.2770	27.6920	30.0563	28.0305
		1.2831	1.0502	25.6777	27.3605	28.1498	27.3166
		1.0930	0.9028	22.5454	24.7358	26.0707	24.4709

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

	Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 ¹	Average hourly wage** (3 years)
230184		***	*	21.9346	23.6707	34.6295	23.7225
		***	*	27.1126	26.2282	* *	26.7039
		0.9846 0.9642	1.0797	20.8605 28.7365	23.0099 29.9604	30.7876	21.9754 29.8329
		1.2319	1.0108	24.3181	23.3565	25.1626	24.2817
		1.4074	1.0331	27.1266	28.2892	29.5656	28.3973
		1.6037	1.0798	28.3439	30.0367	32.0063	30.1527
		1.3250	1.0331	25.9871	29.1466	31.5615	28.8031
		1.3901	1.0442	22.2854	24.5201	25.4268	24.0878
		1.1904 1.0126	0.9554 1.0678	20.9420 27.3686	21.9651 29.7980	23.7523 31.9818	22.2422 29.6320
		1.6525	1.0108	26.1468	27.5230	29.0147	27.5817
		1.3009	0.9896	26.7929	28.6075	30.1136	28.6200
	h	1.3410	0.9439	24.8925	26.9724	29.9341	27.3147
		1.2472	1.0442	27.1503	29.2853	28.6745	28.3776
		1.5121	1.0331 1.0068	28.1105 25.4471	29.5798	30.8218	29.5297
		1.5085 0.9779	1.0008	19.6046	27.9607 21.8777	29.8763	27.7682 20.7318
		1.4588	1.0176	26.3988	28.4754	31.3111	28.7777
		1.2232	0.9028	21.1643	22.1040	21.0814	21.4560
230241		1.2175	1.0108	25.8671	27.4890	27.6106	27.0094
		1.3988	1.0411	25.3817	26.4326	29.6283	27.0809
		1.4532	1.0442	26.4431	28.1216	29.2653	27.9339
		0.9674 1.2060	1.0331 1.0678	25.4086 24.3067	27.8197 26.8677	29.6713 27.4217	27.5204 26.2628
		2.1546	1.0331	19.9992	19.2398	22.7767	20.6558
		1.4416	1.0442	27.4732	28.8187	31.3226	29.2937
		1.3172	1.0502	26.1113	27.8488	28.5372	27.5190
		1.5195	1.0502	30.2209	29.9307	31.9862	30.7083
		0.4786	0.9211	30.2244	23.1095	23.8105	25.8765
		1.3881 0.5318	1.0442 1.0602	26.9231 23.1636	29.1973 24.7673	29.8372 27.2816	28.6994 24.9348
		***	*	24.9272	26.2622	33.5532	26.4492
230289		***	*	*	29.7720	*	29.7720
		***	*	29.4792	*	*	29.4792
		***	*	*	30.9655	* *	30.9655
		***	*	*	31.8943	31.6195	31.8943 31.6195
		***	*	*	*	27.1298	27.1298
		1.6111	1.0068	*	*	*	*
		1.5128	1.0782	29.9123	31.5753	33.1499	31.5719
		1.8217	1.0285	26.9608	28.9860	31.6000	29.1781
240004		1.5980 1.0830	1.0782 1.1239	27.8796 30.2330	30.8072 30.1950	32.7010 31.0777	30.3974 30.5146
		0.9765	1.1209	23.7588	*	*	23.7588
		2.0337	1.1239	30.4139	31.3733	33.4668	31.7518
240011		***	*	22.9561	*	*	22.9561
		1.3281	*	28.7202	28.3860	*	28.5544
		1.0334	1.0782	28.3788	29.8623	29.8905	29.4068 25.9310
		1.2566 1.2297	0.9238	24.9211 23.3314	26.7814 24.4417	24.3596	24.0453
		1.2775	1.0782	27.9218	25.6236	28.1432	27.0877
		1.0794	1.0285	27.5441	28.6723	33.7546	29.9360
		1.0697	1.0782	28.1568	31.2443	31.3874	30.2352
		0.9533	0.0000	23.7096	27.1235	26 1000	25.3021
		1.1304	0.9238	23.7368 27.8656	25.2066	26.1920	25.0459 27.8656
		0.9029	*	20.2531	18.2481	*	19.1090
		1.1322	*	24.3017	25.3568	*	24.8217
		1.3341	1.0302	23.3753	24.7154	26.5508	24.8983
		0.9625	*	26.7242	26.7778	*	26.7517
		1.6508	1.1029	27.0821	28.0812	32.7028	29.2395
		1.0388 1.5474	1.0782	24.3986 29.8465	31.0779	31.9891	24.3986 30.9872
		1.0882	1.0285	26.3177	27.4895	27.5074	27.1265
240043		1.1386	0.9238	20.7155	21.8685	23.3489	22.0037

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

	No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 ¹	Average hourly wage** (3 years)
240044		1.1310	1.0106	24.3009	22.0973	25.0988	23.8092
240045 240047		1.0872 1.5417	1.0285	26.1743 29.1211	28.8288	28.6406	26.1743 28.8397
240050		1.0900	1.0782	26.6687	26.4854	27.5553	26.9484
240052		1.2454	0.9238	24.9870	26.4256	28.7206	26.7465
240053		1.4014	1.0782	28.4733	29.5315	31.4324	29.8572
240056		1.2267	1.0782	30.8619	31.6623	33.1728	31.9090
240057		1.7985	1.0782	29.4870	30.6258	30.7703	30.3164
240059		1.0824	1.0782	28.6340	29.7916	31.0910	29.8753 31.3241
240061 240063		1.7757 1.5442	1.1239 1.0782	30.0031 29.9603	30.6383 32.3487	33.1799 33.7895	32.0511
240064		1.2459	1.0285	26.6996	29.9662	34.3757	30.9779
240066		1.4576	1.0782	30.2716	33.4532	35.3441	33.1081
240069		1.1872	1.1239	27.4990	28.9496	29.3718	28.6450
240071		1.1443	1.1239	26.4780	28.0585	28.6950	27.7615
240075 240076		1.1463 1.0741	1.0302 1.0782	26.6607 28.4519	26.1956 29.8562	27.5039 30.6936	26.7879 29.7303
240078		1.6565	1.0782	30.5339	32.3235	32.5785	31.8123
240079		***	*	20.9220	*	*	20.9220
240080		1.8378	1.0782	29.6274	31.6828	32.5725	31.2895
240083		1.2006	*	25.0214	26.6582	0.0000	25.8650
240084		1.1091	1.0285	24.7856	26.8142	26.5975	26.0675
240087		1.0229 1.3165	1.0302	24.8479 27.6323	28.0825	28.0603	24.8479 27.9299
240088 240093		1.3130	1.0782	23.7785	25.5805	27.2928	25.5180
240094		1.1961	*	27.3974	*	*	27.3974
240100		1.2939	0.9238	25.3269	27.6299	30.8391	27.9359
240101		1.1554	0.9238	26.6078	25.5355	25.6964	25.9039
240103		1.1036	*	22.5416	22.7078	*	22.6234
240104		1.1717 1.5320	1.0782 1.0782	30.1392 27.5171	31.4306 29.3455	31.6511 30.5927	31.1560 29.2060
240106 240107		0.9139	1.0702	25.5199	29.3433	*	25.5199
240109		0.9419	*	15.2076	16.5051	*	15.8386
240115		1.6305	1.0782	29.0261	31.3869	32.0107	30.8542
240117		1.1531	0.9238	22.0463	23.6230	24.5750	23.4565
240123		1.1107	*	20.5755	21.7500	* *	21.1868
240124 240127		***	*	23.9297 24.4824	*	*	23.9297 24.4824
240128		1.0244	0.9238	21.2638	21.5791	23.3334	22.0573
240132		1.3265	1.0782	29.5310	31.7139	32.1233	31.1490
240133		1.1359	*	26.1836	*	*	26.1836
240135		***	*	16.1837	*	*	16.1837
240137 240139		***	*	23.8666 23.7898	*	*	23.8666 23.7898
		1.1273	1.0782	26.7173	26.4016	31.4468	28.5886
240143		0.8825	*	21.1180	21.7416	*	21.4375
240152		0.9888	*	27.3445	29.6196	*	28.5127
240154		1.0590	*	23.9643	*	*	23.9643
240162		1.1482	0.0000	22.3136	22.2721	07 6007	22.2926
240166 240179		1.1472	0.9238	23.4265 20.8449	25.7509	27.6987	25.6501 20.8449
240187		1.2453	1.0782	26.5129	27.8811	27.8844	27.4419
240196		0.7779	1.0782	28.9380	30.7719	31.5965	30.4819
240206		0.8207	1.4448	*	*	*	*
240207		1.1876	1.0782	29.2395	31.7665	32.5589	31.2507
240210		1.2705	1.0782	29.7227	32.1564	32.7123	31.5359
240211 240213		0.9908 1.3702	1.0782 1.0782	44.4214 31.3974	18.8503 32.7532	22.5431 33.8680	24.6609 32.7407
250001		1.8583	0.8214	21.9176	22.7827	23.5222	22.7777
250002		0.9020	0.8169	20.1310	23.3845	23.4064	22.1926
250004		1.8948	0.8984	20.6828	24.1065	24.7907	23.1544
250006		1.0666	0.8984	21.4038	24.0191	24.4282	23.2690
250007 250009		1.2504 1.2767	0.8748 0.8643	23.6933 20.4329	25.8710 22.2323	24.8929 23.0352	24.8386 21.9113
250010		1.2767	0.8643	19.4130	19.4403	23.0352	20.0759
250012		0.9304	0.9307	20.0493	20.2921	21.5539	20.6182

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

	Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 ¹	Average hourly wage** (3 years)
250015 .		1.0396	0.7796	20.6931	20.7555	22.0067	21.1413
250017 .		1.0373	0.7796	18.1013	21.3950	22.7661	20.9402
250018 .		0.8282	0.7796	17.0689	16.6294	17.1276	16.9471
		1.5803	0.8748	22.8358	23.9741	25.7376	24.1729
		0.9690	0.7796	19.3390	21.4019	22.1851	20.9799
		***	*	15.1242	20.3559	*	16.1481
		0.8543	0.8461	16.1820	16.2418	18.0108	16.8283
		1.1121	0.7796	20.6892	20.5258	22.5621	21.2882
		0.9523 1.3346	0.7796	17.3313	17.3481	24.4937 24.8139	19.7107
		1.5496	0.8214 0.8984	22.0850 20.6752	21.4326 24.3189	26.1887	22.6468 23.7216
		0.8573	0.7796	14.6149	17.2045	20.1622	17.3598
		1.0183	0.8144	17.8313	19.1975	20.3625	19.2231
		0.8536	*	17.4463	17.4012	0.0000	17.4232
		0.9874	0.8214	18.0209	18.9050	22.2571	19.6992
		0.9189	*	15.2939	17.3155	*	16.2540
		1.4985	0.8461	21.3451	23.2285	24.5962	23.0919
		1.1696	0.8984	21.4117	23.4135	25.6807	23.4660
250043 .		1.0236	0.7796	18.3322	19.8098	18.8979	19.0278
250044 .		1.0419	0.7876	21.1198	23.3862	24.0508	22.8288
250045 .		1.1333	*	25.0863	26.3831	*	25.7497
250048 .		1.6390	0.8214	21.6547	22.9765	25.2092	23.3037
250049 .		0.8991	0.7796	17.8154	17.7005	19.1044	18.3112
250050 .		1.2511	0.7796	18.3170	19.1467	20.8084	19.4590
250051 .		0.8656	0.7796	10.6908	10.6095	14.3741	11.8797
250057 .		1.1358	0.7796	19.6789	20.1900	22.7601	20.8814
250058 .		1.2356	0.7796	17.5160	18.1704	19.2502	18.3263
		0.9853	0.7796	17.7270	19.2977	23.8997	20.2473
		0.8394	0.7796	20.8115	16.8247	28.1431	21.5713
		0.8798	0.7796	15.2515	12.8174	17.8267	15.0890
			. ====	16.1984	*	*	16.1984
		1.0684	0.7796	20.1261	21.6911	23.1193	21.6222
			0.0000	16.9585	00.0400	00.0050	16.9585
		1.5324	0.8362	21.6617	22.8162	22.6353	22.4068
		1.5884	0.0014	17.7149 22.9316	24.6587	25.8399	17.7149 24.5004
		0.9399	0.8214 0.7796	14.2271	14.7632	18.3735	15.7279
		1.6751	0.8461	18.6563	20.9354	22.1243	20.5542
		0.8331	0.8214	27.2549	38.0031	45.5166	38.2904
		1.2316	0.8362	21.3830	24.7031	23.9995	23.2075
		1.4444	0.8397	20.5212	19.6966	23.0287	21.0512
		***	*	19.9484	*	*	19.9484
250084 .		1.1682	0.7796	21.8001	18.5775	19.6492	19.8895
250085 .		0.9879	0.7796	18.7367	19.7007	22.5512	20.3950
250093 .		1.1718	0.7796	18.8001	21.3237	23.0984	21.0634
250094 .		1.5970	0.8461	22.3312	22.7312	24.1422	23.0663
		1.0290	0.7796	19.9553	21.3511	21.7488	21.0087
		1.1418	0.8214	22.7458	22.6298	24.9187	23.4322
		1.5660	0.8085	19.4534	20.1687	21.8139	20.4661
		1.2571	0.8214	19.0333	19.5797	21.1269	19.9051
		1.4696	0.8362	22.0328	24.2209	25.6846	23.9924
			0.0014	21.2234	19.3543	04.0050	20.1785
		1.5976	0.8214	22.5518	24.2868	24.6652	23.8699 22.5551
		1.4348	0.8214	21.4431	22.6591	23.4303	
		0.9403 0.9209	*	17.9468 16.5369	18.1196 17.8999	*	18.0323 17.2381
		0.9608	0.7796	19.6172	21.2824	24.3067	21.8416
		1.0909	0.8461	19.9774	23.3673	22.2450	21.7923
		1.0778	0.7796	22.7607	23.4277	24.6370	23.5490
		1.0871	0.8129	23.7230	24.5854	27.2795	25.1719
		1.2998	0.8748	22.0486	24.5115	26.6221	24.4340
		0.8446	0.8214	15.4343	17.2181	20.4395	17.6895
		1.3083	0.8748	26.8379	27.7077	27.5158	27.3633
		0.9040	0.9307	20.4085	21.7111	24.4126	22.0667
		0.8548	1.4448	*	*	*	*
250128		0.8924	0.7796	15.9344	17.6269	17.7624	17.0843

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 1	Average hourly wage** (3 years)
250134	0.8120	0.8214	23.5608	25.8368	22.2167	23.8221
250136	1.0356	0.8214	22.5832	23.0637	22.9468	22.8653
250138	1.3041	0.8214	22.7902	23.8861	24.3018	23.6898
250141	1.5949	0.9307	24.5772	27.6158	28.5922	27.0618
250146	0.9048	*	17.2328	18.6486	*	17.9106
250149	0.8797	0.7796	15.0367	15.0641	16.8796	15.6660
250151	0.4842	0.7796	21.8697	17.2205	18.8846	18.4861
250152	0.8955	0.8214	*	25.7837	26.9334	26.3171
250153	***	*	*	29.0461	*	29.0461
250155		0.7700	, *	, *	22.5729	22.5729
250156	1.2778	0.7796	*	*	*	*
250159 260001	0.8769 1.6632	0.8794	25 2004	25.9250	27.9230	26.3723
260002	1.0032	0.6794	25.3084 27.2329	26.4879	27.9230	26.9807
260003	***	*	17.6339	20.4079	*	17.6339
260004	0.9686	0.8353	16.7742	16.9421	20.3217	18.0451
260005	1.4577	0.8998	24.6142	26.5773	27.7855	26.3893
260006	1.4619	0.8353	26.4948	26.7587	30.3440	28.0336
260008	***	*	17.6040	18.9522	*	18.2612
260009	1.2219	0.9345	21.2729	22.1816	24.2360	22.5867
260011	1.4224	0.8620	21.4409	22.7061	25.6387	23.3003
260012	1.1411	*	19.3389	20.3061	*	19.8719
260013	1.0563	*	19.2065	20.5007	*	19.8516
260015	1.0220	0.8353	22.4450	22.5409	24.6139	23.2261
260017	1.3556	0.8889	21.1359	22.7022	23.5713	22.5230
260018	1.0454	0.0000	14.8425	17.0434	27.4730	15.9088
260020	1.7670	0.8998	25.7898	26.0407		26.4741 28.2462
260021 260022	1.3882 1.2284	0.8998 0.8658	27.8332 21.7707	27.6330 22.8085	29.3646 23.3393	22.6184
260023	1.2981	0.8998	21.2519	21.2077	24.3192	22.2092
260024	1.1057	0.8353	17.5351	18.4829	19.4952	18.4886
260025	1.3713	0.8889	20.0901	22.4645	22.2451	21.6215
260027	1.6681	0.9345	24.7605	25.3348	26.3590	25.4687
260029	1.1193	*	22.2892	*	*	22.2892
260031	***	*	24.2877	*	*	24.2877
260032	1.8568	0.8998	23.1125	23.9478	25.6763	24.2466
260034	0.9593	0.9345	23.3034	24.1143	25.0573	24.1894
260035	0.9270	· *	16.8502	17.8741	^	17.3672
260036 260039	0.9590 1.0479	*	20.1324	22.1912	*	21.0403
260040	1.6395	0.8570	21.9452	23.3566	24.3938	23.2602
260044	0.9221	*	20.0686	20.0000	*	20.0686
260047	1.4927	0.8353	22.6169	24.4185	25.4978	24.2091
260048	1.2143	0.9345	25.8089	24.3906	27.6117	25.9044
260050	1.2087	1.0045	20.6364	23.6849	25.0507	23.2406
260052	1.3323	0.8998	22.5809	24.5165	26.0052	24.3683
260053	1.0942	*	20.0051	21.6607	*	20.8214
260057	1.0951	0.9345	16.4875	19.3335	20.9639	18.8512
260059	1.2013	0.8353	18.6379	19.7243	22.6922	20.4186
260061	1.1161	0.8353	19.6674	21.5264	22.4766	21.1445
260062	1.2300	0.9345	26.0439	26.4539	28.1661	26.8989
260063 260064	1.3163	0.8456	22.0826 19.1587	19.0543	22.2395	22.0826 20.1462
260065	1.7456	0.8570	23.6969	23.0015	27.1014	24.6097
260067	0.8891	*	16.5364	17.6256	*	17.0827
260068	1.7539	0.8456	23.9340	24.9504	26.0295	24.9978
260070	0.9577	0.8353	14.3881	18.4779	24.6331	19.7034
260073	0.9983	*	19.2744	21.6214	*	20.4508
260074	1.2526	0.8511	23.9301	24.8654	25.6218	24.8258
260077	1.6279	0.8998	23.5466	25.5782	26.7466	25.2766
260078	1.3422	0.8353	18.4017	19.0802	20.1983	19.2331
260080	0.9306	0.8353	11.2817	14.7774	17.9107	14.5610
260081	1.5309	0.8998	23.7447	26.3969	28.1182 26.6718	26.0827
260085 260086	1.5985 0.9009	0.9345	24.6046 17.1202	25.6302 19.1702	20.07 18 *	25.6383 18.1866
260091	1.5378	0.8998	26.1149	27.2407	28.0537	27.1569
LUUUU1	1.3370	0.0330	20.1149	21.2401	20.0007	21.1009

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 ¹	Average hourly wage** (3 years)
260094	1.5623	0.8412	20.6805	23.2544	24.1473	22.7893
260095	1.3129	0.9345	23.8671	25.5668	24.2698	24.5514
260096	1.4639	0.9345	25.9932	27.5592	29.7312	27.8533
260097	1.1797	0.8778	21.5077	21.3957	25.0624	22.7477
260102	0.9150	0.9345	22.9283	24.2368	27.2145	24.8458
260103 260104	1.4937	0.8998	23.3175 24.0038	26.2867	28.6247	23.3175 26.3990
260105	1.7783	0.8998	28.4652	28.8849	29.8848	29.0941
260107	1.3517	0.9345	24.2001	26.7782	25.8177	25.5796
260108	1.7976	0.8998	24.0936	24.9880	26.6374	25.2785
260110	1.6936	0.8889	22.2730	23.7978	24.7656	23.6548
260113	1.1163	0.8353	19.2467	20.9644	21.2072	20.4976
260115	1.1806	0.8998	21.7450	21.9859	23.1396	22.3184
260116	1.1089	0.8353	17.2698	18.5076	21.3503	19.0263
260119	1.3445 1.0843	0.8353	22.1588	24.9937	27.9769	25.0558 19.0424
260122 260123	1.0043	*	17.3270 16.1169	20.8015	*	16.1169
260127	0.9499	*	22.5328	21.8534	*	22.1664
260134	***	*	18.1531	*	*	18.1531
260137	1.6709	0.8794	21.3426	22.7431	24.3273	22.8805
260138	1.9794	0.9345	27.8229	28.5610	30.4410	28.9706
260141	1.8925	0.8456	21.1511	22.4886	24.1555	22.5018
260142	1.0581	0.8353	19.6582	20.3993	21.5923	20.5671
260147	0.9181	0.8353	17.2291	18.5153	21.4235	19.1299
260159 260160	1.0889	0.8353	26.8924 19.4997	23.7427 21.0544	22.6277 23.8256	24.8200 21.6967
260162	1.3101	0.8998	24.1246	25.1423	27.0236	25.4950
260163	1.1357	0.8353	19.2885	20.1949	21.6408	20.3128
260164	1.0991	*	19.5539	19.7068	*	19.6321
260166	1.1983	0.9345	25.5151	27.0237	29.1225	27.2301
260172	***	*	18.1438	*	*	18.1438
260175	1.1142	0.9345	21.1257	22.6171	25.1817	22.9767
260176	1.6982 1.2278	0.8998	29.2184	27.4244	29.3034	28.6274
260177 260178	1.8181	0.9345 0.8456	25.0724 21.4781	26.1178 22.2251	27.0185 25.4782	26.0800 23.1585
260179	1.5313	0.8998	24.8541	26.1419	26.6069	25.8780
260180	1.5751	0.8998	21.9679	26.7461	28.2931	25.6242
260183	1.6131	0.8889	23.3924	26.0418	27.5577	25.7097
260186	1.6224	0.8456	23.4317	25.3148	26.9797	25.3056
260189	0.5844	*	*	*	*	*
260190	1.2069	0.9345	25.1653	26.4505	27.9137	26.5577
260191	1.2895	0.8998	22.4369	23.3856	24.6973	23.5346
260193 260195	1.1911 1.2568	0.9345 0.8353	24.4705 20.1327	26.2979 22.3958	26.8921 22.6870	25.9286 21.9121
260198	1.1483	0.8998	27.6116	27.5996	28.0021	27.7418
260200	1.2377	0.8998	25.1134	24.8624	28.2453	26.1576
260207	1.0760	0.8570	19.2467	19.7294	22.6109	20.7974
260209	1.1471	0.8613	21.8396	23.2430	25.0099	23.3517
260210	1.2222	0.8998	*	25.3782	26.8745	26.2229
260211	1.6460	0.9345	*	33.9109	40.9821	37.4479
260213 260214	1.6368 1.1887	0.9345 0.9345	*	*	*	*
270002	1.2525	0.9343	20.7620	22.7322	24.0534	22.5443
270003	1.2504	0.8747	24.2823	26.4843	28.8700	26.5679
270004	1.7046	0.8956	22.9081	23.5454	26.1319	24.2259
270011	0.9959	0.8747	22.0710	22.1394	22.7061	22.3110
270012	1.6149	0.8783	23.1697	25.2873	25.2914	24.5809
270014	1.9087	0.8783	25.0650	26.2025	25.8231	25.6996
270017	1.3653	0.8783	24.6186	27.5483	26.5404	26.2434
270021 270023	1.0403	0.0070	21.6758	21.7056	25 5600	21.6913 25.9504
270023	1.5259 1.0399	0.8870 0.8806	25.5525 18.2377	26.7576 19.6212	25.5682 20.3469	25.9504 19.3796
270032	0.8297	*	21.8255	20.4242	20.0409	20.9986
270049	1.7274	0.8956	24.6556	26.3996	27.1634	26.0758
270050	1.1052	*	22.4195	*	*	22.4195
270051	1.5760	0.8783	26.4457	26.6619	26.5621	26.5559

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 ¹	Average hourly wage** (3 years)
270057	1.2513	0.8806	22.6251	24.2980	25.5811	24.2093
270060		*	16.6592	17.7564	*	17.1813
270074		1.4448	*	*	*	*
270079		0.0655	21.6382	17 4060	10 5610	21.6382
270081		0.8655	17.3174 19.6173	17.4862	19.5612	18.0916 19.6173
270082		*	22.2340	*	*	22.2340
270086		0.8747	*	*	21.0807	21.0807
270087	1.1684	0.8655	*	*	25.9771	25.9771
280003		0.9966	27.2844	29.3921	30.6124	29.1369
280009		0.9617	25.3162	26.7678	27.0705	26.3872
280010		*	22.6516	*	*	22.6516
280013		0.9399 0.9966	24.5214 25.7522	26.1908 26.5068	27.0250 27.3284	25.8875 26.5645
280021		0.9900 *	22.2864	22.0489	*	22.1652
280023		0.9617	22.7207	22.3230	26.7980	23.8503
280030		0.9399	32.5601	30.7481	29.5102	30.9584
280032		0.9617	22.6510	23.6462	24.3995	23.5606
280040		0.9399	25.2965	26.9827	28.7207	27.0393
280054		*	22.4241	23.5665	*	23.0039
280057		*	23.6793	20.4830	*	21.8581
280060		0.9399	25.2288	26.2139	27.7496	26.4727
280061		0.9057 0.9857	23.9110 27.9937	24.9482 26.0135	26.0208 28.0581	25.0013 27.2987
280077		0.9399	24.0516	25.5624	27.0860	25.5666
280081		0.9399	25.1973	26.0541	28.7464	26.6749
280105	1.2575	0.9399	25.0445	26.7555	27.8599	26.6305
280108		*	22.5584	23.2502	*	22.8979
280111		0.8636	22.1424	23.4770	24.5617	23.4919
280117		* 4440	22.0611	24.1521	*	23.1088
280119 280123		1.4448 0.8773	27.5207	*	15.4047	20.0912
280125		0.8693	21.8385	21.7658	22.1345	21.9149
280127		0.9966	*	*	29.3684	29.3684
280128		0.9966	*	*	28.5422	28.5422
280129		0.9399	*	*	*	*
280130		0.9399	*	*	*	*
290001 290002		1.2126 0.9468	27.3105 16.8433	31.1981 18.3469	36.3129 17.3876	31.5115 17.5521
290003		1.1148	27.1099	28.1625	30.3373	28.5302
290005		1.1148	27.1531	27.6697	28.3366	27.7405
290006	1.2113	1.1713	26.3617	27.9502	31.7301	28.6339
290007		1.1148	35.4193	37.5559	38.1938	37.0494
290008		0.9476	26.4086	27.9714	27.3019	27.2130
290009		1.2126	27.6011	29.8019	36.2724	31.1485
290010		1.1148	23.8733	23.9654 31.0843	32.3966	23.9192 30.3319
290012		1.1140	27.2675 25.1726	26.1925	32.3900	25.6684
290019		1.1713	27.2484	28.6158	29.3650	28.4400
290020 h		1.1148	21.3094	21.6993	23.2102	21.9726
290021	1.7942	1.1148	28.3837	33.2116	32.7894	31.4357
290022		1.1148	29.8144	29.4422	29.9717	29.7410
290027		0.9181	17.8850	15.1448	23.9959	19.2838
290032		1.2126	29.4164	31.7105	31.6711	30.9714
290041		1.1148 1.1148	29.6801 30.1346	31.2941 33.9878	32.1423 34.2436	31.0892 32.9123
290042		1.1148	*	*	*	*
290044		*	*	*	37.1660	37.1660
290045	1.5722	1.1148	26.9319	30.9612	33.1513	30.7571
290046		1.1148	*	*	*	*
290047		1.1148	*	* *	*	*
290049		0.9929	*	*	*	*
290050		0.9929	*	*	*	*
300001		1.1732	29.4130	27.5032	29.2260	28.6856
300003		1.1732	27.8059	33.3560	34.7900	32.0288

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 1	Average hourly wage** (3 years)
300005	1.3933	1.1732	25.1869	25.6699	27.8000	26.2480
300006	1.2040	*	20.6787	23.3200	*	21.9235
300007	1.2792 1.1787	*	25.3125 26.9346	27.5028	*	25.3125 27.2341
300010 300011	1.1767	1.1801	27.3325	28.4044	30.9403	28.9361
300012	1.3674	1.1801	28.4234	30.5198	30.4972	29.7599
300013	***	*	23.1529	*	*	23.1529
300014	1.1975	1.1732	25.5059	27.5151	29.7667	27.6810
300015	1.0766	*	24.0620	*	*	24.0620
300016 300017	1.2302	1.2093	24.5498 28.3959	29.6957	29.9560	24.5498 29.3554
300017	1.3762	1.1732	28.0308	29.7209	29.4270	29.1023
300019	1.2847	1.1732	25.3845	25.9656	27.5672	26.3633
300020	1.2043	1.1801	26.8402	28.6723	30.8491	28.8340
300022	1.0801	*	23.5948	*	*	23.5948
300023	1.3573	1.2093	25.4873	28.6309	31.0040	28.5350
300024 300029	1.6816 1.7619	1.2093	23.9205 26.9484	29.0806	29.8117	23.9205 28.6663
300034	2.0346	1.1801	28.5375	29.7484	30.7676	29.7094
310001	1.7477	1.3344	33.9360	35.3612	41.7460	37.0533
310002	1.8743	1.3124	35.4567	37.3461	37.9183	36.8843
310003	1.2046	1.3344	31.1040	32.8935	36.2346	33.4692
310005	1.3036	1.1756	27.5690	29.0084	32.1319	29.6244
310006 310008	1.1971 1.3213	1.3344 1.3344	27.0436 29.5857	27.4545 31.2579	28.4771 32.6788	27.6600 31.1973
310009	1.2688	1.3124	29.7760	32.7384	33.6940	32.0244
310010	1.2824	1.1494	25.3139	28.5852	33.9552	29.3351
310011	1.2494	1.1517	28.5241	30.8612	31.2907	30.2391
310012	1.6339	1.3344	33.1622	34.6882	38.3590	35.4778
310013	1.2335	1.3124	28.5016	30.6248	31.0447	30.0707
310014 310015	1.9169 1.9641	1.1402 1.3124	32.7222 32.4980	29.7204 36.4776	30.0793 36.8818	30.6716 35.3134
310016	1.3110	1.3344	28.9788	33.9862	35.6154	33.1426
310017	1.3283	1.3124	28.0930	30.9233	32.2434	30.4707
310018	1.1910	1.3124	26.9399	30.3381	30.3234	29.2415
310019	1.6317	1.3344	31.0524	29.6592	30.3518	30.3803
310020 310021	1.5329 1.6480	1.3344 1.2445	29.3392 29.6308	30.6722 31.3410	33.5516 32.1929	31.1594 31.0468
310022	1.2433	1.1402	26.1914	28.2024	30.4043	28.3443
310024	1.3624	1.1756	27.5278	30.9171	33.3415	30.5987
310025	1.3074	1.3344	27.7960	31.1274	34.3687	31.3448
310026	1.1915	1.3344	25.3970	27.5171	29.1588	27.4335
310027	1.3612	1.1756	27.0982	28.8314	29.7792	28.8434
310028 310029	1.2632 1.9463	1.2445 1.1402	29.1101 29.1439	31.3849 30.7707	32.2977 32.9246	30.9901 30.9560
310031	3.0740	1.1402	30.2345	33.9685	37.0668	33.7978
310032	1.3131	1.1402	27.8754	27.5232	30.7865	28.7657
310034	1.3380	1.1402	27.8517	29.9162	31.7012	29.8441
310037	1.3574	1.3344	32.1471	35.0329	38.5415	35.3284
310038	2.0078	1.3124	32.1977	33.4822	35.9190	33.9520 29.1193
310039 310040	1.2524 1.3596	1.3124 1.3344	27.1054 28.0068	28.8292 34.1113	31.4278 33.8535	31.9439
310041	1.2785	1.1402	29.7335	32.8085	32.8391	31.7776
310042	***	*	29.0207	30.7358	34.4986	31.3194
310044	1.3696	1.1494	27.7752	31.3206	31.9678	30.3811
310045	1.7310	1.3344	32.6359	34.1060	36.7862	34.5413
310047	1.2972	1.1692	28.3415 28.4715	32.7880	34.1520	31.8914
310048 310049	1.3227	1.1756	32.7666	30.2025 27.8564	32.9681	30.5981 30.6033
310050	1.2374	1.3124	27.2276	27.3033	29.1733	27.9356
310051	1.3937	1.2445	32.0113	33.7168	35.0121	33.5859
310052	1.3400	1.1402	28.1498	30.8036	32.5778	30.4966
310054	1.2992	1.3124	30.6905	34.1860	34.4431	33.1002
310057 310058	1.3228 1.0663	1.1402 1.3344	26.4606 26.4816	29.5221 28.0815	31.1268 27.1555	29.1387 27.2335
310060	1.2379	1.2268	23.2146	25.1575	27.1555	25.3482
010000	1.23/8	1.2200	20.2140	20.10/0	21.0410	20.0402

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 ¹	Average hourly wage** (3 years)
310061	1.2564	1.1402	27.5400	28.2129	31.6648	29.0899
310063	1.3599	1.1756	28.3457	31.4884	31.9247	30.5720
310064	1.5579	1.1692	29.5979	33.4440	35.7607	32.9976
310067	***	*	26.8068	*	*	26.8068
310069	1.2817	1.1402	27.9656	28.1681	31.7642	29.4371
310070	1.3947	1.3124	32.1806	33.2310	34.3225	33.2892
310072	***	*	26.3520	*	*	26.3520
310073	1.8377	1.1402	29.6611	32.0329	32.6733	31.4821
310074	1.2559	1.3344	28.4361	29.4834	40.3494	32.6768
310075	1.3051	1.1402	26.2479	31.6870	31.5226	29.7730
310076	1.6632	1.3124	34.9428	36.4280	38.0643	36.4849
310077	***	*	30.7465	32.6644	34.6085	32.6385
310078	***	*	26.9589	29.8014	30.5761	29.1498
310081	1.2341	1.1402	26.4259	26.6136	30.1561	27.7568
310083	1.3011	1.3124	24.6563	28.2392	30.3580	27.6760
310084	1.2116	1.1402	29.9437	32.9001	33.5941	32.0363
310086	1.2338	1.1402	27.3601	29.3058	29.5566	28.7509
310088	1.1836	1.1692	25.5274	26.4966	29.9928	27.3251
310090	1.2726	1.1756	27.1661	30.8941	32.8191	30.2346
310091	1.1905	1.1402	27.1115	27.7204	29.3969	28.0754
310092	1.4261	1.1494	25.7071	29.4999	29.7958	28.3774
310093	1.1887	1.3124	25.8727	28.0401	29.1288	27.7853
310096	2.0324	1.3124	30.3675	34.4275	34.1524	33.0200
310105	1.2276	1.3344	30.9968	31.9769	30.1069	30.9957
310108	1.3650	1.3124	29.1548	30.1002	33.0172	30.7665
310110	1.2847	1.1494	27.8707	31.2164	33.2246	31.0640
310111	1.2017	1.1402	28.8692	30.7475	31.8393	30.5682
310112	1.2757	1.1402	28.9928	30.4192	31.2372	30.2639
310113	1.2396 1.2800	1.1402 1.2268	27.5203	29.6079	31.0436	29.4303 28.5347
310115 310116	1.2800	1.3344	26.2803 26.6287	29.6020 25.6976	29.5320 29.2748	28.5347 27.1753
310118	1.3309	1.3344	28.1238	28.8797	31.1803	29.3790
310119	1.8352	1.3124	35.6786	37.7876	43.1238	39.0388
310120	1.0722	1.2445	27.2010	31.4110	29.2535	29.2227
310122	1.8283	1.1402	*	*	20.2000	*
310123	2.4750	1.2107	*	*	*	*
310124	1.7405	1.1752	*	*	*	*
310125	2.8454	1.1756	*	*	*	*
320001	1.5514	0.9564	26.1962	26.9434	29.6182	27.7003
320002	1.4165	1.0808	28.6963	30.5158	32.0477	30.4670
320003	1.1746	0.9004	22.3911	28.1402	27.6222	25.8257
320004	1.3071	0.8375	24.0362	24.9481	24.7803	24.6220
320005	1.3399	0.9444	21.2164	23.8264	24.7543	23.2955
320006	1.3170	0.9808	22.5615	24.2812	26.9080	24.6222
320009	1.5505	0.9564	24.4237	22.8293	32.0116	25.7948
320011	1.1205	0.8817	23.1539	24.2279	25.6693	24.4158
320013	1.0989	0.9808	27.8671	28.9276	22.8283	26.0398
320014	1.1080	0.9124	26.7112	24.5310	27.2805	26.1224
320016	1.1374	0.8375	21.7001	23.5040	25.0835	23.4618
320017	1.1509	0.9564	23.6861	25.0286	31.6357	26.4139
320018	1.4287	0.9187	23.0915	23.2360	26.5109	24.0533
320019	1.6151	0.9564	31.2250	31.5192	27.8067	29.9839
320021	1.6455	0.9564	28.5620	27.2357	26.9918	27.4770
320022	1.1296	0.8375	22.1492	23.7160	23.9595	23.2809
320030	1.0508	0.8375	18.0990	22.1971	21.0378	20.3643
320033	1.1906	0.9808	24.1185	27.6393	31.7114	27.7016 23.3661
320037 320038	1.1408 1.2163	0.9564 0.8375	21.6080 21.2181	23.3999 20.1533	24.9657 21.7022	23.3001
320046	1.1630	v.oo/5 *	22.9114	24.3534	*	23.6315
320057	0.8166	1.4448	*	<u>-</u> 0504 *	*	£0.0013 *
320057	0.8100	1.4448	*	*	*	*
320059	0.8598	1.4448	*	*	*	*
320060	0.0398	1.4448	*	*	*	*
320061	0.8696	1.4448	*	*	*	*
320062	0.8792	1.4448	*	*	*	*
320063	1.2715	0.9714	24.9141	24.4696	25.0031	24.8079
	, .0	3.07.17			_5.0001	

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 1	Average hourly wage** (3 years)
320065	1.1465	0.9714	21.6189	26.6603	27.3163	25.4560
320067	0.8864	0.8375	20.4431	23.7745	24.9865	23.2172
320069	1.1134	0.8375	19.7296	20.9167	22.4128	21.0434
320070	0.9210	1.4448	*	*	*	*
320074	1.1367	0.9564	35.5980	22.2175	31.1332	29.2344
320079	1.0896	0.9564	23.8092	25.2105	26.1188	25.0788
320083	2.5957	0.9564	*	28.2114	26.6921	27.3103
320084	0.9782	0.8375	*	17.2511	17.5788	17.4297
320085	1.6768	0.9187		24.8752 33.4718	27.9944	26.5515 32.4179
330001	1.4963	1.3344	31.3735 29.3459	31.1924	30.9600	30.5168
330003	1.3462	0.8849	21.6506	22.9945	24.4326	23.0383
330004	1.2595	1.0660	23.9959	26.0445	28.0594	26.1032
330005	1.5832	0.9475	25.9287	29.0124	30.3200	28.3473
330006	1.2637	1.3344	29.7509	31.5370	33.6284	31.6658
330008	1.1398	0.9475	21.3269	21.8198	23.4429	22.1931
330009	1.2101	1.3344	35.8367	35.4986	36.2820	35.8724
330010	***	*	17.9178	19.6920	20.7477	19.2443
330011	1.3051	0.8963	20.3641	21.8008	25.1308	22.4271
330013	1.9897	0.8849	23.9070	24.5162	26.4578	24.9891
330014	1.3099	1.3344	35.4053	38.8123	42.1759	38.7252
330016	0.9839	0.8430	18.9388	28.4392	22.0493	22.4172
330019	1.2924	1.3344	32.3413	34.8266	38.5368	35.2561
330023	1.5694	1.3124	29.2669	31.6208	35.9428	32.4742
330024	1.7975	1.3344	36.5648	37.8398	42.7691	38.9000
330025 330027	1.0796 1.4412	0.9475 1.3124	19.7561 35.1325	20.2775 39.0717	21.2565 42.8001	20.4319 38.9689
330028	1.4221	1.3344	33.5312	34.2709	36.6498	34.7582
330029	0.4416	0.9475	18.6623	19.1589	23.2039	20.0783
330030	1.2251	0.9103	22.4368	22.9937	24.6174	23.2841
330033	1.1415	0.8430	21.3762	22.5681	24.5510	22.8107
330036	1.1250	1.3344	27.6813	28.9409	29.1884	28.5828
330037	1.1103	0.9103	19.6385	20.6904	22.3689	20.9100
330041	1.2523	1.3344	36.2481	36.0286	37.4883	36.5854
330043	1.3817	1.2971	34.1039	34.7480	39.1643	36.0514
330044	1.2921	0.8430	23.1450	24.1907	26.5669	24.6635
330045	1.3322	1.2971	34.4956	36.1893	38.1269	36.3069
330046	1.4267	1.3344	42.0900	44.8494	50.3152	45.6620
330047 h	1.2037	0.8849	21.1244	24.0678	24.3932	23.2876
330049	1.4486	1.2050	25.7022	29.2904	29.8350	28.3245
330053	1.0610	0.9103	19.6807	18.5290	20.6272	19.6035
330055	1.5570	1.3344	35.1393	38.4839	41.5934	38.4339
330056 330057	1.4398 1.7009	1.3344 0.8849	32.9295 22.6519	37.8444 24.4680	36.0135 26.4989	35.5703 24.5634
330058	1.3396	0.9103	19.5520	21.3727	22.2524	21.0787
330059	1.5292	1.3344	38.1019	39.7386	41.7343	39.8971
330061	1.2197	1.3344	32.7427	33.2848	36.0587	34.0671
330062	1.0437	*	21.4270	21.0464	*	21.2306
330064	1.2575	1.3344	38.5719	36.4276	38.0437	37.6527
330065	1.0550	0.9475	21.9192	23.9128	25.3043	23.6800
330066	1.3402	0.8849	23.0916	24.7941	29.1780	25.7537
330067	1.4340	1.3124	34.8416	26.4243	27.8900	29.2133
330072	1.3262	1.3344	32.7905	36.4336	37.8505	35.6797
330073	1.1309	0.9103	19.0781	20.1490	22.5592	20.5686
330074	1.2131	0.9103	20.2874	21.4274	22.6629	21.4464
330075	1.1128	0.9776	22.0240	22.4188	23.1592	22.5488
330078	1.4676	0.9475	22.7762	23.3981	25.8073	24.0112
330079 330080	1.2405	0.9380	22.1064	22.5237 30.1724	24.6054	23.1112 38.1641
330080	1.1770 1.0815	1.3344 0.8430	36.1171 22.6365	39.1724 21.5455	39.1417 22.5573	38.1641 22.2542
330085	1.0815	0.8430	23.2927	23.9568	25.3285	22.2542
330086	1.1423	1.3344	28.8424	29.1784	32.7675	30.3025
330088	1.0119	1.2971	31.2631	31.3973	34.0788	32.2485
330090	1.4341	0.8430	22.7721	23.6174	25.5351	23.9566
330091	1.3496	0.9475	22.5796	23.8063	25.9378	24.1384
330094	1.2589	0.9195	22.1495	23.0001	25.7116	23.5888

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 1	Average hourly wage** (3 years)
330095	***	*	28.9914	31.9872	*	30.3053
330096	1.2295	0.8430	22.4895	22.0337	22.7189	22.4123
330097	1.1614	*	19.2233	20.3189	*	19.7495
330100	0.9830	1.3344	32.8406	34.4621	38.3333	35.3017
330101 330102	1.9047 1.3901	1.3344 0.9475	39.2601 23.6141	38.7503 24.8184	40.1929 25.3879	39.4202 24.6115
330103	1.0832	0.8430	18.8763	21.1452	22.8242	20.9079
330104	1.3421	1.3344	33.7556	32.8818	33.7537	33.4694
330106	1.7405	1.3946	39.8554	41.4561	43.8210	41.7571
330107	1.2808	1.2971	31.8528	31.3888	34.9047	32.7622
330108	1.1345	0.8430	21.4680	22.2607	23.2919	22.3180
330111	1.0572	0.9475	17.6185	20.9387	20.3474	19.5817
330115	1.1783	0.9776	20.5101	23.3043	25.2373	23.0172
330119 330121	1.7608 0.9502	1.3344	36.5873 19.7388	39.1114	39.0528	38.2392 19.7388
330122	0.930Z ***	*	26.3849	*	*	26.3849
330125	1.7499	0.9103	24.6945	26.7118	27.2920	26.2802
330126	1.2948	1.2330	28.8299	31.6370	35.2257	33.1518
330127	1.3335	1.3344	43.7479	44.6103	45.3680	44.5695
330128	1.2929	1.3344	34.5289	37.7166	39.5197	37.2405
330132	1.0958	0.8430	16.3088	17.4946	21.0479	18.6411
330133 330135	1.3738 1.1829	1.3344 1.2330	44.0704 26.9969	36.6962 29.0837	39.3837 27.9132	39.8263 28.0387
330136	1.4890	0.9498	22.5447	24.2010	25.8531	24.2609
330140	1.7475	0.9776	23.5774	25.7573	27.6183	25.6362
330141	1.3530	1.2971	30.6616	34.8902	39.4701	35.1761
330144	1.0539	0.8430	20.1805	20.9935	22.9561	21.3523
330148	1.0086	*	18.5443	*	*	18.5443
330151	1.1567	0.8430	17.6782	19.1841	21.7664	19.4160
330152 330153	1.2919 1.7084	1.3344 0.8849	32.0616 21.9935	36.5136 24.5219	37.6721 26.4386	35.4330 24.3827
330157	1.3499	0.8649	23.6939	25.2312	26.5686	25.1886
330158	1.5442	1.3344	33.0067	32.2990	38.2033	34.5684
330159	1.4147	0.9776	24.1916	28.9094	28.2774	27.0713
330160	1.5935	1.3344	34.0373	34.1960	36.6208	34.9856
330162	1.3051	1.3344	31.3812	32.1783	34.9460	32.8100
330163	1.1685	0.9475	22.4644	24.0200	27.1933	24.6140
330164	1.4585 1.0595	0.9103 0.8430	24.4306 18.8777	28.8481 19.4360	27.7217 20.4680	26.9958 19.5876
330167	1.7569	1.3111	33.7365	34.4748	36.7653	35.0058
330169	1.4210	1.3344	38.3498	39.3361	45.3774	40.8481
330171	1.1969	1.3344	27.7810	30.0122	30.4005	29.3157
330175	1.1405	0.8430	21.1944	22.2067	23.8509	22.4425
330177	1.0032	0.8430	20.1850	19.6100	20.6338	20.1674
330180 330181	1.2285 1.3008	0.8849 1.3111	21.9641 35.9334	22.1920 38.5351	24.3761 41.4104	22.8406 38.6724
330182	2.3150	1.3124	36.3831	39.6038	40.9014	39.0147
330184	1.4414	1.3344	33.2843	34.4044	35.8102	34.5618
330185	1.2296	1.2971	31.0179	32.3466	36.3155	33.3774
330188	1.2554	0.9475	22.6803	23.9210	25.1153	23.9351
330189	1.0678	0.8849	19.2538	21.6229	22.3485	21.0123
330191	1.2884	0.8849	22.3719	24.0232	25.5656	24.0003
330193 330194	1.2852 1.8257	1.3344 1.3344	36.9866 39.9177	37.1807 43.9910	39.9327 45.5639	38.0621 43.2233
330195	1.7405	1.3344	38.6867	40.0206	39.7802	39.5880
330196	1.3702	1.3344	32.5883	33.2171	36.7178	34.1674
330197	1.0602	0.8430	22.3117	23.4291	26.8921	24.1957
330198	1.3833	1.3111	29.5359	30.5485	33.4930	31.2596
330199	1.1497	1.3344	32.7870	35.0059	38.6407	35.3981
330201	1.6340	1.3344	33.3215	39.3682	37.2064	36.5653
330202 330203	1.2830 1.4480	1.3344 0.9776	34.3545 26.2459	38.0129 26.5882	37.4150 32.1207	36.6508 28.2322
330204	1.3213	1.3344	30.3273	37.6849	39.6393	35.7350
330205	1.2893	1.2330	30.0101	32.1617	31.9510	31.4323
330208	1.1809	1.3344	28.2667	29.6282	32.1257	30.2183
330209	***	*	28.7213	29.7988	30.2038	29.5753

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 ¹	Average hourly wage** (3 years)
330211	1.1197	0.8430	21.1094	22.9966	24.4470	22.8189
330212	1.0833	* 0.9430	27.0585	27.2232	24 4040	27.1435
330213 330214	1.9407	0.8430 1.3344	21.7208 33.7670	22.5191 37.8500	24.4049 41.8719	22.9484 37.7532
330215	1.2677	0.8753	20.6343	22.6744	23.7361	22.3576
330218	1.0742	0.9776	21.4095	24.1106	26.9638	24.1725
330219	1.7200	0.9475	27.7400	29.3644	29.8889	28.9784
330221 330222	1.3810 1.2744	1.3344 0.8849	34.7033 25.9825	36.5539 23.9746	39.2080 25.8507	36.8501 25.2339
330223	1.0214	0.8430	18.4291	19.4229	23.3669	20.3266
330224	1.3170	1.0660	23.9379	25.7850	27.9231	25.9513
330225	1.1594	1.3111	28.9952	29.2719	32.3585	30.2732
330226	1.3144	0.9103	23.4783	21.8977	24.5646	23.3335
330229 h	1.2041 1.0002	0.8451 1.3344	19.5670 32.1101	20.6095 33.3175	21.9356 37.1297	20.7055 34.1085
330231	1.0219	1.3344	33.9324	36.9619	40.6697	37.0730
330232	1.1845	0.8849	21.4765	24.4531	26.3313	24.1028
330233	1.4767	1.3344	41.9968	45.5132	47.3497	45.0023
330234	2.2645	1.3344	36.8500	40.6314	48.2306	41.6811
330235	1.1728	0.9498	22.1217	23.3866	27.7031	24.3091
330236 330238	1.5487 1.1804	1.3344 0.9103	32.9391 19.2407	35.6347 20.8639	40.2386 21.7434	36.2954 20.6067
330239 h	1.2379	0.8451	20.4936	21.5397	22.3854	21.4715
330240	1.2387	1.3344	40.7478	39.9450	43.5753	41.4019
330241	1.8671	0.9776	27.7213	29.0882	30.2304	29.0730
330242	1.3280	1.3344	32.2178	33.6926	37.4870	34.4195
330245	1.8183	0.8430	21.6857	22.8003	26.1811	23.5901
330246	1.3313 0.7996	1.2971	31.6763	34.6329 32.2300	37.1611	34.4317 33.2530
330247 330249	1.2624	1.3344 0.9776	32.1733 21.4345	22.9834	35.4980 25.3246	23.2900
330250	1.3114	0.9436	23.0641	25.1664	27.1606	25.1436
330259	1.4059	1.3111	30.0488	31.9152	35.1514	32.4481
330261	1.2989	1.3344	30.9356	30.7942	33.7834	31.8723
330263	1.0244	0.8430	20.8456	22.4675	23.8738	22.4259
330264	1.2831	1.2249 0.9103	28.1501	30.0139	30.4701	29.5123 20.6677
330267	1.1868 1.4004	1.3344	19.9414 30.3709	20.4635 31.5478	21.6477 32.8540	31.6148
330268	0.9455	0.8430	18.9142	20.9720	25.3567	21.6448
330270	2.0099	1.3344	38.2605	42.2111	57.3596	45.4374
330273	1.3544	1.3344	29.5106	30.4720	37.0157	32.3792
330276	1.1345	0.8493	21.7826	22.2353	24.3300	22.7930
330277 330279	1.1812 1.4973	0.9407 0.9475	25.1438 23.4816	25.3582 25.2130	26.4535 27.4539	25.6841 25.4933
330285	2.0242	0.9103	27.1260	27.9018	30.1928	28.4120
330286	1.3546	1.2971	32.3244	33.3552	35.5895	33.8005
330290	1.7612	1.3344	36.3764	36.9981	39.4690	37.6044
330293	***	*	19.0290	*	*	19.0290
330304 330306	1.3151	1.3344 1.3344	33.4431 30.7551	34.5761 35.6640	36.2845 36.3552	34.8117 34.3235
330307	1.4656 1.2782	0.9865	25.4128	27.5699	29.2529	27.4683
330314	1.2414	1.2971	26.0150	25.5597	26.2719	25.9464
330316	1.2613	1.3344	33.1512	34.8623	34.8567	34.2777
330331	1.2588	1.3111	34.7052	36.1630	39.8402	36.9991
330332	1.2964	1.3111	31.8389	33.3050	35.1646	33.5211
330333 330338	***	*	33.7637	26.1917	37.7497	29.6102 32.1641
330339	0.8963	0.8849	27.3859 22.2812	31.3761 22.6569	23.5786	22.8372
330340	1.2445	1.2971	31.4322	33.9358	37.9000	34.3945
330350	1.5009	1.3344	39.3541	36.6250	41.1339	39.0080
330353	1.1907	1.3344	38.6962	37.6549	45.9692	40.8376
330357	1.2800	1.3344	34.3965	35.5975	38.2286	36.0366
330372 330385	1.2776 1.1492	1.3111 1.3344	30.1505 42.6671	32.6721 46.3221	36.1840 48.6175	33.1735 45.8492
330386	1.1492	1.0660	25.9228	27.9943	29.9366	28.0125
330389	1.8402	1.3344	34.7552	34.7669	37.1862	35.5757
330390	1.2436	1.3344	33.2628	36.0573	36.3842	35.1840

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 ¹	Average hourly wage** (3 years)
330393	1.7645	1.2971	34.8213	34.8095	38.0619	35.9147
330394	1.6420	0.8963	23.3505	25.2229	27.3388	25.3102
330395	1.3933	1.3344	35.4619	37.3096	36.3921	36.4001
330396	1.3709	1.3344	32.5345	35.0297	37.4998	35.0131
330397	1.3783	1.3344	34.5110	38.4741	37.5682	36.7644
330399 330401	1.1594 1.3727	1.3344 1.2971	33.6753	32.3688	34.7394 37.8559	33.5847 38.0657
330402	1.3/2/	1.29/1	35.7435 21.3302	40.6249	37.0009	21.3302
330403	***	*	*	23.1887	25.5163	24.2907
330404	0.8754	1.3344	*	*	*	*
330405	0.8833	1.3344	*	*	*	*
330406	0.8810	0.8849	*	*	*	*
340001	1.5110	0.9413	23.2436	25.0041	28.3988	25.4880
340002	1.7727	0.9339	25.1099	27.3349	28.4860	27.0177 22.9884
340003 340004	1.1293 1.4134	0.8629 0.9246	21.5562 24.2055	23.3066 25.4474	24.1602 26.6404	25.4364 25.4364
340005	1.0047	0.9240	22.9830	22.3814	20.0404	22.6704
340007	***	*	21.1519	*	*	21.1519
340008	1.1123	0.9413	24.2089	26.6314	26.7443	25.8867
340010	1.3575	0.9492	23.1349	24.5666	27.2105	24.9866
340011	1.0730	0.8629	18.1843	19.9484	19.7442	19.2759
340012	1.3185	0.8629	22.0583	22.7189	23.2288	22.6739
340013 340014	1.2331 1.5767	0.9413 0.9246	22.4787 24.4831	23.0261 25.1872	23.9492 27.4888	23.1580 25.7544
340015 h	1.3261	0.9246	24.3870	26.2276	28.0585	26.2469
340016	1.2863	0.8629	22.7574	23.0359	25.6454	23.8229
340017	1.3145	0.9264	22.8879	23.8229	25.7780	24.1806
340018	1.2057	*	20.3840	23.7243	*	21.9193
340019	***	*	17.8768	*	*	17.8768
340020	1.2236	0.8836	24.1955	23.7995	26.4465	24.8057
340021 340023	1.2829 1.3620	0.9413 0.9264	23.6884 23.2844	26.0995 24.4897	29.4865 26.4225	26.4598 24.7518
340024	1.1474	0.8629	21.2671	22.2521	23.6638	22.4124
340025	1.2753	0.9264	20.9915	21.2276	23.5881	22.0066
340027	1.1478	0.9223	22.6107	23.6326	25.5973	24.0155
340028	1.5420	0.9453	24.6836	26.3298	28.0323	26.3670
340030	2.0378	0.9677	27.4664	29.0122	29.6630	28.7249
340032 340035	1.4145 1.0841	0.9413 0.8629	24.8031 21.2407	26.7475 23.5476	26.5958 23.9669	26.0871 22.9480
340036	1.3211	0.8029	22.2089	25.2077	27.2690	24.9888
340037	1.0333	0.8845	22.5089	21.6411	25.6262	23.3128
340038	1.2307	0.8629	14.0203	14.0713	22.4829	16.1171
340039	1.2930	0.9413	25.6605	27.1275	27.4457	26.7719
340040	1.9334	0.9329	24.1523	26.3325	27.6626	26.0809
340041	1.2366	0.8991	23.0497	23.6600	24.3595	23.7226
340042	1.1902	0.8629	22.1107	23.0236	25.0110	23.3845
340045	1.0101 0.9491	*	21.7089 14.5004	23.1918	*	21.7089 18.3297
340047	1.8352	0.9246	25.3727	25.0605	27.4022	25.9687
340049	1.9006	0.9677	22.3082	30.4827	30.6791	27.8941
340050	1.0657	0.9245	21.4511	24.2533	26.0365	23.9274
340051	1.2164	0.8860	21.9069	23.4091	23.9612	23.1178
340053	1.5667	0.9413	26.9361	27.7261	27.8577	27.5165
340055	1.2390	0.8991	24.3728	24.1057	26.0646	24.8292
340061	1.1171 1.7793	0.8982 0.9677	22.4303 26.6657	22.8657 27.5594	22.9097 27.0089	22.7415 27.0858
340064	1.0783	0.8629	22.3631	22.9143	23.4233	22.8967
340065	***	*	20.8413	*	*	20.8413
340068	1.1865	0.9473	20.8600	21.8830	22.6814	21.8045
340069	1.8830	0.9775	27.5045	27.4473	29.3439	28.1186
340070	1.2875	0.9077	23.6045	24.9033	25.3226	24.6210
340071 340072	1.0889 1.1717	0.9492 0.8629	22.1854 21.3320	25.4537 23.1163	26.3921 25.2493	24.7344 23.1923
340073	1.1717	0.8629	29.4189	30.2061	30.9849	30.2298
340075	1.2075	0.8991	24.1297	26.0225	25.1551	25.0697
340084	1.1423	0.9413	21.3227	21.2580	21.1364	21.2332

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 ¹	Average hourly wage** (3 years)
340085 h	1.2040	0.9359	23.0890	23.9793	26.5164	24.4669
340087	1.2098	0.8629	18.4202	22.0070	22.4287	20.8329
340088	***	*	24.3299	*	*	24.3299
340090	1.3158	0.9722	21.7173	23.4542	26.4031	24.0204
340091	1.5461	0.9246	24.9411	25.8266	27.1285	25.9994
340096 h	1.1970	0.9359	23.6345	25.2169	24.9035	24.5909
340097	1.1960	0.8629	22.5775	24.2127	26.2228	24.3086
340098 340099	1.4746 1.2434	0.9413 0.8629	25.4823 20.0178	27.3308 20.3683	28.2493 21.8564	27.0338 20.7359
340104	0.8626	0.8845	14.3252	15.7521	16.1204	15.4033
340106	1.1025	0.8629	22.6979	22.4894	26.0892	23.7195
340107	1.1902	0.8900	22.5583	22.9698	24.1762	23.2448
340109	1.2563	0.8774	22.3826	23.4419	25.4464	23.8115
340113	1.8306	0.9413	26.0776	28.2568	28.5587	27.6668
340114	1.6165	0.9775	25.4533	26.6813	28.3222	26.8414
340115	1.6125	0.9677	25.1907	25.0212	26.7592	25.6788
340116 340119	1.7199 1.2018	0.8991 0.9413	26.1641 22.4821	25.3213 24.2287	27.5881 25.6226	26.3694 24.1679
340120	1.0279	0.8629	21.8548	23.0916	25.0226	23.6615
340121	1.0711	0.9771	20.3701	21.7576	23.1343	21.7704
340123	1.2870	0.8982	23.1879	26.1083	26.0637	25.1328
340124	1.0344	0.9492	18.3866	20.8018	22.2988	20.3755
340126 h	1.2909	0.9492	23.5405	25.0189	26.9866	25.2157
340127	1.1812	0.9677	24.6096	25.7831	26.4746	25.6406
340129	1.2778	0.9413	24.1356	25.4902	25.7976	25.2063
340130	1.3281	0.9413	23.0937	25.2941	26.1717	24.9701
340131 340132	1.5356 1.1893	0.9223 0.8629	25.2989 20.4222	27.9358 21.3521	27.4750 23.5856	26.9429 21.8115
340132	1.0427	0.8937	22.1588	22.5558	23.4678	22.7488
340137	0.9093	0.8991	29.9903	21.0642	22.1742	24.9952
340138	0.8935	0.9775	27.4767	21.3670	*	24.4228
340141	1.6224	0.9771	24.8132	27.3355	29.3878	27.2574
340142	1.2073	0.8629	22.1298	22.9907	26.6886	23.9952
340143	1.4998	0.8991	24.8904	25.3633	28.0082	26.0834
340144	1.2658	0.9413	25.6538	27.2686	26.1864	26.3644
340145 340146	1.2978	0.9413	23.7028 18.8354	23.7131	25.8459	24.4499 18.8354
340147	1.3146	0.9492	23.9998	25.4534	26.9162	25.4873
340148	1.5797	0.9246	22.4205	23.5880	25.3660	23.7678
340151	1.0972	0.8629	22.2613	22.0052	22.7736	22.3509
340153	1.8456	0.9413	25.7078	26.4896	27.6509	26.6150
340155	1.4236	0.9677	28.8758	30.4940	30.3443	29.9331
340156	0.8399	1.4448	*	*	*	*
340158	1.1289	0.9771	23.4724	26.4849	27.7816	25.8346
340159 340160	1.1328 1.2984	0.9677 0.8629	22.1872 19.1330	23.2991 20.7525	24.2588 21.7923	23.2614 20.5885
340166	1.3344	0.9413	25.7398	26.0557	27.1132	26.3392
340168	0.3885	0.9771	16.8076	17.3249	*	17.0785
340171	1.1745	0.9413	27.2074	28.2734	27.8539	27.7953
340173	1.2711	0.9775	26.6128	27.5072	28.3502	27.5598
340177	1.1482	0.8629	*	24.7471	26.7155	25.7127
340178	***	*	*	28.7219	*	28.7219
340179	***	*	*	*	34.1895	34.1895
340182 340183	1.1072	0.9413	*	*	27.8071	27.8071
350002	1.7643	0.7868	20.6474	22.0283	22.4308	21.7095
350003	1.2026	0.7868	25.3076	21.8061	23.9638	23.5735
350004	***	*	27.5891	*	*	27.5891
350006	1.6026	0.7868	19.5870	19.4985	21.2726	20.1814
350009	1.1021	0.8367	20.7014	23.0873	23.8681	22.5713
350010	1.1262	0.7868	18.5682	19.1965	20.1290	19.3134
350011	1.9964	0.8367	22.3896	23.1947	23.8400	23.1866
350014 350015	0.8987 1.6818	0.7868 0.7868	18.5360 18.6381	17.7565 20.1161	19.1685 20.9046	18.4980 20.0046
350017	1.3450	0.7868	20.1943	21.0243	22.4359	21.1961
350017	1.6938	0.8367	24.2382	22.1960	23.2018	23.1277
	1.0000	5.0007	. 24.2002		. 25.2010	20.1277

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

	Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 ¹	Average hourly wage** (3 years)
		***	*	14.2262	*	*	14.2262
		0.9922	0.7868	19.2282	18.9978	20.2722	19.5036
			*	20.9732	00.0545	*	20.9732
		1.0429 0.8756	1.4448	18.6546	22.0515	*	20.3874
		0.8734	1.4448	*	*	*	*
		2.0102	0.8367	24.4464	25.2836	25.2365	25.0036
		1.4313	0.9522	23.7750	23.9101	25.8670	24.5011
360002		1.2034	0.8683	22.6923	24.5789	24.5155	23.9553
360003		1.8529	0.9522	26.3180	27.5029	28.9672	27.5926
		1.9782	1.0076	25.7041	28.1698	30.1363	27.9988
		1.2993	0.8683	23.2545	24.5714	26.2632	24.7224
		1.6016	0.8925	23.2659	23.1012	25.0007	23.8095
		1.2404 1.3120	0.8683 0.9891	22.0262 22.4482	23.1178 25.5340	23.7825 27.6036	23.0286 25.1498
		1.3449	1.0076	25.5913	27.5470	30.1416	27.9504
		1.1157	0.8925	25.1588	26.8129	27.0893	26.3622
		1.1261	0.9891	23.8305	25.3861	27.1017	25.4747
		1.4681	0.9522	24.6587	26.1283	27.8031	26.2104
360017		1.7961	1.0076	25.4969	27.2910	29.8525	27.5687
360019		1.3205	0.9229	24.1105	25.5926	26.9178	25.5496
		1.6193	0.9229	22.3795	24.4343	23.6400	23.5072
		***	*	24.0612	23.5793	*	23.9138
		1.4649	0.9345	23.6574	25.5633	27.4533	25.7422
		1.3013 1.6771	0.9185 0.9229	22.3303 24.7093	23.5898 25.4894	25.5379 27.4454	23.7870 25.8825
		1.1403	0.9455	20.8778	22.7785	24.3216	22.6844
		***	*	24.4324	*	*	24.4324
	h	1.1673	0.8925	22.9759	23.2638	25.0034	23.7556
360034		***	*	25.1366	*	*	25.1366
360035		1.7578	1.0076	25.6895	27.5220	30.0172	27.8468
360036		1.2041	0.9229	25.0910	27.6094	27.8343	26.8887
		1.4119	0.9396	25.1615	24.3982	29.0046	26.0800
		1.5113	0.9522	24.8294	22.8009	25.4275	24.3511
		1.4784	0.9891	22.5921	24.0218	23.9783	23.5606
		1.1446 1.4863	0.8683 0.9396	22.8729 23.2625	24.0942 24.1080	24.8570 26.1522	23.9448 24.5632
		1.1059	0.8683	20.4724	21.8411	21.5619	21.2954
		1.2098	0.9522	23.8918	25.0775	25.4673	24.8344
		1.0101	*	17.1973	21.7248	*	19.5322
360048		1.8470	0.9455	27.2274	28.8107	29.3415	28.4551
360049		***	*	24.2605	25.8367	26.2222	25.4133
		1.6989	0.9185	25.1785	25.7556	26.8501	25.9475
		1.6238	0.9185	23.3285	24.5405	26.2066	24.7059
360054		1.3343	0.8683	20.3176	23.0376	22.9359	22.1078
		1.4216 1.6228	0.8799 0.9522	25.1475 23.4638	26.3112 23.1024	27.3941 26.5318	26.2813 24.3288
		1.0703	0.8683	22.7943	23.1024	23.8119	23.3587
		1.5720	0.9396	25.5222	25.3516	29.3624	26.7991
		1.4853	1.0076	26.8091	28.6518	31.7422	29.1985
		1.6118	0.8799	22.8729	22.2393	25.2336	23.4358
360065		1.2488	0.9229	24.0868	26.3036	28.0405	26.2187
360066		1.5177	0.8925	25.2316	27.3362	27.1436	26.5842
		1.8819	0.9455	23.7895	25.8414	26.2065	25.2843
		1.2022	*	25.7032	24.2444	*	24.9438
	h	1.6528	0.9076	23.1687	24.8863	27.2389	25.0981
	h	1.1233 1.4669	0.8925 1.0076	21.6176 23.0464	22.0786 24.4332	23.4619 25.9589	22.3649 24.5327
		1.2451	0.9455	23.6172	24.4332	25.8959	24.5327 24.8062
		1.1818	0.9396	24.7610	26.8453	26.8925	26.2391
		1.4645	0.9522	22.5943	25.9369	28.1013	25.5377
		1.5046	0.9396	24.7086	25.6505	28.4449	26.2934
		1.3039	0.9229	24.6821	26.1313	25.7885	25.5366
360079		1.7955	0.9522	25.8762	26.0935	27.2437	26.4405
		1.1205	0.8683	19.5436	20.8309	21.4526	20.6516
		1.3216	0.9455	25.1439	27.5695	29.8366	27.4067

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

	Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 ¹	Average hourly wage** (3 years)
		1.3698	0.9396	27.4264	27.1197	29.2561	27.9731
		1.5741	0.9076	25.2059	25.8415	27.3917	26.1468
		2.1008	1.0076	27.5792	29.0081	31.5800	29.4097
		1.5387	0.9185	22.3005	22.1859	25.4218	23.3052
		1.3796	0.9396	25.9131	25.4040	29.6579	27.0113 23.0373
		1.0925 1.5204	0.8683 0.9455	21.0253 24.4291	22.7951 26.7717	25.3465 29.0199	26.7037
		1.3005	0.9396	26.0541	27.5067	25.8657	26.4696
		1.2158	1.0076	23.5100	25.6618	25.4954	24.9203
		1.0395	*	24.1238	*	*	24.1238
		***	*	27.1864	26.6348	*	26.9890
		1.3002	0.9455	24.6984	26.1275	26.4635	25.8077
360096		1.1175	0.8690	22.2333	24.6317	25.9275	24.2629
360098		1.3877	0.9396	23.6413	24.8447	25.5973	24.7171
360100		1.2102	0.9076	19.0616	23.0561	25.4523	22.2034
		1.3462	0.9396	27.7584	26.6208	27.6030	27.3232
		1.1133	*	21.6450	24.1588	*	22.9406
		1.0899	0.9455	24.5365	25.9697	24.6095	25.0331
		1.0637	0.8683	24.3236	25.4184	26.3132	25.3718
		1.9254	0.9455	26.7880	28.6784	30.5715	28.6338 25.2192
		1.2674 1.2514	0.9522 0.9396	23.5138 24.0232	25.6493 24.0052	26.6556 25.9841	25.2192 24.7261
		1.2448	0.9522	23.4049	18.0655	25.1717	22.2666
		1.5377	0.9236	24.2526	27.7289	27.3884	26.5027
		1.2561	1.0502	25.2037	24.5592	27.4442	25.7321
		1.4586	0.9396	24.1761	22.6523	27.1920	24.5927
360125		1.2270	0.8683	22.6871	22.1096	24.1388	22.9762
360128		0.9990	*	18.5954	21.0066	*	19.7451
360129		0.8857	*	19.5336	*	*	19.5336
		1.4118	0.9396	21.7015	22.9762	25.6570	23.6771
		1.2592	0.9076	23.1730	24.0495	25.3719	24.2272
		1.2994	0.9522	25.7991	25.9453	27.7724	26.5108
		1.6008 1.7560	0.9185 0.9522	23.9457 25.3013	24.6208 29.2975	29.8684 27.7339	26.1195 27.4399
		1.6603	0.9322	25.7647	26.9522	26.1250	26.2803
		1.5889	0.8799	31.0127	27.7085	29.7937	29.5044
		1.0137	*	21.2084	22.1610	*	21.6897
360143		1.3747	0.9396	23.8938	24.6306	28.3057	25.6818
360144		1.3023	0.9396	26.7160	25.7079	28.2473	26.9251
		1.7496	0.9396	23.4743	25.8268	27.1908	25.4981
		1.3943	0.8683	22.7172	24.1953	25.5854	24.2037
		1.0666	0.8683	24.4873	26.1946	26.0837	25.6280
		1.2350	0.9229	25.8703	24.7667	25.1217	25.2499
360151		1.6376 1.5882	0.9076 1.0076	22.2179 24.9894	24.8629 27.9147	25.3780 29.9425	24.1185 27.4346
000.02		1.0101	0.8683	19.0844	19.0226	19.8499	19.3351
		***	*	17.1274	*	*	17.1274
		1.4975	0.9396	23.9466	25.3909	26.9127	25.4352
		1.1803	0.8896	22.6709	24.0510	24.3281	23.6924
360159		1.2244	0.9891	25.7108	33.1613	29.1529	29.1603
		1.3494	0.8799	22.6005	24.3792	25.4433	24.1298
360163		1.8900	0.9522	25.7966	26.9728	28.9742	27.2351
		1.2797	1.0076	22.9359	24.3620	28.5474	25.5871
		1.4075	0.9396	23.4727	26.3501	27.5669	25.7998
		1.2887	0.9185	22.8167	24.9990	26.8586	24.9193
		1.2821	0.9891	24.6152	26.5949	28.1531	26.5193
		1.1840 1.5975	0.9522	23.4256 25.9429	24.4712 28.8645	30.0311	23.9572 28.3424
		2.2426	0.9322	26.8720	26.1514	29.6633	27.5621
		1.2212	0.8690	21.8641	23.7173	25.6800	23.7718
		1.5971	0.9185	23.8362	24.8173	24.9353	24.5560
		1.1149	1.0076	24.2512	24.2136	26.3756	24.9449
		1.3004	0.9396	26.2976	26.7577	26.4616	26.5055
		1.4943	*	22.3297	*	*	22.3297
		1.1153	0.9396	25.8043	26.1280	25.0922	25.6560
360197		1.1452	0.9891	24.7539	27.0896	28.7580	26.9161

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 1	Average hourly wage** (3 years)
360203	1.1895	0.8683	21.5564	22.1414	24.4433	22.7702
360210	1.1790	1.0076	26.5665	27.8415	28.2975	27.5983
360211	1.5510	0.8683	23.0884	22.5449	25.7053	23.7085
360212	1.3353	0.9396	24.5310	25.2756	25.6080	25.1512
360218	1.1597	1.0076	24.4720	27.4288	29.8662	27.3259
360230	1.5314	0.9396	26.6444	27.0223	28.8018	27.5510
360234	1.3695	0.9522	23.3325	24.3625	25.9360	24.4659
360236	1.2018	0.9522	21.3795	35.8144	25.6728	25.5006
360239	1.3109	0.9185	24.4398	25.2474	27.2939	25.7721
360241	0.5403	0.9229	24.8089 18.7966	24.7001 19.1885	23.0662 20.6504	24.0127 19.5796
360247	0.3403	1.0076	25.1083	19.8892	19.3678	21.2374
360253	2.3749	0.9522	28.2555	30.4276	33.2371	30.6962
360257	***	*	17.9652	*	*	17.9652
360258	1.4162	1.0076	*	*	*	*
360259	1.2033	0.9455	*	25.1338	25.9878	25.5797
360260	***	*	*	27.3903	*	27.3903
360261	1.7902	0.8828	*	22.5431	22.3614	22.4466
360262	1.3153	0.9455	*	27.1680	28.6995	27.9424
360263	1.7093	0.8925	*	20.8884	25.1652	23.0327
360264	***	*	*	*	36.0754	36.0754
360265	***	*	*	*	36.6265	36.6265
360266	2.0044	1.0076	*	*	*	*
360268	2.3691	0.9185	*	*	*	*
360269	1.8584	0.9522	*	*	*	*
360270	1.0566	0.8803	*	*	*	*
360271	1.6999	0.9522	*	*	*	*
360272	1.4382	0.9522	*	*	*	*
370001	1.7856	0.8310	26.2391	27.7245	26.0194	26.6463
370002	1.1720	0.7847	19.7718	20.1479	22.0475	20.6857
370004	1.0851	0.8626	24.7694	25.3919	26.7434	25.6070
370006	1.2837	0.8018	16.9469	20.1063	22.4802	19.9164
370007	1.0590	0.7847	17.2084	17.6547	19.4036	18.0946
370008 370011	1.4120 1.0010	0.8807 0.8807	22.7419 19.2266	24.2978 19.7821	25.3352 21.9649	24.2070 20.2233
370013	1.5031	0.8807	22.6451	24.9295	26.5364	24.6901
370014	1.0122	0.8678	24.8138	25.3576	25.9393	25.3810
370015	0.9430	0.8310	21.1833	23.6693	24.7547	23.2012
370016 ^h	1.5301	0.8807	24.2737	25.4062	26.7938	25.5406
370018	1.4510	0.8310	23.4286	23.5336	25.3574	24.1040
370019	1.2292	0.7847	19.6761	21.4474	22.0221	21.0496
370020	1.3377	0.7847	17.4835	18.5046	20.8723	18.9827
370022	1.2439	0.8485	18.4217	19.6495	24.6099	20.7872
370023	1.2657	0.7931	20.6002	21.5762	23.5170	21.9281
370025	1.2626	0.8310	22.0287	23.5659	23.9873	23.2001
370026 h	1.5154	0.8807	22.5734	23.0848	25.8428	23.8245
370028	1.8260	0.8807	24.8661	26.6153	27.8621	26.4558
370029	1.0699	0.7847	22.1163	23.9956	26.8508	24.3082
370030	1.0256	0.7847	20.3315	23.3037	24.1484	22.6192
370032	1.4447	0.8807	21.6029	23.4843	24.8626	23.3438
370034	1.2229	0.7847	17.6247	18.2341	19.5099	18.4644
370036 370037	1.0488 1.6556	0.7847 0.8807	16.9222 23.1256	17.7576 23.9685	19.2319 24.9553	17.9906 24.0690
370039	1.1275	0.8310	21.0793	21.8220	23.0254	21.9825
370040	1.0001	0.7850	21.1061	22.4048	22.8356	22.0894
370041	0.8646	0.7630	22.0082	22.3496	22.6730	22.3396
370042	0.8617	*	15.3613	*	*	15.3613
370043	***	*	21.5588	*	*	21.5588
370045	***	*	14.6370	*	*	14.6370
370047	1.4124	0.8526	19.7112	20.4657	24.1991	21.5082
370048	1.1157	0.7847	17.7273	19.2464	21.4542	19.4534
370049	1.3211	0.8807	21.6878	23.2171	23.8844	22.9341
370051	1.0780	0.7847	14.6254	17.2618	19.8329	17.1502
370054	1.2316	0.7847	21.5521	21.5043	22.4652	21.8463
370056	1.8033	0.8485	21.7647	22.0312	24.3986	22.7612
	0.9659	0.8310	18.0426	19.7284	19.8683	19.2303

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 ¹	Average hourly wage** (3 years)
370060	0.9262	0.8310	23.8007	18.7592	19.9026	20.7237
370064	0.9613	*	14.1879	14.2053	*	14.1969
370065	1.0205	0.7968	20.6537	20.0226	21.2343	20.6475
370072	0.7998	0.7847	14.6387	9.9616	11.7942	11.6722
370076	***	*	21.5461	*	*	21.5461
370078	1.5606	0.8310	23.9507	25.4068	27.8611	25.7573
370080	0.8753	0.7847	17.4857	18.0665	19.9596	18.3808
370083	0.9415	0.7847	15.3447	16.8836	19.2568	17.0089
370084	0.9732	0.7847	17.2735	16.6514	19.6229	17.8487
370089	1.1374	0.7847	19.9021	20.4699	20.6153	20.3285
370091	1.5508	0.8310	22.9893	23.3357	24.1438	23.4902
370093	1.5068	0.8807	25.7296	26.9774	26.0459	26.2286
370094	1.3799	0.8807	22.0591	23.1191	24.5555	23.2775
370095	0.9969	0.0405	16.5310	00 0007	00.0400	16.5310
370097	1.2874	0.8485	21.7150	22.3267	26.3168	23.5755
370099	1.0484	0.8310	20.5217	20.5075	24.9971	21.8558
370100 370103	0.9832 0.9692	0.7847 0.8225	14.1883 16.1408	14.7712 17.8018	17.9731 18.8933	15.6922 17.7409
370105	1.8523	0.8807	22.1584	23.8978	26.7974	24.4407
370106	1.3427	0.8807	24.2393	26.5867	27.8979	26.3354
370112	0.9369	0.7850	15.4941	15.4471	16.0592	15.6799
370113	1.1590	0.8816	23.3011	25.3565	26.9720	25.1507
370114	1.5610	0.8310	21.0603	21.7880	23.0006	21.9699
370123	***	*	22.8174	25.4733	*	24.1041
370125	0.8736	*	17.2013	17.1361	*	17.1678
370138	1.0853	0.7847	19.8308	18.3113	20.2527	19.4299
370139	0.9541	0.7847	17.8900	18.5225	19.4287	18.6030
370148	1.5521	0.8807	24.6194	25.2348	27.0905	25.6859
370149 h	1.2217	0.9163	21.0608	22.3537	23.3493	22.3941
370153	1.0646	0.7847	18.5417	19.8349	23.2779	20.6226
370156	0.9826	0.7847	16.6572	19.4743	25.2562	20.2987
370158	1.0099	0.8807	17.3161	18.5578	20.7641	18.8928
370166	0.9239	0.8310	21.9070	23.1681	25.1107	23.3387
370169	0.9628	0.7847	15.7686	15.8002	16.8253	16.1118
370170	0.9169	1.4448	*	*	*	
370171 370172	0.8726 0.8913	1.4448 1.4448	*	*	*	*
370172	0.8768	1.4448	*	*	*	*
370174	0.8535	1.4448	*	*	*	*
370176	1.1613	0.8310	23.0324	25.0509	24.7655	24.2947
370177	0.9558	*	15.6723	14.7193	*	15.1880
370178	0.8981	0.7847	14.9767	14.6070	16.0179	15.2024
370179	0.8657	*	22.8322	23.5794	*	23.1700
370180	1.1253	1.4448	*	*	*	*
370183	0.9418	0.8310	20.5025	21.8147	24.7103	22.3478
370190	1.3464	0.8310	24.9455	33.1137	29.1568	29.1592
370192	1.9078	0.8807	26.1338	31.4930	27.6367	28.3465
370196	0.7963	0.8807	29.4383	22.6824	22.3498	24.9573
370199	0.8458	0.8807	23.7340	26.0451	23.3988	24.3753
370200	1.1956	0.7847	18.1008	17.6317	20.5175	18.7812
370201	1.5268	0.8807	23.1240	23.3550	23.8090	23.4164
370202	1.5545	0.8310	24.4920	25.1181	26.1132	25.2844
370203	1.8944	0.8807	21.2426	23.5190	22.8869	22.6047 26.4254
370206 370209	1.6047	0.8807	27.4495 32.8278	26.0912	26.0353	32.8278
370210	2.0667	0.8310	20.0360	21.2682	23.3786	21.6821
370211	1.0007	0.8807	*	26.5344	27.8737	27.2393
370212	1.5926	0.8807	*	21.0758	19.1720	20.0446
370213	***	*	*	29.3777	*	29.3777
370214	1.0294	0.7847	*	*	20.6217	20.6217
370215	2.4584	0.8807	*	32.3589	31.5652	31.9072
370216	1.9373	0.8310	*	*	27.2428	27.2428
370217	***	*	*	*	26.8676	26.8676
370218	2.5607	0.8310	*	*	*	*
370219	1.9048	0.8203	*	*	*	*
370220	1.8802	0.8807	*	*	*	*

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 ¹	Average hourly wage** (3 years)
370222	1.5519	0.8807	*	*	*	*
370223	0.8553	0.8807	*	*	*	*
380001	1.3131	1.1210	27.8554	30.0103	29.5842	29.1874
380002	1.2508	1.0109	26.3348	27.1861	30.3385	27.9959
380004 380005	1.7111 1.3310	1.1210 1.0756	28.2466 28.0682	30.5172 30.2211	32.6901 30.9087	30.5227 29.8079
380006	***	1.0750	26.0475	*	*	26.0475
380007	1.9213	1.1210	31.5207	33.9969	33.9601	33.1659
380008	1.2499	*	25.4494	25.8356	*	25.6457
380009	1.9924	1.1210	30.4198	31.7042	32.4016	31.5282
380010	***	*	27.5291	30.2957	34.4208	30.5511
380014	1.9310	1.1334	27.7255	29.9648	33.6078	30.4640
380017	1.8509	1.1210	31.7440	32.2447	34.2605	32.7205
380018	1.9440	1.0756	27.8952	28.0701	30.9923	29.0266
380020	1.3712 1.4866	1.0966 1.1210	25.8320	28.3563 29.3295	29.6053 29.2164	27.9511 29.2804
380021 380022	1.2560	1.0956	29.3001 27.8683	29.2642	30.1742	29.2604
380023	1.2145	1.0930	23.7073	26.5439	*	25.1052
380025	1.3229	1.1210	30.2628	33.2105	35.5085	33.0344
380026	1.1249	*	26.5217	*	*	26.5217
380027	1.2759	1.0546	23.8758	25.5161	26.4982	25.3546
380029	1.2926	1.0358	26.2070	26.9966	28.7994	27.4405
380033	1.7307	1.0966	29.7995	30.8767	33.4828	31.4177
380035	***	*	26.4784	*	*	26.4784
380037	1.3314	1.1210	27.1884	30.5818	32.4033	30.1315
380038	1.3183	1.1210	30.5903	34.2303	34.5971 38.0988	33.1176 33.2914
380039 380040	1.2545	0.9979	30.1544 28.4373	32.3959 32.0103	31.2286	30.6913
380047	1.7726	1.0483	27.8385	29.8627	31.0584	29.6496
380050	1.4271	1.0404	24.2416	25.6190	27.1814	25.7264
380051	1.5524	1.0358	28.1305	29.7219	30.8891	29.6284
380052	1.2991	0.9979	22.6799	24.9476	25.6085	24.4057
380056	1.0278	1.0358	25.0068	25.1475	27.7253	26.1471
380060	1.4037	1.1210	30.2507	30.7041	32.0101	31.0140
380061	1.6423	1.1210	29.5145	29.8217	32.3699	30.6164
380066 380071	1.3325	1 1010	27.5412	0.0000	0.0000	27.5412
380071	1.3323	1.1210	29.5740 22.5275	30.2304	31.7761	30.5464 22.5275
380075	1.3158	1.0756	27.4795	29.0368	33.8962	30.0594
380081	1.1837	0.9979	21.0708	21.8850	26.8150	23.3016
380082	1.2099	1.1210	30.2721	32.3002	35.6709	32.8206
380089	1.3612	1.1210	30.8396	33.4214	34.6015	32.9212
380090	1.2590	1.0880	33.6822	34.4536	33.0990	33.7224
380091	1.3914	1.1210	35.7002	33.8950	39.9703	36.5066
380100	1.7000	1.1210	*	*	*	*
390001	1.6514	0.9146	22.4407	22.5309	23.6075	22.8571
390002	1.2598 1.1444	0.8568 0.9146	23.0113 21.3182	22.4388 21.6478	24.7867 23.3672	23.4162 22.0945
390004	1.6363	0.9373	23.4063	24.3249	24.4068	24.0843
390005	0.9813	*	19.0318	*	*	19.0318
390006	1.8675	0.9230	23.3960	25.1216	26.8581	25.1560
390008 h	1.1478	0.8568	21.0021	22.2680	22.8041	22.0150
390009	1.7189	0.8832	24.2789	25.5482	26.7462	25.5422
390010	1.1867	0.8568	21.6273	23.5390	24.5785	23.2050
390011	1.2870	0.8574	19.8602	21.9279	21.4856	21.0733
390012	1.2963	1.0996	*	28.5076	30.7542	29.6464
390013	1.2228	0.9230	23.3180	24.0044	25.0037 23.2095	24.1006 21.8911
390016 h	1.2680	0.8568	19.9899 20.6575	21.9549	23.2095	20.6575
390017	1.1313	1.0093	21.5137	23.4636	24.0538	23.0231
390022	***	*	31.0971	29.0710	30.3565	30.1071
390023	1.2139	1.0996	27.1600	31.7149	35.4452	31.5986
390024	0.9584	1.0996	37.4330	35.3959	33.5187	35.1382
390025	0.5457	1.0996	15.0282	17.2977	19.1362	17.1922
390026	1.2106	1.0996	27.0802	29.5157	31.8512	29.5257
390027	1.5980	1.0996	28.9159	35.8381	35.5692	33.4427

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 ¹	Average hourly wage** (3 years)
390028	1.5659	0.8568	23.6616	25.7246	27.1869	25.5621
390029	1.1880	0.9990	24.4276 20.9859	22.1581	23.6063	24.4276 22.2727
390030	1.2230	0.9709	21.2949	22.6828	26.2654	23.3797
390032	1.1791	0.8568	20.9971	22.7205	23.9466	22.4981
390035	1.2536	1.0996	24.7281	26.2647	28.4564	26.5553
390036	1.4605	0.8568	23.3858	24.6032	21.6358	23.1430
390037	1.3063	0.8568	22.9008	24.7820	25.4290	24.3814
390039 h	1.1673	0.8562	17.8461	20.3787	22.0208	20.0837
390040	***	*	23.1807	*	*	23.1807
390041	1.3026	0.8568	20.6789	21.5925	22.9814	21.7259
390042	1.3732	0.8568	23.9632	25.6328	28.3633	25.9519
390043	1.2085 1.6424	0.8301 1.1402	20.9835 24.2586	22.2549 27.1505	23.2378 28.7758	22.1552 26.7755
390045	1.6253	0.9146	22.2582	23.0712	23.9343	23.1005
390046	1.6104	0.9942	25.0825	27.2630	29.6574	27.3407
390048	1.0981	0.9230	23.6622	24.9759	28.5342	25.7873
390049	1.6196	1.0093	25.4056	27.1366	29.6121	27.4651
390050	1.9598	0.8568	24.5424	26.6931	27.2599	26.2032
390052	1.1503	0.8538	21.6736	23.3474	24.9510	23.3355
390054	1.2008	0.9122	21.4983	22.8087	24.4435	22.8828
390055		*	25.5675	25.6945	00.5077	25.6356
390056	1.0694	0.8343	05 1001	19.5537	23.5077	21.4287
390057	1.3094 1.3009	1.0996 0.9373	25.1901 25.3415	27.9583 27.4799	29.7982 26.9546	27.7076 26.5454
390061	1.4860	0.9373	25.5012	28.4538	29.1318	27.7364
390062	1.1311	0.8538	19.0692	21.4052	21.2999	20.6090
390063	1.7734	0.8832	23.5469	24.7614	26.4998	24.9716
390065	1.3019	1.0877	23.4021	25.2188	27.6249	25.3944
390066	1.2709	0.9230	23.0891	24.2087	25.9645	24.4260
390067	1.8116	0.9373	25.4576	26.3287	29.7234	27.1055
390068	1.3221	0.9942	25.9890	25.8291	26.7358	26.1508
390070	1.4249	1.0996	26.9235	30.9499	33.3185	30.4414
390071	0.9933 1.0701	0.8301 0.9146	20.9443 22.0155	21.8366 24.9388	24.6462 25.3029	22.3632 24.0409
390073	1.6585	0.8538	24.8013	26.3698	25.7822	25.6598
390074	1.1084	0.8568	21.0941	22.8545	23.6500	22.5335
390075	***	*	22.6530	24.6359	*	23.6261
390076	1.3800	1.0996	18.1276	27.9004	31.8500	25.1107
390079	1.8567	0.8626	21.4323	23.3053	22.5607	22.4073
390080	1.2647	1.0996	25.0921	27.2616	28.7063	27.0772
390081	1.2205	1.0996	28.7974	30.3840	31.7569	30.3320 21.2837
390084	1.1731 1.7053	0.8301 0.8301	20.7799 20.7383	19.8605 22.5317	23.2040 23.5141	22.3011
390090	1.8289	0.8568	20.7474	25.2014	27.3528	24.5150
390091	1.1414	0.8690	20.8243	21.5586	21.7010	21.3565
390093	1.2228	0.8568	21.0427	21.4401	22.6082	21.7116
390095	1.1803	0.9146	21.0754	23.6240	22.6150	22.4065
390096	1.5753	1.1402	24.4145	27.0763	28.8258	26.8207
390097	1.2493	1.0996	25.3012	25.6660	26.1741	25.7340
390100	1.7303	0.9942	26.7267	27.7208	30.0132	28.2584
390101 390102	1.2660 1.4093	0.9594 0.8568	20.1694 21.6629	21.9418 24.8898	23.1497 24.8369	21.7910 23.9041
390103	0.9506	0.8568	18.6703	20.6775	20.5741	19.9403
390104	1.0772	0.8301	19.1803	19.6428	19.2326	19.3550
390107	1.3819	0.8568	23.1023	24.1386	24.1159	23.8095
390108	1.2420	1.0996	24.7486	27.2661	27.8171	26.6431
390109	1.0688	*	18.7558	19.9156	*	19.3329
390110	1.6349	0.8574	23.3355	23.9808	27.7311	24.9613
390111	2.0459	1.0996	30.6809	32.6510	34.2990	32.5907
390112 ^h	1.1810	0.8562	16.6113	19.2126	20.2380	18.6545
390113 390114	1.3154 1.3696	0.8683 0.8568	21.7729 22.6630	22.2591 24.0473	23.3686 26.9620	22.4695 24.5683
390115	1.4578	1.0996	26.4751	27.7333	29.6905	27.9694
390116	1.2573	1.0996	28.5563	30.2722	32.2513	30.4523
390117	1.1753	0.8301	20.0040	20.3946	20.7821	20.3998

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

	Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 ¹	Average hourly wage** (3 years)
		1.1700	0.8301	19.3332	21.5001	20.5614	20.4503
		1.2881	0.9146	21.2761	22.2746	23.0928	22.2283
		1.7661	0.8538	22.0556	23.1408	25.4826	23.5154
		1.1378 1.1771	0.8301 1.0996	21.6981 25.2209	22.5785 28.6269	23.1866 32.4528	22.4820 28.6980
		1.2603	0.8301	19.4406	20.9456	22.4033	20.9590
		1.2749	1.0996	28.9238	30.9374	31.9091	30.6692
		1.1989	0.8568	21.8837	23.1539	24.1628	23.0796
390130		1.2044	0.8574	21.0694	24.0685	23.0592	22.7098
		1.3499	0.8568	21.2164	22.6306	23.0577	22.2901
		1.4503	1.0996	26.8153	27.7250	29.6396	28.0803
		1.6789	1.0996	26.1458	28.7162	31.1083	28.7826
		***	*	24.8042	24.4738 22.1415	23.9813	24.4738 23.6793
		1.4767	0.9146	21.8830	23.4877	24.2878	23.1901
		1.2286	1.0877	22.7210	24.2769	25.3410	24.1291
		1.3171	1.0996	28.2089	30.4246	34.1447	31.0113
		1.4273	1.0996	32.0827	32.5786	33.8224	32.8481
390145		1.4854	0.8568	22.4255	23.8041	24.6672	23.6300
390146		1.2767	0.8354	22.3260	25.2460	22.6752	23.4609
		1.3011	0.8568	23.6380	25.0971	26.8522	25.1920
		1.1527	0.8507	24.5256	24.1855	22.8228	23.8612
		1.3287	1.0848	25.1422	27.1539	29.9254	27.4676
		1.4257	1 0006	11.7774	30.0586	20 0024	11.7774 30.3430
		1.4257	1.0996 0.8301	27.5167 20.4408	20.6982	32.8234 22.8391	21.3189
		1.3459	1.0996	27.8096	31.2571	32.2688	30.3975
		1.3410	0.8568	22.0222	22.7493	21.5923	22.1203
		1.1880	0.8568	19.5942	21.4877	24.0208	21.6980
390162		1.4387	1.0293	*	30.0900	35.5057	32.6431
		1.2404	0.8568	19.8863	22.1741	23.2055	21.7093
		2.0999	0.8568	25.1277	26.4971	26.3087	26.0432
		1.1384	0.8568	20.9510	24.9810	20.9272	22.2911
		1.4551 1.4489	0.8568 0.9146	21.9344 24.1682	24.5820 27.2242	26.1365 26.5514	24.3203 25.9577
		1.1364	0.8301	21.6562	22.8220	23.9927	22.8516
		1.6437	1.0996	30.3725	32.6265	34.2069	32.4138
		1.1086	0.8568	17.1387	*	23.9779	19.4547
390178		1.3298	0.8799	19.2731	20.7270	22.6006	20.8547
390179		1.4568	1.0996	24.8350	27.2222	28.0688	26.7379
		1.4151	1.0996	30.4264	32.4375	34.9832	32.6231
		1.0817	0.8585	25.7357	24.4573	25.9871	25.3732
		1.1021	0.8585	22.0117 21.3407	25.6554	27.0122	24.7589 22.2297
390185		1.1993 1.2892	0.8568 0.9122	21.8871	22.5519 23.0202	22.7451 25.4256	23.4624
000.00		1.1312	0.8301	21.2711	22.3722	22.6796	22.1653
		1.1254	*	19.2308	20.8761	*	20.0637
		1.0320	0.9146	20.0395	21.2620	20.5459	20.6115
390193		***	*	18.5516	20.1024	*	19.3425
		1.1195	1.0093	23.1814	25.4235	27.5890	25.4290
		1.5919	1.0996	28.3480	31.0019	34.2980	31.3018
		1.3822	1.0093	24.9234	25.7739	26.8270	25.8406
		1.1107	0.8832	16.8529	18.7222	20.5979	18.6461
		1.1920	0.8301	19.9653 23.1486	21.3157 23.7471	22.3224	21.1923 23.4231
		1.2909	0.9428	24.8222	26.3658	27.0054	26.1065
		1.6690	1.0996	28.2741	28.9054	29.4930	28.8914
		1.2856	1.0996	25.6342	28.6829	29.5251	27.9888
		1.2418	0.8799	22.4472	23.1450	25.1689	23.5881
		***	*	26.4180	28.0402	*	27.0961
		1.1957	0.8568	21.3281	24.3610	23.5879	23.0265
		1.3017	0.8568	22.8559	25.1705	25.4886	24.4648
		1.0826	1.0996	24.7553	41.6138	28.9127	30.8782
		1.2526 1.9910	1.0996 1.0996	27.0954 28.2538	28.7488 27.6407	30.9464 30.2523	28.9631 28.7410
ייניניון ווויצי		1 9910	1.0990	- 40.4000	⊥ ∠/.04U/	. 30.∠3∠3 l	Z0./41U

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

	Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 1	Average hourly wage** (3 years)
390225		1.1870	0.9942	23.4945	24.9391	27.5803	25.4970
390226		1.7517	1.0996	27.0061	28.5890	32.6658	29.4354
390228		1.3655	0.8568	22.5999	23.3078	23.9845	23.3076
		1.4402	1.0996	27.0576	29.2653	30.9339	29.1189
		1.3482	0.9594	22.8667	24.8690	25.6904	24.5006
		1.1703	0.8301	21.9199	21.9169	22.1144	21.9838
		1.5640	0.9146	24.6316	26.9533	27.4944	26.2736
			0.0001	26.4748	00.4504	05 1055	26.4748
		1.1603	0.8301	23.3275	20.1581	25.1955	22.6982
		1.8627 1.5347	0.9373 1.0996	24.2331 27.2038	26.3619 29.4626	28.0617 30.4142	26.2503 29.1292
		1.4490	1.0093	23.4202	26.0170	28.5864	26.0949
		1.4892	0.8568	21.6751	23.4836	24.0675	23.0752
		1.1937	0.8799	19.2836	20.3918	20.8789	20.1936
		1.1857	0.8568	22.5464	23.1051	24.2428	23.2908
		1.3592	0.8655	24.2050	25.0021	25.6643	24.9856
		1.4700	0.9122	24.0837	24.1496	24.9510	24.4216
		0.5306	1.0996	*	*	*	*
390278		0.5400	1.0996	21.6893	23.6843	26.6663	23.9198
390279		1.0937	*	15.3569	17.0012	*	16.1698
390285		1.4966	1.0996	33.5347	35.0427	36.7163	35.0333
390286		1.1656	1.0996	27.4090	28.1761	29.5281	28.3401
390287		***	*	35.7147	37.6569	39.3176	37.5485
		***	*	28.5267	29.7287	30.9701	29.7120
		***	*	28.4577	28.8826	30.7583	29.2976
		1.9071	1.0996	36.4991	37.9040	38.3776	37.6001
		***	*	21.3015	*		21.3015
		***	*	26.8290	*		26.8290
		***	*	31.9423 40.4697	*	*	31.9423 40.4697
		***	*	40.4697 *	30.9838	*	30.9838
		2.1291	1.0996	*	*	*	*
		***	*	*	*	27.5579	27.5579
		1.2905	1.0996	*	*	30.4832	30.4832
390307		2.0650	0.8799	*	*	*	*
390308		2.5157	1.0996	*	*	*	*
390309		1.1852	1.0996	*	*	*	*
390310		2.5153	0.8301	*	*	*	*
		1.3156	0.4449	16.1114	13.1847	13.9386	14.2307
		1.7648	0.4712	14.8607	16.7583	15.3833	15.5918
		1.2738	0.4712	13.0776	12.8329	13.9258	13.2702
		1.2662	0.4449	10.4716	14.3108	12.0923	12.1360
400005		1.1932	0.4449 0.4449	10.2878	10.7207 9.2265	10.3505	10.4561 8.7951
		1.1617 1.2123	0.4449	8.9919 8.7152	9.2463	8.1841 11.8203	9.9172
		1.0034	0.3235	9.2007	9.3116	9.3834	9.3007
		0.8435	0.3815	10.9354	10.0962	9.8132	10.2760
		1.0352	0.4449	8.5868	8.5534	9.6641	8.9633
		1.4597	0.4449	8.3580	8.3802	12.3362	9.4771
		1.2312	0.4449	9.5584	10.3347	11.1414	10.3875
		1.3253	0.3807	11.7023	12.2169	10.5286	11.4498
		1.3510	0.4449	15.6066	15.6349	13.7042	14.9480
400016		1.4376	0.4449	15.3497	14.7607	16.6472	15.5903
400017		1.1225	0.4449	10.1238	10.2734	10.3123	10.2262
400018		1.1852	0.4449	10.7948	11.6165	11.9184	11.4745
400019		1.4424	0.4449	14.9892	12.8029	12.8380	13.4377
		1.3202	0.4856	13.8643	14.1533	14.4549	14.1535
		1.3685	0.4712	16.0539	15.9246	14.9089	15.6001
		0.8287	0.3807	9.1316	12.4649	10.8439	10.5240
		1.0692	0.3235	5.2085	5.8200	9.9262	6.4882
		1.2281	0.4712	10.3354	10.9808	11.3260	10.8948
		1.1597 1.2493	0.4449 0.4712	10.7195 10.7890	10.2652 13.7509	10.3736 14.6420	10.4542 13.1456
		1.1345	0.4712	14.0887	10.4266	9.6416	11.4025
		1.8670	0.4449	15.1639	18.9123	18.1303	17.4284
		1.1744	0.3815	9.4218	12.7825	9.5296	10.3914
400079		1.1744	0.3013	5.4∠10	12.7023	3.3230	10.3914

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 1	Average hourly wage** (3 years)
400087 400094	1.2348	0.4449	9.5860 8.8646	10.6849	11.0377	10.4576 8.8646
400098	1.3149	0.4449	13.7938	12.8230	13.8034	13.4342
400102	1.2826	0.4449	10.1795	10.2677	10.5879	10.3374
400103	1.6717	0.3807	12.8288	9.3859	10.6971	10.6527
400104	1.1447	0.4449	8.2758	9.3854	11.4322	9.7075
400105	1.1548	0.4449	12.7725	14.0219	15.6626	14.1147
400106	1.1419	0.4449	9.6902	11.4507	13.4097	11.3869
400109	1.3979	0.4449	14.2169	14.2111	14.4386	14.2895
400111	1.1558 1.0967	0.3771	11.8458	12.3449	11.1812	11.8242 14.0376
400111 400112	1.1496	0.3815 0.4449	13.4777 8.9469	14.5029 19.3945	14.1718 10.1512	11.4855
400112	1.2265	0.4712	10.0830	9.6778	10.1312	10.0882
400114	1.1352	0.4449	12.1920	11.5478	10.1379	11.2193
400115	1.1595	0.4449	9.1132	13.7392	12.0713	11.3935
400117	1.1110	0.4449	10.2911	12.7600	9.5929	10.6747
400118	1.2360	0.4449	11.9324	12.5743	12.8692	12.4731
400120	1.2946	0.4449	11.9714	12.7955	13.4069	12.7550
400121	1.0086	0.4449	8.6665	8.2197	9.7427	8.8276
400122	1.8996	0.4449	9.6463	11.2325	8.9478	10.1684
400123	1.2149	0.3807	11.8135	12.3041	12.8317	12.3187
400124	2.9166	0.4449	17.2258	16.1812	17.2139	16.8649
400125 400126	1.1680 1.2523	0.4040 0.4856	10.7425 13.3932	11.6386 9.8008	11.9787 14.1062	11.4261 11.8241
400127	1.6827	0.4449	10.0902	9.0006	17.8303	17.8303
400128	1.0320	0.4449	*	*	*	*
410001	1.2768	1.0744	27.0309	28.0816	29.0877	28.0608
410004	1.2516	1.0744	25.4578	27.4209	29.4953	27.4268
410005	1.2513	1.0744	27.1171	30.1606	28.1141	28.4455
410006	1.3385	1.0744	27.1842	29.4395	30.1855	28.9486
410007	1.6754	1.0744	30.1360	31.8548	33.2896	31.8343
410008	1.2423	1.0744	28.4245	29.6092	30.9505	29.6707
410009	1.2554	1.0744	27.7337	29.4094	31.7300	29.6812
410010 410011	1.2020 1.3348	1.1343 1.0744	30.7826 28.5875	32.8599	32.0704	31.9389 30.8807
410012	1.7499	1.1343	32.1679	30.3787 32.6009	33.8781 33.6071	32.8336
410013	1.2447	1.2031	31.7482	35.4624	35.8075	34.3462
420002	1.5062	0.9413	27.9312	28.2848	29.5592	28.6127
420004	1.9893	0.9197	26.0279	27.2620	28.1455	27.1749
420005	1.0528	0.8692	19.8167	23.1943	25.0420	22.6820
420006	***	*	22.8920	24.0811	26.3294	24.4155
420007	1.6041	0.9208	25.0395	25.2650	26.8165	25.7491
420009	1.4052	0.9208	23.8668	25.5079	27.0147	25.5052
420010 420011	1.1696 1.1984	0.8703 0.9566	21.6478 20.8895	23.4562 21.4030	25.1452 22.1786	23.4816 21.5140
420011 420014	1.1904	0.9300	21.5658	Z1.4030 *	22.1700	21.5658
420015	1.3132	0.9566	24.7383	26.2154	24.1685	25.0330
420016	0.9801	0.8692	17.3837	17.1229	21.6266	18.6186
420018	1.7407	0.8942	23.6356	24.8024	25.6687	24.7269
420019	1.0784	0.8692	20.5472	22.5312	22.5489	21.8461
420020	1.2627	0.9197	24.6592	25.8883	28.4344	26.2922
420023	1.6949	0.9566	25.1035	26.7263	27.4589	26.4009
420026	1.9171	0.8942	29.2961	27.4814	27.8986	28.1633
420027	1.6168	0.9208	22.8322	25.1692	26.4473	24.8695
420030	1.2490	0.9197	24.2847	26.0079	27.8435	26.0585 29.9643
420033 420036	1.1278 1.2133	0.9566 0.9413	27.5740 21.9641	31.8759 22.8294	30.4162 23.8742	29.9643
420036 420037	1.3020	0.9566	26.8750	29.4156	29.8321	28.7700
420037	1.2794	0.9566	22.6741	24.2259	24.6642	23.8487
420039	1.0972	0.9072	24.0637	25.1148	28.2220	25.7883
420043 h	1.1580	0.9249	22.9764	23.0555	24.0971	23.4022
420048	1.2587	0.8942	23.1515	24.1923	25.9610	24.4452
420049	1.2661	0.8882	23.2156	23.9722	26.0953	24.4429
420051	1.5579	0.8703	23.9455	24.8026	25.9056	24.9288
420053	1.1369	0.8692	21.1177	22.2825	23.2246	22.2695
420054	1.0760	0.8692	24.0653	24.8931	25.6779	24.8777

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

	Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 ¹	Average hourly wage** (3 years)
420055		1.0620	0.8692	20.3599	21.9764	24.0965	22.1681
420056		1.3387	0.8692	21.1640	21.6963	27.7250	23.4790
		1.2652	0.8703	19.7653	23.4311	24.9313	22.7178
		1.0698	*	21.4260	*	*	21.4260
		***	*	20.8684	05.0500	*	20.8684
		1.0681	0.8801 0.8882	25.6683	25.9526	26.7468	26.1567 23.2634
		1.2128 1.4193	0.8662	22.1290 22.8674	23.3610 24.5715	24.3540 25.5483	24.3518
		0.9880	0.8703	20.5893	23.9048	25.1062	23.2318
		1.3328	0.9023	24.6038	25.0345	25.8561	25.1967
		1.3318	0.9531	22.2638	23.4248	25.6857	23.7924
		1.1064	0.8692	19.6959	20.5546	22.3445	20.8829
420070		1.3110	0.8942	22.4370	23.4355	24.7899	23.6087
		1.3997	0.9208	23.1727	24.9418	25.2862	24.5087
		1.0920	0.8692	17.5899	18.6742	17.8019	18.0160
		1.3737	0.8942	24.0274	24.5813	25.5204	24.7447
		0.9056	0.0566	16.4816	00.0110	00.5105	16.4816 27.8924
		1.8727 1.5685	0.9566 0.9197	25.3032 25.2939	28.9112 25.4935	29.5135 27.5439	26.1290
		1.4597	0.9023	28.4569	28.4734	28.6060	28.5136
		1.5089	0.9640	26.1221	29.8528	31.2671	29.0597
		1.4720	0.9208	25.3043	27.1322	26.4932	26.3201
420085		1.5749	0.9473	25.3180	26.8692	27.8386	26.6706
420086		1.4151	0.8942	25.1372	25.8869	28.0485	26.4300
420087		1.7986	0.9197	23.2230	24.3609	25.4697	24.3550
		***	*	23.1273	*	*	23.1273
		1.3287	0.9197	25.2729	26.0074	28.1855	26.5304
		1.3535	0.8703	23.4710	26.9214	26.0592	25.5303
		***	*	25.1457 24.7809	27.4766	28.0765	27.0073 24.7809
		1.1551	0.8727	24.7609	*	30.7532	30.7532
		1.9107	0.9566	*	*	*	*
		1.0414	0.8692	*	*	*	*
		1.3236	0.8503	19.9454	22.3272	22.4111	21.5283
430008		1.0700	0.9238	20.9442	23.3790	24.4277	22.8172
430011		***	*	20.6597	*	*	20.6597
		1.2528	0.9238	22.7530	24.0850	24.0326	23.6212
		1.1748	0.9238	22.9675	25.1378	25.9828	24.6946
		1.3170 1.1754	0.8367 0.8768	25.5387 23.2035	26.4964 22.7947	26.8752 23.6296	26.3291 23.2107
		1.6825	0.9351	26.1495	27.8453	28.9376	27.6202
		1.7820	0.9351	23.8477	26.2139	26.6044	25.6126
		0.8745	*	20.2708	*	*	20.2708
430031		0.9563	*	15.6112	16.0346	*	15.8232
		***	*	17.2722	*	*	17.2722
		1.0053	*	21.9116	18.8982	*	20.4712
		1.3089	0.8768	21.1718	23.0783	24.1969	22.8738
		0.9030	0.8768	10.2704	17 5076	13.2617	11.6125
		1.0539 1.7505	0.8768 0.8973	16.4314 23.4835	17.5376 25.1763	18.3125 25.8572	17.4742 24.8679
		0.8518	1.4448	23.4033	25.1705	25.6572	24.0079
		0.7951	1.4448	*	*	*	*
		0.8515	1.4448	*	*	*	*
430084		0.8952	1.4448	*	*	*	*
430085		0.8309	1.4448	*	*	*	*
		1.6775	0.9062	21.1109	22.5625	22.3335	22.0620
		1.4710	0.9351	26.0851	25.8460	26.4862	26.1506
		2.1571	0.8973	23.8897	24.3021	25.1105	24.4593
		1.8668	0.8298	20.2570	20.9486	21.6478	20.9497
		0.8972 1.4329	0.8708 0.9057	23.1526 18.5429	29.5244 18.9099	27.5326 22.9091	26.9376 20.0464
		2.4866	0.9351	24.7074	28.1749	31.3409	28.2890
		1.9427	0.8298	*	21.6998	21.6713	21.6864
		1.1182	0.8122	17.4802	19.3100	21.2398	19.3290
440002		1.7025	0.8984	23.2177	24.6664	25.7434	24.5745
440003		1.2347	0.9810	24.5168	25.9209	28.4862	26.3484

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 ¹	Average hourly wage** (3 years)
440006	1.4831	0.9810	26.7983	28.5951	29.7146	28.3985
440007	0.9539	0.8122	13.7042	25.8236	19.9754	19.0491
440008	1.0244	0.8785	22.1405	23.4301	23.2125	22.9167
440009 440010	1.1812 0.9635	0.8122 0.8122	21.1274 16.9060	21.5970 17.1803	23.9279 19.3669	22.2714 17.8458
440011	1.3300	0.8227	21.6861	22.5068	23.6154	22.6426
440012	1.5486	0.8215	21.4769	22.3029	24.0169	22.5897
440015	1.8437	0.8227	22.5583	23.7422	25.0430	23.8010
440016	1.0084	0.8122	20.0982	22.1646	23.0351	21.7738
440017	1.8305	0.8215	22.5313	22.9364	25.0588	23.5210
440018 440019	1.1114 1.7691	0.8122 0.8227	21.7239 23.8802	23.3444 25.2553	23.2107 25.3592	22.7981 24.8097
440020	1.0309	0.8756	23.1718	23.9475	24.0995	23.7425
440023	0.9893	*	17.0335	*	*	17.0335
440024	1.3272	0.8822	20.3658	23.2716	23.9745	22.5398
440025	1.1282	0.8629	19.5995	20.6798	22.5406	20.9785
440026	0.6814 1.3696	0.9810 0.9810	26.9149 25.8538	26.8986 28.0779	28.0350 30.1204	27.2742 28.1242
440030	1.3390	0.8178	20.0586	22.1217	23.7670	22.0367
440031	1.1544	0.8122	18.0944	19.6685	20.8964	19.5830
440032	1.1152	0.8215	16.0734	18.5277	19.7151	18.1139
440033	1.0672	0.8122	18.7749	20.7917	21.1088	20.2055
440034	1.6079	0.8227	23.1121	23.5403	24.6994	23.7954
440035 440039	1.3571 2.1340	0.9550 0.9810	22.3230 26.4647	24.3752 28.4678	25.9613 29.8611	24.2266 28.3344
440040	0.9301	0.8122	17.7647	17.8510	20.8638	18.8683
440041	0.9591	*	17.4074	17.9409	*	17.6972
440046	1.1787	0.9810	25.5329	26.1341	27.9540	26.5702
440047	0.8930	0.8621	20.4812	21.4280	21.7892	21.2346
440048	1.8465 1.6223	0.9307 0.9307	24.3283 22.9755	27.7560	29.4789	27.0939 24.9275
440049 440050	1.3196	0.9307	21.8972	25.3043 23.1362	26.4772 24.4616	23.1945
440051	0.9892	0.8122	20.7948	21.9108	23.9253	22.1919
440052	1.0450	0.8122	20.1875	21.1133	22.8016	21.3951
440053	1.2806	0.9810	23.9083	25.4345	27.1197	25.5052
440054	1.1053 1.1433	0.8122 0.8443	20.5992 20.4088	21.4400 22.1068	23.5137 22.7820	21.8156 21.8543
440057	1.0816	0.8122	14.6242	16.4451	16.6346	15.9385
440058	1.1717	0.8822	22.6014	22.9263	24.3522	23.2819
440059	1.5169	0.9550	23.9301	26.3551	28.3565	26.1699
440060	1.1078	0.8621	22.7133	23.3014	24.1024	23.3991
440061 440063	1.0596 1.5536	0.8122	21.2085	21.8274	23.9678	22.2261 22.8469
440064	1.0206	0.8133 0.8948	21.8578 20.9742	22.3256 22.0955	24.2566 23.7176	22.2235
440065	1.2218	0.9810	21.4794	22.3247	24.6169	22.8297
440067	1.1639	0.8227	22.1410	23.1089	24.4772	23.2691
440068	1.1072	0.8822	23.1705	24.5971	24.8146	24.1808
440070 440072	0.9781 1.1499	0.8122 0.8984	19.0240	19.4372 27.1443	20.0938 23.9563	19.5478 23.6712
440073	1.4430	0.9550	20.9294 22.2959	23.9198	26.3570	24.1796
440081 h	1.1977	0.8227	19.0328	19.7878	20.7126	19.8806
440082	2.1299	0.9810	28.7828	27.9724	30.6115	29.1270
440083	0.9451	0.8122	16.0956	17.3329	25.6099	19.7144
440084	1.2004	0.8122	15.2825	16.3738	18.6043	16.7941
440091 440102	1.6828 1.1074	0.8948 0.8122	26.1122 17.5140	25.6797 17.5261	26.5687 20.7363	26.1284 18.5920
440104	1.8213	0.8948	23.3731	25.3739	26.5741	25.1638
440105	1.0015	0.8133	20.7821	22.3438	22.9372	22.0612
440109	0.9864	0.8122	18.2508	18.6720	20.8925	19.3202
440110	1.0991	0.8227	20.9039	21.3287	20.9179	21.0455
440111	1.2938	0.9810	25.8821	28.5705 24.0147	29.0975	27.8355
440114 440115	1.0137 0.9920	0.8621	21.4271 20.0642	24.0147 21.7830	23.1409	22.7665 21.6814
440120	1.5625	0.8227	23.9003	25.5961	25.7161	25.0802
440125	1.6374	0.8227	21.9337	22.4196	22.8097	22.3930
440130	1.1630	0.8122	21.6480	23.4517	23.9955	23.0274

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

	Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 ¹	Average hourly wage** (3 years)
		1.1493	0.9307	22.4119	24.9598	25.6665	24.3775
440132		1.2832	0.8122	20.5716	21.5085	23.9410	21.9977
		1.6545	0.9810	27.5019	26.2422	29.2829	27.6527
		1.0508	0.8122	25.3928	26.6615	28.1925	26.7796
		1.0802	0.8122	18.2073	20.6663	22.2538	20.2816
		1.0075	0.8122	19.4528	21.3313	24.2406	21.9166
		0.9345	*	21.0374	*		21.0374
		1.2530	0.8122	22.3671	23.3828	23.9242	23.2347
		0.9904	*	20.9863	20.7875	*	20.8882
			0.0550	28.9038	31.4012	33.1755	31.1830
		1.1144	0.9550	23.0697	24.6412	23.9810	23.9010
		1.0254	0.0010	19.8020	20.4562	00.4040	20.1312
		1.3627	0.9810	25.4952	26.8308	28.1012	26.8048
		1.0794 1.8657	0.9550	23.3037	23.9808	27.1729	24.8328 26.5767
		1.0516	0.9307 0.8129	25.9495 22.7744	26.5513 22.2846	27.1877	22.9043
		1.5304	0.8948	25.6333	26.9689	23.6472 27.7309	26.7797
		1.4563	0.9307	21.1073	22.8645	26.9098	23.7848
		1.7812	0.9810	28.6774	28.6971	28.7074	28.6947
		1.7012	0.9010	16.5305	21.1418	27.6836	21.4196
		***	*	27.1355	31.0779	35.3063	30.4732
		0.9700	0.9307	22.1764	22.8768	28.1215	24.4268
		1.6028	0.8227	20.8723	22.8846	23.1167	22.3223
		0.8858	0.8494	20.7960	22.0974	25.4829	22.7502
		1.0146	0.9550	24.0005	22.7299	24.4848	23.7124
		1.2214	0.8215	22.0079	23.6659	22.9631	22.8672
		1.2436	0.8227	21.9781	23.3808	24.9841	23.5303
		0.9565	0.8529	21.1406	22.7150	24.8857	22.9413
		0.9844	0.8122	20.2630	22.3612	24.3303	22.3499
		1.6171	0.9307	27.7769	27.1515	29.1982	28.0280
		1.0263	0.8133	20.8219	22.3475	24.5786	22.5358
		1.1468	0.8822	23.4172	23.9052	25.3817	24.3308
		1.0293	0.9810	24.6773	25.7445	27.3733	25.9399
440187		1.1054	0.8122	21.7637	21.3252	24.0723	22.3983
		1.3818	0.8796	24.7851	27.5435	28.2621	26.8849
440192		1.0679	0.9550	25.1119	25.7495	27.3917	26.1235
440193		1.2833	0.9810	24.3911	24.4299	24.3622	24.3938
440194		1.3288	0.9810	26.2498	26.6527	29.4706	27.5437
440197		1.3088	0.9810	26.4999	27.1534	29.4275	27.6503
440200		0.9946	0.9810	17.0633	17.7491	21.1860	18.6458
440203		0.9249	0.8122	17.7639	19.3864	23.7451	20.0302
440217		1.3288	0.9307	25.9667	28.5968	28.8641	27.8452
		1.7812	0.9810	26.3741	24.6465	23.7257	25.1548
		0.9676	0.9307	28.3879	29.7292	28.4664	28.8461
440225		0.8446	0.8227	*	*	24.8328	24.8328
		1.5393	0.8227	*	*	26.5831	26.5831
		1.2253	0.9810	*	*	*	*
		1.3670	0.9307	*	*	*	*
		1.4312	0.9238	25.4975	25.7171	28.0936	26.4026
		1.0923	0.8710	23.4049	23.5576	24.4933	23.7898
		1.3223	0.8945	19.2875	20.7321	23.0026	21.0152
		1.2861	0.8993	22.0934	22.9669	24.4701	23.1949
		1.5988	0.8678	22.4133	23.7529	25.5503	23.9127
		1.7137	0.8903	24.1576	24.8831	26.7418	25.2430
			0.0077	22.5001	07.4040	00.0400	22.5001
		1.5745	0.9977	24.0730	27.4012	29.9193	27.1701
		1 5005	1 0004	22.1368	06.7000	20,000	22.1368
		1.5035	1.0094	24.6443	26.7999	30.2383	27.1629
		0.9641	0.0077	17.7148	18.3047	20 5650	18.0203
		1.8292	0.9977	28.5578	29.1350	29.5658	29.0840
		1.4253	0.8426	20.9278	22.0558	25.4450	22.7145
		1.4782	0.9238	22.4178	24.4195	26.9113	24.6324
		1.5292	0.9731	25.6030	26.8250	29.1438	27.1585
		1.5506	0.8227	23.9709	23.2995	25.0602	24.1186
		1.4019	0.9977	27.0328	27.9626	29.0824	28.0798
450032		1.1912	0.8688	20.8306	27.0748	21.5084	22.9390

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 1	Average hourly wage** (3 years)
450033	1.6551	0.9731	29.0541	28.4781	29.2468	28.9075
450034	1.5734	0.8710	23.4615	24.1589	26.5313	24.6836
450035	1.5452	1.0094	25.4580	26.2838	28.0668	26.5526
450037	1.5911	0.8946	23.1176	24.2684	26.6207	24.7158
450039 450040	1.3793 1.7758	0.9743 0.8536	23.3034 23.8047	24.7347 24.9590	26.7503 25.4734	25.0244 24.7314
450042	1.7885	0.8330	22.6936	24.1181	26.6382	24.4853
450044	1.7240	0.9977	25.8403	29.4308	31.0381	28.8430
450046	1.5838	0.8438	22.0695	23.4907	24.8947	23.4957
450047	0.8358	0.9731	22.7242	19.8221	21.8824	21.4475
450050	0.9116	*	21.6933	23.3044	*	22.5039
450051	1.8787	0.9977	27.2523	28.0411	28.8829	28.0844
450052	0.9756 0.9824	0.8225	19.7185 19.4978	19.7774 21.9082	22.6448	20.4956 20.7080
450054	1.7546	0.8993	25.1229	24.2782	27.5399	25.5899
450055	1.1200	0.8225	20.5235	22.1979	22.9245	21.9016
450056	1.8082	0.9328	25.6685	27.0530	28.3092	26.9168
450058	1.5729	0.8945	24.7442	25.9653	26.6926	25.8041
450059	1.3326	0.9328	26.8209	26.6535	26.8325	26.7674
450064	1.4326	0.9743	24.2920	23.8748	26.8355	25.0454
450068	2.0769	1.0094	26.2864	27.9633	29.5876	27.9738
450072450073	1.1739 0.9639	1.0094 0.8380	22.5010 20.0464	24.0166 21.7337	25.8618 26.9446	24.1220 22.7977
450078	0.9561	0.8225	17.2196	15.8968	21.4715	17.9210
450079	1.6843	0.9977	27.0443	28.1096	30.2420	28.3928
450080	1.2684	0.8946	21.2482	22.9835	27.9191	23.9020
450082	1.0772	0.8225	20.9113	22.0442	23.9025	22.2879
450083	1.7749	0.8963	24.9182	25.8214	27.4955	26.1776
450085	1.0364	0.8225	19.4524	22.0840	24.3637	22.0068
450087450090	1.4431 1.2028	0.9743 0.8225	26.4203 17.6506	29.1587 19.4244	30.0095 21.3837	28.5700 19.4999
450092	1.2058	0.8225	20.4921	23.2071	24.9917	22.9332
450094	***	*	25.3618	25.2434	*	25.3030
450096	1.4219	0.8710	22.8722	24.1619	26.5103	24.4238
450097	1.4461	1.0094	24.9380	26.4965	29.0142	26.8163
450098	0.9575	*	22.9005	22.6626	*	22.7778
450099 450101	1.2229 1.5790	0.9248 0.8748	24.0293 20.6575	26.6796 23.6905	31.3494 25.4409	27.2796 23.2371
450102	1.8195	0.8963	23.1773	24.5503	25.6318	24.4875
450104	1.2035	0.8945	22.5165	23.8469	24.6169	23.7263
450107	1.4173	0.9238	23.8770	25.9326	27.6064	25.7745
450108	1.1857	0.8945	19.3561	19.4935	21.6557	20.2238
450112	***	*	22.5552	*	* *	22.5552
450110	1.2868	0.8794	24.1392	54.6681	27.8027	54.6681 25.9080
450119 450121	1.4832	0.8794	25.8826	25.7008 25.7051	29.1296	26.9357
450123	1.0598	0.8710	19.5872	21.2154	24.9674	21.6885
450124	1.9029	0.9328	26.0280	27.4198	28.2571	27.2827
450126	1.3387	1.0094	27.3021	28.3033	29.3768	28.4351
450128	1.2284	0.8794	21.4190	23.3633	25.1122	23.2357
450130	1.2181	0.8945	20.2777	21.5226	24.3295	22.1028
450131		1 0000	23.2317	23.7098	25.9493	24.1618
450132450133	1.5376 1.6230	1.0038 0.9538	26.8476 25.0972	28.6954 26.8344	30.1620 28.4647	28.5767 26.8906
450135	1.6858	0.9743	24.3858	26.0755	27.8983	26.2009
450137	1.6046	0.9743	27.0081	30.4254	31.4950	29.8197
450140	***	*	22.4695	*	*	22.4695
450143	1.0123	0.9328	19.7487	21.8705	23.4592	21.7863
450144	1.0685	0.9714	20.9599	21.3289	26.2881	22.7930
450147	1.4336	0.8426	24.6203	23.9771	24.3562	24.3140 25.3577
450148450151	1.1796 1.2033	0.9743 0.8225	23.5037 20.1356	25.3498 22.2915	27.0894 23.9558	25.3577
450152	1.2271	0.8993	21.6351	22.7463	23.3428	22.5685
450154	1.3655	0.8225	18.6058	21.2021	21.7237	20.4954
450155	1.0233	0.8225	17.9306	18.0589	21.7604	19.2283
450157	***	*	17.8812	*	*	17.8812

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

	Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 ¹	Average hourly wage** (3 years)
450160		0.8255	*	21.9118	*	*	21.9118
		1.3040	0.8536	31.0645	30.9903	33.3285	31.8718
		1.0920	0.8359	20.3280	23.1400	24.1267	22.5244
		1.0756 1.3564	0.8945 0.8794	20.2414 20.9392	24.3242 20.9297	28.6490 23.1284	24.3813 21.6670
		1.1948	0.8225	19.7657	21.3322	23.7624	21.6179
		0.9384	0.8225	20.2992	24.7301	27.8404	24.1301
		1.5405	1.0094	25.3935	26.7821	28.5399	26.9381
450185		***	*	15.5838	*	*	15.5838
		1.1725	1.0094	24.2400	25.6786	28.3243	26.1312
		0.9532	0.8225	18.9586 25.9078	20.4070	23.0595	20.8839
		1.1733 1.1679	0.9328 0.9743	22.5118	26.0298 22.5880	26.5863 24.1186	26.1892 23.0856
		2.0322	1.0094	29.2751	32.2964	34.4545	32.0837
		1.3868	0.9743	22.3348	24.8972	22.9605	23.3409
450196		1.4262	0.9743	23.6170	24.7557	24.0161	24.1328
		1.4655	0.8225	22.0923	23.5344	23.5012	23.0498
		0.9930	0.8225	20.3350	20.9809	23.2510	21.5242
		1.1562 1.9445	0.9556 0.9248	23.3953 24.4977	24.1675 26.0958	26.5237 27.5668	24.7655 26.0396
		0.9821	0.8225	19.6340	19.9832	21.8722	20.5555
		1.3565	1.0094	20.7982	23.8230	28.4581	24.1927
450213		1.7746	0.8945	21.7930	23.9676	25.9169	23.9310
450214		1.1721	1.0094	23.9112	25.9598	27.4357	25.7688
		0.9924	0.8225	20.8255	21.7934	21.9206	21.5544
		1.1280	0.8225	20.6887	20.3186 27.4426	19.3793 30.0314	20.1275
		1.6144 1.3827	1.0094 0.8963	26.2975 22.2250	24.1956	26.8302	27.9521 24.3592
		1.6260	0.8380	19.8279	21.4459	24.4450	21.9251
		1.6215	0.9248	23.9532	25.2852	27.1674	25.5166
450234		1.0357	0.8225	23.6695	18.4451	20.6890	20.7174
		1.0194	0.8225	19.1453	21.5138	23.5212	21.4625
		1.1076	0.8225	19.2987	22.0788	23.5426	21.6828
		1.6350 0.9632	0.8945 0.8993	25.1504 21.8595	24.8901 21.1945	25.7939 21.2586	25.2876 21.4253
		1.0434	0.8225	18.1155	18.7957	20.8733	19.2853
		0.9856	0.8225	14.0589	15.4636	15.4511	14.9997
		***	*	16.5616	*	*	16.5616
		0.9498	1.0094	19.6379	20.6124	24.2435	21.5908
		***	*	15.4111	*	*	15.4111 14.8204
		1.2007	0.8225	14.8204 15.0879	14.4325	15.2191	14.8787
450271		1.1343	0.9556	19.4299	21.7719	22.7035	21.3960
		1.2284	0.9328	23.7933	25.7392	26.2576	25.2704
450276		0.9777	*	16.0264	16.6319	*	16.3591
		1.4675	0.9977	27.4523	28.7233	29.9730	28.7186
		1.0757	0.9743	20.0069	20.9680	22.7938	21.3337
		1.3830 1.2409	1.0094 0.9977	27.3864 23.5330	28.5665 25.0411	32.2645 26.3242	29.4132 24.9781
		0.9055	0.8225	20.0898	21.3136	23.6412	21.7008
		1.0521	1.0094	29.2006	27.9690	30.4324	29.2385
450299		1.5716	0.8903	25.8183	26.4933	27.5797	26.6552
		0.9235	0.8380	14.6699	15.9854	21.4557	16.9573
		2.5812	0.9977	27.9780	04.0100	37.1723	29.7429
		1.5354 1.1724	0.9743 1.0094	23.6362 24.4310	24.9128 25.5820	25.1633 26.0771	24.6077 25.3891
		1.4214	0.8483	22.7826	24.0636	25.0344	23.9657
		1.4416	0.8710	21.9717	22.2469	23.6072	22.6462
		1.1715	1.0094	22.8133	27.2203	28.7666	26.1826
		1.0371	0.8225	17.0198	18.7675	21.6787	19.2441
		1.2922	0.9556	23.5895	25.6859	26.5388	25.2985
		1.1200	0.9977	23.4297 20.9271	24.8012 24.4454	26.2281 27.0248	24.7897 24.0073
		1.9753	1.0094	29.3408	30.4280	31.4926	30.5042
		1.0874	*	22.0223	25.4372	*	23.7705
450369		1.0481	0.8225	17.5360	18.4848	19.9148	18.7853

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 1	Average hourly wage** (3 years)
450370	1.2183	0.8483	22.6815	20.0832	25.5833	22.5952
450372	1.3306	0.9977	26.8019	28.3359	30.8886	28.6943
450373	0.9459	0.8225	20.5789	22.2213	24.8286	22.6500
450374	0.9179	1 0004	17.4509	23.2285	20, 2002	19.8412
450378450379	1.4526 1.3601	1.0094 0.9977	29.5108 31.1573	30.7684 30.6072	30.3883 33.7521	30.2116 31.8164
450381	0.8992	*	20.9200	22.0482	*	21.4845
450388	1.6174	0.8945	24.1598	25.8674	27.4328	25.9990
450389	1.2059	0.9743	22.3803	23.8764	25.6732	24.0879
450393	0.6586	0.9743	24.6872	18.4551	21.9347	21.6142
450395	0.9970	1.0094	23.9689	24.8656	27.5189	25.5886
450399	0.9358	0.8225	19.5928	18.2074	20.3529	19.3483
450400450403	1.2489 1.3322	0.8748 0.9977	22.0103 27.8138	23.1739 29.3063	23.6358 29.0360	22.9567 28.7584
450411	0.9527	0.8225	17.6570	19.6086	20.9372	19.4681
450417	0.8853	*	17.8078	20.0350	*	18.9286
450418	1.1743	1.0094	27.0283	26.8434	28.4362	27.3244
450419	1.2347	0.9743	28.4122	31.0404	31.9966	30.5106
450422	0.8834	0.9977	29.5592	30.6659	34.4331	31.5685
450424	1.3564	1.0094	23.1253	28.3149	28.2463	26.7650
450431	1.5025 1.1608	0.9328 1.0094	24.7346 22.0476	25.2477 21.9351	26.3263 27.8659	25.4658 23.7940
450438450446	0.6294	1.0094	14.9983	14.3132	17.0691	15.3804
450447	1.2948	0.9743	22.5602	23.5047	25.4200	23.8341
450451	1.0771	0.9556	22.3834	23.3042	24.6201	23.4481
450460	0.9450	0.8225	19.5709	20.5812	22.4228	20.9542
450462	1.6920	0.9977	25.6952	27.8923	29.6069	27.8036
450465	1.1245	0.8660	23.0130	22.4183	26.2759	23.9821
450469	1.5158	0.9743	26.6781	28.7890	26.3262	27.2885
450475450484	1.0420 1.3759	0.8946 0.8946	20.7983 23.0604	23.5596 25.3527	23.0942 26.7242	22.4809 25.0709
450488	1.0571	0.8946	22.3949	23.9144	22.3981	22.9079
450489	1.0047	0.8225	19.6884	21.4771	23.4805	21.6549
450497	1.0321	0.8225	17.6614	18.8344	22.0918	19.5528
450498	0.8852	0.8225	16.4358	17.7822	18.6563	17.6295
450508	1.4765	0.8963	23.5066	23.9572	28.4471	25.3656
450514	1.1038	0.8710	21.4034	22.6552	26.3704	23.4793
450517450518	0.9001 1.5139	0.8710	15.2707 22.2587	24.1194	28.1755	15.2707 24.8852
450523	***	*	28.6387	*	20.1733	28.6387
450530	1.2367	1.0094	26.1998	28.7451	29.1349	28.0793
450534	***	*	20.4715	*	*	20.4715
450535	***	*	29.4427	*	*	29.4427
450537	1.4218	0.9977	23.9256	27.5856	27.7756	26.4449
450539	1.1857	0.8225	20.0343	21.0442	23.1829	21.4051
450545450547	0.9940	0.9743	22.8130 21.8106	21.6542	23.7819	22.8130 22.5004
450558	1.8481	0.8380	25.0837	26.1551	26.9407	26.0515
450563	1.4234	0.9743	27.9427	28.7289	30.8332	29.2145
450565	1.3290	0.8711	22.1971	23.8847	26.7942	24.3396
450571	1.5716	0.8483	20.9651	22.7703	25.2108	22.9899
450573	1.1285	0.8225	21.6974	20.1479	22.0797	21.3167
450578	0.9182	0.8225	20.0454	20.2695	22.5167	20.9331
450580	1.0980	0.8225	20.4293	21.1574	22.3886	21.3398
450584	1.0172 0.9535	0.8225 0.8225	19.0373 14.6574	21.0808 16.1003	20.5257 18.9107	20.2087 16.6528
450587	1.2076	0.8225	19.9712	20.4512	23.1202	21.2201
450591	1.1928	1.0094	22.4991	23.9992	25.7031	24.0891
450596 h	1.2076	1.0364	24.7477	25.3317	27.4011	25.7968
450597	0.9666	0.8302	22.9337	23.1711	24.7853	23.6426
450604	1.3121	0.8225	20.5273	20.9514	24.4743	22.0429
450605	1.0371	0.8438	23.8820	22.2205	20.9276	22.2838
450610		1 0004	18.3856	06.0710	07 7017	18.3856
450610 450615	1.6341 0.9996	1.0094 0.8225	22.5451 18.2166	26.8710 20.3028	27.7317 21.8442	25.6685 20.2114
450617	1.5039	1.0094	25.2211	26.5026	28.0225	26.6300
10001/	1.5039	1.0094	25.2211	26.5026	28.0225	26.630

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

450623	Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 1	Average hourly wage** (3 years)
450626	450620	0.9632	0.8225	18.1819	17.7138	18.6183	18.1777
1.5661			*			*	28.3456
450631			*				23.9299
1,6963			1.0094		29.6796	29.1462	28.9006
450638			0.0077		29 1705	20 7212	24.5409 28.0120
450639							29.9370
450641							29.0735
450644	450641	1.0296	0.8225	17.0805		l I	18.0347
450646						l I	21.6318
450647						l I	28.7566
450648							24.0815
18.118			0.9977		30.7334	30.6924	30.1156 18.2826
450661		***	*		*	*	18.1118
450653		1.5203	0.9977		32.4822	30.4484	30.6508
\$6666						l I	23.3936
450658 0.9160 0.8225 19.9597 20.5398 22.2293 20.545666 1.4257 1.0904 28.8671 30.1727 31.5024 30.2450666 1.0901 1.0038 21.5537 22.32899 30.2610 25.456666 1.0901 1.0038 21.5537 22.32899 30.2610 25.456666 1.5052 0.9731 24.5815 28.0913 29.0535 27.245666 1.5052 0.9731 24.5815 28.0913 29.0535 27.245666 1.5052 0.9762 17.2566 18.6054 1.5052 17.2566 18.6054 1.5052 17.2566 18.6054 1.5052 29.977 25.6411 27.4507 27.9796 27.97976 27.97978 27.97	450654	0.9369	0.8225	19.6054	19.9992	21.5002	20.4392
450669						l I	23.9802
1.0901 1.0038 21.5537 23.2889 30.2610 25.55666 1.0505 0.9162 0.9162 0.9162 0.9162 0.9162 0.9162 0.91666 0.9162 0.9162 0.9162 0.9162 0.9162 0.9162 0.91666 0.9162 0.9162 0.9162 0.9162 0.9162 0.9162 0.917 25.6411 27.4507 27.9796 27.045066 0.9162 0.9977 25.6411 27.4507 27.9796 27.0450670 0.9162 0.9977 25.6411 27.4507 27.9796 27.0450670 0.9162 0.9973 26.1575 25.9638 24.3450673 0.9612 0.9042 26.8081 28.4416 28.7101 27.5450673 0.9612 0.9042 26.8081 28.4416 28.7101 27.5450675 0.9162 0.9973 30.1134 30.1500 31.1563 30.560 31.1563 30.560 31.1563 30.560 31.1563 30.560 31.1563 30.560 31.1563 30.560 31.1563 30.560 31.1563 30.560 31.1563 30.560 31.1563 30.560 31.1563 30.560 31.1563 30.560 31.1563 30.560 31.1563 30.560 31.1563 30.560 31.1563 30.560 31.1563 30.560 31.1563 30.560 31.1563 30.560 31.563							20.9268
1.5052						l I	30.2031
450665 0.9162 17.2566 18.6054 17.2566 18.6054 17.2566 18.6054 17.2566 18.605							25.0910 27.2554
1.5005			0.9731			29.0555	17.9420
A50668 1.2012 0.9977 25.6411 27.4507 27.9796 27.6507 27.9796 27.6507 27.9796 27.6507 27.6507 27.6508 24.3450672 27.6507 27.6508 27.6359 30.1191 28.2450673 27.6507 27.6508 27.6359 30.1191 28.2450673 27.6507 27.6508 28.4416 28.7101 27.450675 28.9005 28.0617 28.4416 28.7101 27.450675 28.9005 28.0617 28.4416 28.7101 27.450675 28.9005 28.0618 28.4416 28.7101 27.450675 28.9005 28.0618 28.4416 28.7101 27.450675 28.9005 28.0618 28.4416 28.7101 27.450675 28.9005 28.05078 28.0618 28.06			0.9238			28.8635	27.1889
1,7624						l I	27.0676
450673	450670	1.3956	1.0094	22.0495	25.1575	25.9638	24.3797
1.09612 1.0094 26.8081 28.4416 28.7101 27.5 25.00575 1.3931 0.9743 26.1555 28.7765 28.9005 28.0 25.00575 26.00075 1.3931 0.9743 24.0218 27.3728 25.9555 25.7 25.00576 26.00077 24.0080 24.6009 27.4925 25.3 25.00578 25.0			0.9743		27.6359	30.1191	28.2018
450675			*		*	*	19.4030
1,3318						l I	27.9874
450678						l I	28.0563 25.7657
450683						l I	30.4735
450686							25.3331
450688 1.1879 0.9977 23.7796 27.9057 26.8599 26.1 450690 1.4275 0.8963 28.7529 28.2531 26.5529 27.9 450694 1.0615 1.0094 22.3081 23.5790 23.9961 23.3 450697 1.4256 0.8945 21.2662 23.7155 24.8667 23.4 450709 0.9189 * 18.6373 * * * * * * * * * * * * * * * * * * *	450684	1.2331	1.0094	26.2906	27.6789	29.3025	27.8096
450690 1,4275 0,8963 28,7529 28,2531 26,5529 27,9 450694 1,0615 1,0094 22,3081 23,5790 23,9961 23,4 450698 0,8850 0,8225 18,5436 18,6494 20,0956 19,1 450700 0,9189 * 18,6373 * * * 18,6 450702 0,9189 * 18,6373 * * * 18,6 450709 1,5357 0,8946 24,8628 25,6147 26,8384 25,7 450709 1,2615 1,0094 25,0932 25,4855 28,147 25,8 450713 1,5592 0,9328 26,7190 27,2801 28,2828 27,6 450715 1,2971 0,9977 16,1897 28,0365 17,3991 19,3 450716 1,2662 1,0094 28,8043 30,8440 32,3960 30,7 450723 1,4837 0,9977 27,0055 28,0812 28,5103						l I	22.8653
450694 1.0615 1.0094 22.3081 23.5790 23.9961 23.3 450697 1.4256 0.8845 21.2662 23.7155 24.8667 23.4 450698 0.8850 0.8225 18.5436 18.6494 20.0956 19.1 450700 0.9189 * 18.6373 * * * 18.6 450702 1.5357 0.8946 24.8628 25.6147 26.8384 25.7 450709 1.2615 1.0094 25.0932 25.4855 26.8147 25.8 450711 1.5421 0.8794 24.8277 28.0104 26.7472 26.5 450713 1.5592 0.9328 26.7190 27.2801 28.8285 27.6 450715 1.2971 0.0997 16.1897 28.0365 17.3991 19.3 450718 1.2662 1.0094 28.8043 30.8440 32.3960 30.7 450723 1.4867 0.9927 27.0055 28.0812 28.5103							26.1879
450697 1.4256 0.8945 21.2662 23.7155 24.8667 23.4 450698 0.8850 0.8225 18.5436 18.6494 20.0956 19.1 450700 0.9189 * 18.6373 * * * * * * * * * * * * * * * * * * *						l I	27.9501
450698 0.8850 0.8225 18.5436 18.6494 20.0956 19.1 450700 0.9189 * 18.6373 * * * * * * * * * * * * 18.6 450702 1.5357 0.8946 24.8628 25.6147 26.834 25.7 450709 1.2615 1.0094 25.0932 25.4855 26.8147 25.8 450711 1.5421 0.8794 24.8277 28.0104 26.7472 26.5 450713 1.5592 0.9328 26.7190 27.2801 28.8285 27.6 450715 1.2971 0.9977 16.1897 28.0365 17.3991 19.3 450716 1.2662 1.0094 28.8043 30.8440 32.3960 30.7 450718 1.2662 1.0094 28.8043 30.8440 32.3960 30.7 450730 1.14837 0.9977 27.0055 28.0812 28.5103 27.8 450730 1.1793 0.9977 27.0055 28.0812 28.5103 27.8 450						l I	23.4252
450700 0.9189 * 18.6373 * 18.6373 450702 1.5357 0.8946 24.8628 25.6147 26.8384 25.7 450709 1.2615 1.0094 25.0932 25.4855 26.8147 25.8 450711 1.5421 0.8794 24.8277 28.0104 26.7472 26.5 450713 1.5592 0.9328 26.7190 27.2801 28.8285 27.6 450715 1.2971 0.9977 16.1897 28.0365 17.3991 19.3 450716 1.2962 0.9328 27.6672 27.3408 23.9960 30.7 450718 1.2262 0.9328 27.6672 27.3408 27.3215 27.4 450723 1.4837 0.9977 27.0055 28.0812 28.5103 27.8 450730 1.1793 0.9977 30.7567 29.9430 31.3324 30.6 450742 1.2010 0.9977 26.3414 26.1190 27.2022 26.5							19.1074
450709 1.2615 1.0094 25.0932 25.4855 26.8147 25.8 450711 1.5421 0.8794 24.8277 28.0104 26.7472 26.5 450713 1.5592 0.9328 26.7190 27.2801 28.8285 27.6 450715 1.2971 0.9977 16.1897 28.0365 17.3991 19.3 450716 1.2662 1.0094 28.8043 30.8440 32.3960 30.7 450718 1.2262 0.9328 27.6672 27.3408 27.3215 27.4 450723 1.4837 0.9977 27.0055 28.0812 28.5103 27.8 450730 1.1793 0.9977 27.0055 29.9430 31.3324 30.6 450742 1.2010 0.9977 26.3414 26.1190 27.2022 26.5 450742 1.2010 0.9977 24.7397 27.3213 28.3662 26.8 450743 1.2741 0.9430 0.8225 16.9209 12.4748 <			*		*	*	18.6373
450711 1.5421 0.8794 24.8277 28.0104 26.7472 26.5 450713 1.5592 0.9328 26.7190 27.2801 28.8285 27.6 450715 1.2971 0.9977 16.1897 28.0365 17.3991 19.3 450716 1.2662 1.0094 28.8043 30.8440 32.3960 30.7 450718 1.2262 0.9328 27.6672 27.3408 27.3215 27.4 450723 1.4837 0.9977 27.0055 28.0812 28.5103 27.8 450730 1.1793 0.9977 30.7567 29.9430 31.3324 30.6 450742 1.2010 0.9977 26.3414 26.1190 27.2022 26.5 450743 1.5065 0.9977 24.7397 27.3213 28.3362 26.8 450746 0.9430 0.8225 16.9209 12.4748 20.6343 16.4 450747 1.2741 0.9743 24.2674 22.2870 23.8314 23.4 450749 0.981 0.8225 18.4095 17.8227	450702	1.5357	0.8946	24.8628	25.6147	26.8384	25.7796
450713 1.5592 0.9328 26.7190 27.2801 28.8285 27.6 450715 1.2971 0.9977 16.1897 28.0365 17.3991 19.3 450716 1.2662 1.0094 28.8043 30.8440 32.3960 30.7 450718 1.2262 0.9328 27.6672 27.3408 27.3215 27.4 450723 1.4837 0.9977 27.0055 28.0812 28.5103 27.8 450730 1.1793 0.9977 30.7567 29.9430 31.3324 30.6 450742 1.2010 0.9977 26.3414 26.4976 * 26.5 450743 1.5065 0.9977 24.7397 27.3213 28.3362 26.8 450746 0.9430 0.8225 16.9209 12.4748 20.6343 16.4 450747 1.2741 0.9743 24.2674 22.2870 23.8314 23.4 450751 **** * 22.9070 19.3265 18.7455 20.2 450754 0.9206 0.8225 21.3043 20.8968 22							25.8066
450715 1.2971 0.9977 16.1897 28.0365 17.3991 19.3 450716 1.2662 1.0094 28.8043 30.8440 32.3960 30.7 450718 1.2262 0.9328 27.6672 27.3408 27.3215 27.4 450723 1.4837 0.9977 27.0055 28.0812 28.5103 27.8 450730 1.1793 0.9977 30.7567 29.9430 31.3324 30.6 450742 1.2010 0.9977 26.3414 26.1190 27.2022 26.5 450743 1.5065 0.9977 24.7397 27.3213 28.3362 26.8 450746 0.9430 0.8225 16.9209 12.4748 20.6343 16.4 450747 1.2741 0.9743 24.2674 22.2870 23.8314 23.4 450749 0.9981 0.8225 18.4095 17.8227 20.0487 18.7 450751 *** * 22.9070 19.3265 18.7455 20.2 450754 0.9266 0.8225 21.3043 20.8968 <							26.5263
450716 1.2662 1.0094 28.8043 30.8440 32.3960 30.7 450718 1.2262 0.9328 27.6672 27.3408 27.3215 27.4 450723 1.4837 0.9977 27.0055 28.0812 28.5103 27.8 450730 1.1793 0.9977 30.7567 29.9430 31.3324 30.6 450733 *** * 25.5624 26.4976 * 26.0 450742 1.2010 0.9977 26.3414 26.1190 27.2022 26.5 450743 1.5065 0.9977 24.7397 27.3213 28.3362 26.8 450746 0.9430 0.8225 16.9209 12.4748 20.6343 16.4 450747 1.2741 0.9743 24.2674 22.2870 23.8314 23.4 450751 *** * * 22.9070 19.3265 18.7455 20.2 450754 0.9206 0.8225 21.3043 20.8968 22.1819 21.4 450755 0.9625 0.8709 19.5168 18.0092						l I	27.6415
450718 1.2262 0.9328 27.6672 27.3408 27.3215 27.4 450723 1.4837 0.9977 27.0055 28.0812 28.5103 27.8 450730 1.1793 0.9977 30.7567 29.9430 31.3324 30.6 450733 *** * 25.5624 26.4976 * 26.0 450742 1.2010 0.9977 26.3414 26.1190 27.2022 26.5 450743 1.5065 0.9977 24.7397 27.3213 28.3362 26.5 450746 0.9430 0.8225 16.9209 12.4748 20.6343 16.4 450747 1.2741 0.9743 24.2674 22.2870 23.8314 23.4 450749 0.9981 0.8225 18.4095 17.8227 20.0487 18.7 450751 **** * 22.9070 19.3265 18.7455 20.2 450754 0.9206 0.8225 21.3043 20.8968 22.1819 21.4 450755 0.9625 0.8709 19.5168 18.0092 19.8988 <th></th> <th></th> <th></th> <th></th> <th></th> <th>l I</th> <th>19.3270 30.7109</th>						l I	19.3270 30.7109
450723 1.4837 0.9977 27.0055 28.0812 28.5103 27.8 450730 1.1793 0.9977 30.7567 29.9430 31.3324 30.6 450733 *** * 25.5624 26.4976 * 26.0 450742 1.2010 0.9977 26.3414 26.1190 27.2022 26.5 450743 1.5065 0.9977 24.7397 27.3213 28.3362 26.8 450746 0.9430 0.8225 16.9209 12.4748 20.6343 16.4 450747 1.2741 0.9743 24.2674 22.2870 23.8314 23.4 450749 0.9981 0.8225 18.4095 17.8227 20.0487 18.7 450751 **** * 22.9070 19.3265 18.7455 20.2 450754 0.9206 0.8225 21.3043 20.8968 22.1819 21.4 450755 0.9625 0.8709 19.5168 18.0092 19.8988 19.0 450760 1.0194 0.9238 25.7453 24.6349 24.7490 <th></th> <th></th> <th></th> <th></th> <th></th> <th> </th> <th>27.4283</th>							27.4283
450730 1.1793 0.9977 30.7567 29.9430 31.3324 30.64 450733 **** * 25.5624 26.4976 * 26.0 450742 1.2010 0.9977 26.3414 26.1190 27.2022 26.5 450743 1.5065 0.9977 24.7397 27.3213 28.3362 26.8 450746 0.9430 0.8225 16.9209 12.4748 20.6343 16.4 450747 1.2741 0.9743 24.2674 22.2870 23.8314 23.4 450749 0.9981 0.8225 18.4095 17.8227 20.0487 18.7 450751 **** * 22.9070 19.3265 18.7455 20.2 450754 0.9206 0.8225 21.3043 20.8968 22.1819 21.4 450755 0.9625 0.8709 19.5168 18.0092 19.8988 19.0 450758 1.8686 0.9977 24.0226 25.6548 28.7342 26.1 450761 0.8561 * 16.2605 15.7483 *							27.8941
450735 25.3624 26.4976 26.04976 450742 1.5065 0.9977 26.3414 26.1190 27.2022 26.564 450743 1.5065 0.9977 24.7397 27.3213 28.3362 26.8 450746 0.9430 0.8225 16.9209 12.4748 20.6343 16.4 450747 1.2741 0.9743 24.2674 22.2870 23.8314 23.4 450749 0.9981 0.8225 18.4095 17.8227 20.0487 18.7 450751 **** * 22.9070 19.3265 18.7455 20.2 450754 0.9206 0.8225 21.3043 20.8968 22.1819 21.4 450755 0.9625 0.8709 19.5168 18.0092 19.8988 19.0 450758 0.9625 0.8709 19.5168 18.0092 19.8988 19.0 450760 1.0194 0.9238 25.7453 24.6349 24.7490 24.9 450761 0.8561 * 16.2605 15.7483 * 16.0 450763	450730			30.7567		l I	30.6860
450743 1.5065 0.9977 24.7397 27.3213 28.3362 26.8 450746 0.9430 0.8225 16.9209 12.4748 20.6343 16.4 450747 1.2741 0.9743 24.2674 22.2870 23.8314 23.4 450749 0.9981 0.8225 18.4095 17.8227 20.0487 18.7 450751 **** * 22.9070 19.3265 18.7455 20.2 450754 0.9206 0.8225 21.3043 20.8968 22.1819 21.4 450755 0.9625 0.8709 19.5168 18.0092 19.8988 19.0 450758 1.8686 0.9977 24.0226 25.6548 28.7342 26.1 450760 1.0194 0.9238 25.7453 24.6349 24.7490 24.9 450761 0.8561 * 16.2605 15.7483 * 16.0 450763 1.0963 * 21.4171 22.4905 * 21.9	450733	***	*	25.5624	26.4976	*	26.0340
450746 0.9430 0.8225 16.9209 12.4748 20.6343 16.4 450747 1.2741 0.9743 24.2674 22.2870 23.8314 23.4 450749 0.9981 0.8225 18.4095 17.8227 20.0487 18.7 450751 *** * 22.9070 19.3265 18.7455 20.2 450754 0.9206 0.8225 21.3043 20.8968 22.1819 21.4 450755 0.9625 0.8709 19.5168 18.0092 19.8988 19.0 450758 1.8686 0.9977 24.0226 25.6548 28.7342 26.1 450760 1.0194 0.9238 25.7453 24.6349 24.7490 24.9 450761 0.8561 * 16.2605 15.7483 * 16.0 450763 1.0963 * 21.4171 22.4905 * 21.9							26.5824
450747 1.2741 0.9743 24.2674 22.2870 23.8314 23.4 450749 0.9981 0.8225 18.4095 17.8227 20.0487 18.7 450751 *** * 22.9070 19.3265 18.7455 20.2 450754 0.9206 0.8225 21.3043 20.8968 22.1819 21.4 450755 0.9625 0.8709 19.5168 18.0092 19.8988 19.0 450758 0.9665 0.9977 24.0226 25.6548 28.7342 26.1 450760 1.0194 0.9238 25.7453 24.6349 24.7490 24.9 450761 0.8561 * 16.2605 15.7483 * 16.0 450763 1.0963 * 21.4171 22.4905 * 21.9						l I	26.8676
450749 0.9981 0.8225 18.4095 17.8227 20.0487 18.7 450751 *** * 22.9070 19.3265 18.7455 20.2 450754 0.9206 0.8225 21.3043 20.8968 22.1819 21.4 450755 0.9625 0.8709 19.5168 18.0092 19.8988 19.0 450758 1.8686 0.9977 24.0226 25.6548 28.7342 26.1 450760 1.0194 0.9238 25.7453 24.6349 24.7490 24.9 450761 0.8561 * 16.2605 15.7483 * 16.0 450763 1.0963 * 21.4171 22.4905 * 21.9					_		16.4710
450751 *** * 22.9070 19.3265 18.7455 20.2 450754 0.9206 0.8225 21.3043 20.8968 22.1819 21.4 450755 0.9625 0.8709 19.5168 18.0092 19.8988 19.0 450758 1.8686 0.9977 24.0226 25.6548 28.7342 26.1 450760 1.0194 0.9238 25.7453 24.6349 24.7490 24.9 450761 0.8561 * 16.2605 15.7483 * 16.0 450763 1.0963 * 21.4171 22.4905 * 21.9				_			23.4471 18.7388
450754 0.9206 0.8225 21.3043 20.8968 22.1819 21.4 450755 0.9625 0.8709 19.5168 18.0092 19.8988 19.0 450758 1.8686 0.9977 24.0226 25.6548 28.7342 26.1 450760 1.0194 0.9238 25.7453 24.6349 24.7490 24.9 450761 0.8561 * 16.2605 15.7483 * 16.0 450763 1.0963 * 21.4171 22.4905 * 21.9			*				20.2713
450758 1.8686 0.9977 24.0226 25.6548 28.7342 26.1 450760 1.0194 0.9238 25.7453 24.6349 24.7490 24.9 450761 0.8561 * 16.2605 15.7483 * 16.0 450763 1.0963 * 21.4171 22.4905 * 21.9		0.9206	0.8225			l I	21.4874
450760 1.0194 0.9238 25.7453 24.6349 24.7490 24.9 450761 0.8561 * 16.2605 15.7483 * 16.0 450763 1.0963 * 21.4171 22.4905 * 21.9		0.9625	0.8709			19.8988	19.0957
450761 * 16.2605 15.7483 * 16.0605 450763 * 21.4171 22.4905 * 21.9							26.1021
450763			0.9238			24.7490	24.9819
450705			*			*	16.0004
			0 9977				21.9641 29.8769
							21.5849

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 1	Average hourly wage** (3 years)
450771	1.7685	0.9977	26.0618	31.3924	30.7105	29.5787
450774	1.7982	1.0094	24.8562	24.9683	27.2080	25.7464
450775	1.2517	1.0094	25.3924	24.4006	28.1428	25.9026
450779	1.2433	0.9743	22.5857	26.9908	29.9674	26.4916
450780	1.8456	0.8945	22.8688	23.9516	26.7612	24.5801
450788450795	1.5824 1.4018	0.8438 1.0094	24.2643 28.1448	25.4172 23.7510	26.2840 25.2007	25.3430 25.3208
450796	1.7748	0.9248	24.7564	27.9734	36.4073	29.4591
450797	***	*	23.8708	20.5379	24.8950	22.9091
450801	1.4926	0.8225	22.2426	23.0373	24.6328	23.3485
450803	1.1734	1.0094	26.3054	30.6093	28.9235	28.5424
450804	1.9010	1.0094	26.0003	26.0980	27.8775	26.6687
450808	1.5092	0.9328	22.8247	23.8067	21.9793	22.8436
450809	1.5785	0.9328	24.7763	26.3659	26.4223	25.8912
450811	1.7372	0.8794	23.1022	25.8491	27.2584	25.5012
450813	1.1552	0.8945	22.1326	25.5949	20.1710	22.5101
450820450822	1.2916 1.2821	1.0094 0.9977	27.9187 29.7067	30.5288 31.1431	31.4666 32.2968	30.3417 31.1476
450824	2.5316	0.9328	29.7007	26.7803	31.2375	29.0413
450825	1.4683	0.9328	18.7069	20.2959	20.6457	19.9274
450827	1.3872	0.8562	21.1788	20.9704	23.7554	22.0429
450828	1.2665	0.8225	21.4128	22.3667	24.4740	22.7556
450829	***	*	18.2860	19.5014	20.6016	19.4468
450830	0.9544	0.9714	26.9917	28.1617	28.5901	27.8895
450831	1.5156	1.0094	20.0581	22.7885	23.3880	22.2887
450832	1.1619	1.0094	26.4725	26.6628	26.5229	26.5559
450833	1.1604	0.9977	26.1256	26.0044	27.0133	26.4267
450834	1.5313	0.8903	22.7691	21.2204	20.9607	21.5957
450838	1.1294	0.8225	15.0454	15.8026	19.5754	17.1128
450839450840	0.9397 1.0932	0.8688 0.9977	21.1905 29.5215	22.9711 31.1914	25.8222 30.1743	23.2312 30.3319
450841	1.6065	0.977	17.6635	18.9468	20.9410	19.3356
450842	***	*	23.0945	*	20.9410	23.0945
450844	1.2950	1.0094	34.4235	28.7296	30.7887	30.5867
450845	1.9042	0.9238	26.5040	27.7461	29.4933	28.0269
450846	***	*	24.0791	*	*	24.0791
450847	1.2405	1.0094	26.8892	27.6854	28.5548	27.7393
450848	1.2394	1.0094	26.5609	27.8100	29.5355	27.9941
450849	2.1291	*	*	*	*	*
450850	1.2693	0.9538	*	22.1334	21.9266	22.0277
450851	2.5547	0.9977	*	30.1213 30.0191	32.6950	31.4416
450852	1.9180	0.9977	*	30.0191	36.1169	30.0191 36.1169
450854	1.9100	0.9977 *	*	*	27.1867	27.1867
450855	1.5421	0.9731	*	*	30.8855	30.8855
450856	1.8036	0.8945	*	*	39.0865	39.0865
450857	***	*	*	*	30.4630	30.4630
450860	2.0576	1.0094	*	*	24.0171	24.0171
450861	***	*	*	*	34.9289	34.9289
450862	1.2151	1.0094	*	*	31.2224	31.2224
450863	***	*	*	*	24.8824	24.8824
450864	2.0234	0.8963	· *	· *	23.3765	23.3765
450865	1.1187	0.9328	*	*	29.1763 15.2959	29.1763 15.2959
450866450867	1.3218	0.9328	*	*	28.2290	28.2290
450868	1.8042	1.0038	*	*	27.9579	27.9579
450869	1.8958	0.8794	*	*	22.6253	22.6253
450870	***	*	*	*	37.4366	37.4366
450871	1.8656	0.9328	*	*	*	*
450872	1.3999	0.9743	*	*	*	*
450874	1.4619	0.9977	*	*	*	*
450875	1.6696	0.9248	*	* .	*	*
450876	2.2645	0.8536	*	*		*
450877	1.3998	0.9238			[*
450878450879	2.7757	0.8945	*	*		*
450879	1.2273	0.8227	·	·	· 1	•

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 ¹	Average hourly wage** (3 years)
450880	1.6125	0.9743	*	*	*	*
450881	1.1784	0.8438	*	*	*	*
450882	1.7221	0.8963		*	^ *	*
450883	1.7067 1.0397	0.9977 0.8946	*	*	*	*
450885	1.4554	0.9977	*	*	*	*
450886	1.5741	0.9653	*	*	*	*
450887	1.4336	0.8710	*	*	*	*
450888	1.3529	0.9653	*	*	*	*
450889	1.0565	0.9977	*	*	*	*
450890	2.0380 1.3559	0.9977 0.9977	*	*	*	*
450891	1.5030	0.8794	*	*	*	*
450893	1.4269	0.9977	*	*	*	*
450894	1.3348	0.9977	*	*	*	*
450895	1.4124	0.8225	*	*	*	*
460001	1.8784	0.9479	25.6932	27.0757	28.7150	27.1531
460003	1.5547	0.9476	24.3527	26.1372	31.4135	27.1945
460004	1.7077	0.9476	25.2191	26.4498	28.2040	26.6592
460005	1.3445 1.3742	0.9476 0.9476	22.6809 24.4350	23.5633 25.4787	25.0239 27.1392	23.7650 25.7154
460007	1.3804	0.9476	24.4350	25.6686	27.1392	25.7556
460008	1.3827	0.9476	24.4453	26.5672	29.5907	26.7664
460009	1.8398	0.9476	25.0984	26.2833	27.2885	26.2730
460010	2.0531	0.9476	26.2331	27.4648	29.0063	27.5982
460011	1.2838	0.9479	22.3601	23.4023	24.4402	23.3523
460013	1.4173	0.9479	23.4765	25.2448	27.7380	25.4829
460014	1.0588	0.9476	23.9400	24.1412	28.2647	25.5288
460015	1.3697 1.3235	0.9045 0.8644	24.0939 21.7082	25.6576 23.0388	27.2506 24.3031	25.6953 22.9540
460018 ^h	0.9077	1.1538	18.8942	20.3755	22.0517	20.5447
460019	1.3155	0.8252	20.3625	19.9900	24.3756	21.5406
460020	1.0268	0.8252	19.4960	19.5669	18.5160	19.2143
460021	1.7229	1.1006	24.9725	26.3420	28.0291	26.5758
460023	1.2019	0.9479	25.0376	25.3094	26.9512	25.8154
460025	***	0.0050	18.7978	04.4547	*	18.7978
460026	1.0007 1.2631	0.8252 0.8252	22.7589 22.6129	24.1547 23.4679	26.9295 23.5942	24.5709 23.2270
460032	***	V.0232 *	22.8987	25.4079	23.3942	22.8987
460033	0.8964	0.8252	22.7816	22.0248	25.3423	23.3508
460035	0.9395	0.8252	16.9019	17.5723	20.6321	18.4448
460036	1.2333	*	25.2647	27.2865	*	26.2960
460037	0.9293	*	19.8478	21.1035	*	20.4672
460039	1.0857	0.9080	27.5912	28.5656	29.5649	28.5822
460042	1.3435	0.9476	24.0431	25.2744	26.4640	25.2569
460042	1.3756 1.2959	0.9476 0.9479	23.5819 26.6870	22.9949 28.2089	24.9454 28.2008	23.8477 27.7219
460044	1.2992	0.9479	25.7342	26.6795	27.4928	26.6716
460047	1.6806	0.9476	25.1721	25.7920	28.2336	26.4124
460049	1.9513	0.9476	23.0683	24.5164	26.6701	24.8058
460051	1.1279	0.9476	23.4970	25.5881	27.0160	25.4423
460052	1.4693	0.9479	24.0797	25.3163	26.1629	25.2450
460054	1.7265	0.9045	23.5227	25.8668	24.9926	24.8098
470001	1.2535	1.1394	24.5499 24.6660	27.7329 26.4919	28.3017	26.8400
470005	1.9669 1.3514	1.0483 0.9622	25.7288	29.8255	28.1137 30.7872	26.4025 28.7819
470006	1.1507	*	26.0884	26.9651	*	26.5397
470008	1.2850	*	21.8951	*	*	21.8951
470010	1.2491	*	22.9777	26.1273	*	24.5339
470011	1.1885	1.1003	25.9246	28.3911	28.1330	27.5017
470012	1.2577	0.9887	22.9159	24.3425	26.0226	24.4725
470018	1.1198	*	25.9300	28.3419	*	27.1737
470024		0.0600	26.7486	05.0407		26.7486
470024 490001	1.2037 1.0805	0.9622 0.8351	23.7745 21.7111	25.2427 21.9953	27.0394 23.2174	25.4090 22.3295
490002	1.0698	0.8331	18.5220	19.5613	20.8609	19.6806
490002	1.0698	0.8101	18.5220	19.5613	∠0.8609	19.680

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 1	Average hourly wage** (3 years)
490003	***	*	23.8112	27.3456	*	25.4279
490004	1.3010	0.9709	24.4580	25.4597	27.1676	25.7382
490005	1.6327	1.0877	27.6425	28.5744	29.8215	28.6809
490006		0.0774	16.7679	00.0404	07.0570	16.7679
490007 490009	2.2160 2.0093	0.8774 1.0039	24.9533 27.5905	26.2481 29.0740	27.6572 30.4722	26.3292 29.0283
490009	1.4461	0.8774	22.4410	24.5687	26.4766	24.5414
490012	1.0202	0.8101	18.3697	19.2275	21.0605	19.5488
490013	1.3321	0.8600	21.4838	22.4772	24.7521	22.8740
490015	***	*	22.5641	*	*	22.5641
490017	1.4173	0.8774	22.9632	24.6845	25.8216	24.4959
490018	1.2739	0.9709	23.2215	24.5196	26.2510	24.7153
490019 h	1.1709	1.2217	24.4524	25.9761	25.9885	25.5045
490020 490021	1.2318 1.4612	0.8997 0.8600	23.6611 23.5930	24.8001 24.6440	27.3142 25.7938	25.3008 24.7182
490022	1.4894	1.0977	25.0277	28.0749	32.2676	28.4060
490023	1.2393	1.0977	28.8354	29.7774	30.3416	29.6802
490024	1.7419	0.8651	21.7268	23.0982	26.1125	23.6415
490027	1.0961	0.8101	19.8345	18.9409	24.0289	20.8898
490031	***	*	22.4300	22.0579	*	22.2427
490032	1.9793	0.8997	22.8942	25.1381	25.2654	24.4425
490033	1.0681	1.0977	27.6355	30.0909	31.2922	29.7448
490037	1.1864	0.8101	19.0583 19.6427	21.3035	24.7711	21.6802 21.2809
490038 490040	1.2162 1.5112	0.8123 1.0977	30.1820	22.3976 32.8738	21.8509 32.6564	31.9007
490041	1.3878	0.8774	22.2955	24.5738	26.0897	24.2996
490042	1.3009	0.8700	20.5845	21.8749	24.4650	22.4123
490043	1.1476	1.0977	28.2969	30.8871	33.7096	31.2339
490044	1.4622	0.8774	22.1324	20.8351	23.3527	22.0886
490045	1.2875	1.0977	27.2132	28.8279	32.0937	29.3169
490046	1.5651	0.8774	24.6391	25.6328	26.6517	25.6753
490047 490048	1.0311 1.4205	0.8803	21.9156 24.1639	22.5424 25.0097	26.2828	22.2282 25.2067
490050	1.4871	1.0977	29.4660	30.5037	31.3885	30.4585
490052	1.6094	0.8774	21.4035	22.8889	23.5973	22.6356
490053	1.2455	0.8215	20.9367	21.8432	23.3315	22.0269
490057	1.5985	0.8774	25.1898	26.1128	26.6898	26.0151
490059	1.5979	0.8997	26.1518	28.7276	27.3611	27.4497
490060	1.0296	0.8101	21.0828	22.4200	23.6114	22.3834
490063	1.8142	1.0977	29.4216	30.3632	31.3619	30.4093
490066	1.3522 1.1961	0.8774 0.8997	23.3835 21.8730	24.7146 22.9188	27.8250 24.9021	25.3365 23.2051
490069	1.5708	0.8997	24.4542	26.8791	27.3181	26.2612
490071	1.3151	0.8997	27.0374	28.4381	29.7186	28.4112
490073	1.7227	1.0977	25.2859	31.7743	33.1829	29.3533
490075	1.4657	0.8499	22.8303	23.8191	25.2022	23.9494
490077	1.4104	1.0039	24.8309	26.0800	26.6806	25.8942
490079	1.2758	0.9246	19.8100	23.4728	25.3103	22.6834
490084	1.1810	0.8268	22.7945	24.5965	24.9007	24.0470
490088	1.0916 1.0528	0.8600 0.8803	21.4818 21.2123	22.4186 22.6461	24.1470 24.9438	22.6675 23.0512
490090	1.1091	0.8101	21.3410	22.2907	25.1157	22.8001
490092	1.0717	0.8997	21.6466	23.8656	23.3439	22.9307
490093	1.4491	0.8774	23.6779	25.0751	25.6531	24.8859
490094	0.9765	0.8997	26.0755	26.5726	28.2165	26.9684
490097	1.0644	0.8101	23.5366	23.8005	26.5322	24.6151
490098	1.1693	0.8101	20.9805	21.7231	23.2782	21.9946
490101490104	1.3337 0.8061	1.0977 0.8997	30.1800	30.4285 17.3295	31.2377	30.6298 22.8307
490105	0.8061	0.8997	33.1215 38.2813	24.7923	25.5330	29.8146
490106	0.9936	0.9709	30.1492	23.0199	23.8333	26.2690
490107	1.3491	1.0977	28.7296	29.7000	32.2672	30.2868
490108	0.9857	0.8600	27.9090	22.4345	22.9075	24.4340
490109	0.9095	0.8997	28.0548	21.9878	22.7854	24.2226
490110	1.2678	0.8296	21.3126	22.5974	24.2887	22.7832
490111	1.2760	0.8101	20.6373	22.0199	22.1476	21.6199

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 1	Average hourly wage** (3 years)
490112	1.6455	0.8997	25.8312	26.6453	27.1933	26.5766
490113	1.2545	1.0977	29.1786	29.5698	31.8177	30.2326
490114	1.0628	0.8101	20.0555	20.9116	22.5255	21.1612
490115	1.1828	0.8101	20.3615	21.4666	22.4058	21.4306
490116	1.1865	0.8214	21.3083	22.9017	24.2258	22.8258
490117	1.1443	0.8101	17.4111	18.0277	19.6398	18.3782
490118	1.6783	0.8997	26.8810	27.4050	27.6749	27.3595
490119	1.2489	0.8774	23.7813	25.2549	26.5756	25.2641
490120	1.3584	0.8774	23.1535	24.4434	25.8795	24.4826
490122	1.4682	1.0977	28.7020	31.0449	32.0743	30.5780
490123	1.0808	0.8101	22.9511	23.9233	24.3490	23.7387
490124		0.0404	29.7939	00.0050	00.0000	29.7939
490126	1.2229 1.1631	0.8101 0.8101	23.1423	22.2859	23.6690 21.3735	23.0360 20.3701
490127 490130	1.1989	0.8774	19.4005 22.0769	20.4289 22.8512	23.9982	22.9793
490133	1.1303	0.0774	22.0709	26.5683	20.9902	26.5683
490134	0.8131	0.8101	*	20.5065	*	20.5005
490135	0.6927	0.8803	*	*	*	*
490136	1.0556	0.8997	*	*	*	*
500001	1.6103	1.1261	26.7502	29.3707	31.1605	29.1480
500002	1.4399	1.0206	25.0665	25.3347	27.6400	26.0178
500003	1.3373	1.1096	28.4174	29.6341	30.6939	29.6076
500005	1.7743	1.1261	31.4415	32.0972	33.5117	32.3480
500007	1.3756	1.0429	26.1318	28.0476	29.2868	27.8944
500008	1.9489	1.1261	31.0128	31.8837	32.6052	31.8529
500011	1.3298	1.1261	28.3391	30.6508	31.4514	30.1909
500012	1.6619	1.0206	29.2045	30.6856	30.0509	29.9596
500014	1.6385	1.1261	30.1061	33.7536	36.1380	33.4306
500015	1.4586	1.1261	30.1596	32.0592	34.5877	32.3400
500016	1.6989	1.1096	29.3634	31.4221	31.4905	30.7956
500019 500021	1.2650 1.3479	1.0419 1.1096	26.9702 28.5926	28.6669 30.1690	30.5594 30.7927	28.7045 29.9310
500023	1.2004	1.1090	27.3823	30.1090	30.7927	27.3823
500024	1.7894	1.0985	29.3946	30.7917	32.6171	30.9557
500025	1.7847	1.1261	31.7335	34.7252	37.7952	34.5981
500026	1.4374	1.1261	31.4152	33.2937	32.8369	32.5338
500027	1.5687	1.1261	29.5939	34.2175	34.6164	32.8504
500030	1.7341	1.0941	30.5926	32.7446	32.4426	31.9484
500031	1.2729	1.0206	28.5398	31.2186	32.8833	30.8990
500033	1.3003	1.0206	26.6704	29.4627	30.6292	28.8941
500036	1.3722	1.0206	26.0223	27.0072	28.7096	27.2760
500037	1.0368	1.0206	24.6548	26.9969	28.1056	26.5164
500039	1.4745	1.1096	27.9651	29.8809	32.2245	30.0885
500041	1.3778	1.1210	26.9101	26.7829	30.3627	27.9557
500044	1.9642	1.0422	26.9323	30.3164	29.0214	28.7513
500049	1.3191	1.0206	25.6104	27.1819	27.7170	26.9015
500050 500051	1.4346 1.7512	1.1210 1.1261	26.8971 29.0100	29.9791 31.9406	32.6751 32.5764	29.9079 31.2591
500052	1.4300	1.1261	29.0100	31.3400	32.3704 *	31.2391 *
500053	1.2893	1.0206	26.8074	28.4130	28.2901	27.8359
500054	1.9834	1.0422	28.8062	30.8067	31.6595	30.4566
500057	***	*	21.4393	*	*	21.4393
500058	1.6679	1.0206	28.4247	30.4699	30.7487	29.9724
500060	1.3068	1.1261	33.5169	34.1523	37.4868	35.0605
500064	1.7863	1.1261	31.1459	31.5371	31.6112	31.4455
500065	***	*	26.0960	*	*	26.0960
500072	1.1979	1.1096	29.3087	33.4863	31.2000	31.3297
500077	1.4650	1.0422	27.8819	29.4199	31.6153	29.6791
500079	1.3482	1.1096	28.4934	29.6623	31.3280	29.8437
500084	1.3114	1.1261	27.6306	29.3484	30.2411	29.1162
500088	1.4115	1.1261	31.2757	33.4302	35.3770	33.4301
500092	***	*	23.2466	*	* .	23.2466
500104	1.1366	*	27.0034	*	*	27.0034
500108	1.6321	1.1096	28.7206	29.4244	31.8483	30.0472
500110 500118	1.0823	*	25.4785	*	*	25.4785 28.1074
300110	1.0623		28.1074			28.1074

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

	Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 ¹	Average hourly wage** (3 years)
		1.3526	1.0422	27.2335	30.9999	29.7028	29.2939
		1.2498	1 1061	27.4405	30.1396	20.2505	28.8217
		1.3861 1.5899	1.1261 1.1096	28.6598 30.0223	31.5438 30.7536	32.3505 32.1102	30.8863 30.9921
		0.5016	1.1261	24.2990	26.8608	27.2427	26.3417
		1.5082	1.0985	29.2357	31.6591	33.9739	31.5918
		1.3165	1.1261	30.7478	30.5456	31.3308	30.8906
500143		0.4565	1.0985	20.7093	22.1419	23.6766	22.2139
500147		0.9625	*	16.3669	24.5807	*	16.9814
		1.1017	1.0206	18.2168	22.2161	26.4206	21.5539
		1.1478	1.1210	*	*	× 0070	*
		1.8641	0.8568	22.9351	23.4477	25.2973	23.9430
		1.2054 1.3272	0.8700 0.8568	22.4751 22.2947	25.9597 23.5727	23.8921 24.9627	24.1045 23.6153
		1.6454	0.8828	24.3499	25.2835	24.7264	24.7904
		1.2487	0.9314	24.5293	24.6959	26.3554	25.1899
		0.9629	0.7754	18.5816	18.2845	18.8983	18.5897
		1.1543	0.7754	19.9710	20.8782	22.7882	21.1791
510018		1.0573	0.8415	21.8475	20.5556	22.4597	21.6282
		1.8642	0.8687	24.1481	24.2125	26.9511	25.0810
		1.3116	0.8057	19.4321	20.4908	20.6435	20.1913
		1.7890	0.8568	23.3115	24.0444	25.5634	24.3035
		0.9895	0.7754	18.0855	16.6192	17.9908	17.5054
		0.9807	0.0607	23.0518	21.7134	00.7104	22.3847
		1.2850 1.1228	0.8687 0.8555	21.7527 22.3658	22.4556 21.5583	22.7104 24.3936	22.3207 22.8023
		1.4625	0.8687	21.6294	21.7637	23.2624	22.2256
		1.5524	0.8114	21.0707	23.0305	22.6189	22.2363
		1.0083	0.7754	16.8744	17.2832	20.6565	18.2956
510039		1.2392	0.7866	19.1280	19.5468	19.8751	19.5078
510043		***	*	16.0586	*	*	16.0586
		1.3401	0.8415	21.2792	21.2540	22.1712	21.5674
		1.1585	0.8568	23.2093	24.0954	27.1214	24.7769
		1.1357	0.7754	17.6785	17.5096	18.8576	18.0081
		1.5550	0.7866 0.7754	20.1943	19.9766 20.8609	21.0772	20.4106 21.3327
		1.1263 1.5234	0.7754	20.7538 29.3962	30.7868	22.3318 28.4615	29.5207
		1.3563	0.8114	21.9352	22.6976	23.9015	22.8663
		1.2304	0.8687	18.8712	21.9550	22.1435	20.8651
		***	*	15.3355	*	*	15.3355
510062		1.1481	0.8415	21.1568	23.3216	26.2296	23.5199
510067		1.1501	0.7754	22.1582	21.2099	25.0437	22.8794
510068		1.1010	*	20.0007	23.1011	*	21.5379
		1.2108	0.8415	21.1895	23.2382	23.5639	22.7348
510071		1.2857	0.8415	21.5439	23.1685	23.4508	22.7188
		1.0706 1.1017	0.7754 0.8681	19.7990 22.8104	20.1997 23.6585	20.5146 24.5010	20.1954 23.6618
		1.0816	0.7754	16.4742	19.1878	19.9081	18.3959
		1.3113	0.8687	22.6563	23.7173	26.3877	24.3319
		1.1009	0.7754	17.8234	17.5933	19.8735	18.4273
		***	*	18.3401	*	*	18.3401
		***	*	*	27.7062	*	27.7062
		2.2335	0.8828	*	*	*	*
		1.3598	0.9947	23.7316	24.9950	27.7705	25.5429
		***	*	21.8662	*	*	21.8662
		1.4627	0.9607	24.4711	25.4639	27.6530	25.9000
		1.5839 1.7177	1.0324 0.9607	27.8127	29.8354 26.1503	30.7553 27.4044	29.4984 25.6605
		1.7177	0.9007 *	23.4265 28.5569	20.1303	21.4044 *	28.5569
		1.3287	0.9607	23.7785	25.2747	26.6268	25.2916
		1.4418	0.9613	24.4766	26.6225	29.0018	26.7305
		***	*	22.1064	*	*	22.1064
		***	*	23.0403	*	*	23.0403
520017		1.1753	0.9613	23.4044	24.6676	28.4699	25.4918
		1.3092	0.9607	24.9871	26.7433	28.6971	26.8067
E00001		1.3369	1.0651	25.4872	26.6935	28.4182	26.9688

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVERAGE OF HOSPITAL AVERAGE HOURLY WAGES—Continued

Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 ¹	Average hourly wage** (3 years)
520024	1.0406	*	18.5072	*	* *	18.5072
520026			26.1056			26.1056
520027 520028	1.2650 1.2939	1.0324 1.0621	26.2516 25.7778	27.6771 25.4164	31.4284 26.7260	28.5997 25.9761
520030	1.7557	0.9947	25.3807	27.0185	29.4678	27.3375
520032	1.0976	*	25.3059	*	*	25.3059
520033	1.2339	0.9607	23.9791	25.0854	28.0662	25.8012
520034	1.2025	0.9607	23.6563	23.9850	26.1094	24.6150
520035	1.3238	0.9684	23.2625	24.7767	27.3276	25.1707
520037	1.8307	0.9947	28.6984	29.7234	30.1799	29.5214
520038	1.2393	1.0324	24.6650	26.6470	29.3133	26.9164
520040	1.4779	1.0324	23.8501	27.2325	29.1262	26.6542
520041 520042	1.0893 1.0028	1.0841	22.8236 24.0788	22.7596	23.5495	23.0632 24.0788
520042	1.3396	0.9684	24.9387	26.0191	27.3685	26.1391
520045	1.5996	0.9607	24.5844	26.0030	27.3336	25.9816
520047	***	*	25.5346	*	*	25.5346
520048	1.6266	0.9607	23.1653	25.1724	26.8080	24.9984
520049	2.1036	0.9607	24.1083	25.9256	26.9851	25.5981
520051	1.6796	1.0324	28.8249	28.4880	31.9949	29.9332
520057	1.2034	0.9725	23.3205	25.3745	27.7528	25.5398
520059	1.2561	1.0651	26.5596	28.0906	29.5801	28.0985
520060	1.2738	0.9607	22.0132	23.8817	24.8638	23.5830
520062	1.2670	1.0324	24.9988	28.2215	28.8510	27.3750
520063	1.1401 1.5146	1.0324 1.0324	25.3674 27.1120	27.4101 28.6101	29.0993 30.3225	27.2991 28.6401
520066	1.4886	1.0621	25.8812	27.1657	29.2088	27.4160
520068	0.9089	*	23.4746	24.8184	*	24.1554
520070	1.7214	0.9613	23.9908	24.8935	27.6771	25.5786
520071	1.1960	1.0209	26.3154	27.6202	30.0263	27.9425
520075	1.4680	0.9607	26.0600	27.1699	29.2920	27.4700
520076	1.2364	1.0621	24.0879	26.1698	27.3335	25.8642
520078	1.5310	1.0324	25.7662	27.5989	29.9837	27.8237
520083	1.7200	1.0841	27.0012	28.8407	30.8826	28.9925
520084	***	*	25.5777	07.0074	*	25.5777
520087 520088	1.7229 1.2892	0.9607 1.0368	24.5280 26.0882	27.3374 26.9936	28.5810 30.7450	26.7699 28.0398
520089	1.5179	1.0841	26.6013	30.0448	33.8793	30.2306
520091	1.2839	0.9607	24.8269	24.6320	25.4593	24.9881
520092	***	*	23.4043	*	*	23.4043
520094	***	*	25.3166	25.7567	*	25.5399
520095	1.2343	1.0621	28.6376	26.7863	30.4216	28.6080
520096	1.3522	1.0209	22.9929	24.5758	27.8896	25.3901
520097	1.3944	0.9607	25.1135	26.3321	29.1479	26.8851
520098	1.9786	1.0841	28.0730	30.6150	32.5785	30.4882
520100	1.2755 1.1172	0.9868	24.5914 25.6146	26.2161	29.3243	26.7266
520102 520103	1.5632	1.0209 1.0324	25.5361	26.8234 27.9147	29.1680 30.3165	27.2579 28.0905
520107	1.2485	0.9607	27.7413	28.3431	28.9878	28.3702
520109	1.0573	0.9607	22.4048	23.3271	24.7228	23.4867
520111	***	*	26.3095	*	*	26.3095
520112	***	*	20.4034	*	*	20.4034
520113	1.2842	0.9607	26.7926	27.4135	31.4707	28.5985
520114	***	*	22.0536	*	*	22.0536
520116	1.2796	1.0209	26.3057	26.9902	27.9688	27.1297
520117	***	*	22.0023	*	*	22.0023
520123	0.9607	0.0604	22.2430	22 1041	25.0006	22.2430
520132 520135	0.9607	0.9684	21.6025 18.5618	23.1941	∠5.0006 *	23.2907 18.5618
520136	1.6673	1.0324	25.5145	27.7703	30.6522	27.9536
520138	1.8679	1.0324	26.9047	28.4394	30.8016	28.7391
520139	1.2807	1.0324	25.4424	26.5110	28.8870	27.0173
520140	1.6530	1.0324	26.1616	28.4433	31.0043	28.5899
520148	1.3198	*	26.2258	*	*	26.2258
520151	***	*	22.9592	*	*	22.9592
520152	1.0804	0.9607	23.2493	24.9392	29.7308	26.1195

TABLE 2.—HOSPITAL CASE-MIX INDEXES FOR DISCHARGES OCCURRING IN FEDERAL FISCAL YEAR 2005; HOSPITAL WAGE INDEXES FOR FEDERAL FISCAL YEAR 2007; HOSPITAL AVERAGE HOURLY WAGES FOR FEDERAL FISCAL YEARS 2005 (2001 WAGE DATA), 2006 (2002 WAGE DATA), AND 2007 (2003 WAGE DATA); WAGE INDEXES AND 3-YEAR AVER-AGE OF HOSPITAL AVERAGE HOURLY WAGES-Continued

Provider No.	Case-mix index ²	FY 2007 wage index	Average hourly wage FY 2005	Average hourly wage FY 2006	Average hourly wage FY 2007 ¹	Average hourly wage** (3 years)
520154	***	*	23.7160	*	*	23.7160
520156	***	*	24.9258	*	*	24.9258
520160	1.8219	0.9607	24.3528	25.7588	27.9548	26.0586
520161	***	*	24.0673	*	*	24.0673
520170	1.4053	1.0324	25.6124	27.2221	30.4309	27.8135
520173	1.1245	1.0285	26.2224	28.0995	29.2429	27.8645
520177	1.6430	1.0324	28.4663	30.7317	31.4555	30.2920
520178	0.9946	*	23.0419	20.2666	*	21.6760
520189	1.1608	1.0651	26.3172	28.4720	28.0014	27.7043
520193	1.6504	0.9607	*	26.0885	27.8113	27.0087
520194	1.3272	1.0324	*	24.9408	30.1668	27.5109
520195	***	*	*	36.6973	36.3116	36.5038
520196	1.6500	0.9613	*	35.1043	36.9266	35.9808
520197	2.6190	1.0324	*	*	*	*
520198	1.3546	0.9607	*	*	*	*
520199	2.3592	1.0324	*	*	*	*
520200	1.3175	*	*	*	*	*
530002	1.0817	0.9124	25.2983	26.8356	28.3063	26.8117
530006	1.1609	0.9124	22.8344	24.9318	27.2422	24.9156
530007	***	*	19.3476	20.4391	*	19.9218
530008	1.1112	0.9145	23.8271	23.8589	24.0090	23.8983
530009	0.9348	0.9124	24.2426	26.8316	24.6719	25.2403
530010	1.2278	0.9145	23.9255	25.8482	25.9852	25.2473
530011	1.1081	0.9124	24.1396	24.8245	27.8772	25.6665
530012	1.6961	0.9145	24.3454	25.2526	26.9582	25.5096
530014	1.5337	0.9124	23.6907	24.5947	26.7156	25.0071
530015	1.2055	0.9639	26.3107	27.6876	29.8310	27.9484
530016	***	*	21.6575	*	*	21.6575
530017	0.9935	0.9124	23.5415	25.3362	29.8504	26.3807
530023	***	*	24.1493	21.3813	*	22.6795
530025	1.2393	0.9233	27.7988	28.6938	24.4392	26.8843
530031	***	*	16.3472	*	*	16.3472
530032	1.0643	0.9124	22.6584	25.7728	23.9005	24.0558

¹ Based on salaries adjusted for occupational mix, according to the calculation specified in FY 2007 IPPS final rule (71 FR 48006). ² The transfer-adjusted case-mix index is based on the billed DRG on the FY 2005 MedPAR. ^h These hospitals are assigned a wage index value according to the FY 2007 final rule (71 FR 48005).

TABLE 3A.—FY 2007 AND 3-YEAR AVERAGE HOURLY WAGE FOR URBAN AREAS BY CBSA [*Based on the salaries and hours computed for Federal FYs 2005, 2006, and 2007.]

CBSA code	Urban area	FY 2007 average hourly wage	3-year average hourly wage
10180	Abilene, TX	24.7354	22.5497
10380	Aguadilla-Isabela-San Sebastián, PR	11.3127	11.8798
10420	Akron, OH	25.4747	24.8266
10500	Albany, GA	26.8537	26.6477
10580	Albany-Schenectady-Troy, NY	26.2389	24.4301
10740	Albuquerque, NM	28.3608	27.7551
10780	Alexandria, LA	23.4795	22.5264
10900	Allentown-Bethlehem-Easton, PA-NJ	29.9286	27.6856
11020	Altoona, PA	25.3167	24.1524
11100	Amarillo, TX	27.4217	25.7741
11180	Ames, IA	28.7786	26.8184
11260	Anchorage, AK	35.2999	33.6081
11300	Anderson, IN	26.1553	24.4794
11340	Anderson, SC	26.4473	24.8695
11460	Ann Arbor, MI	31.6639	30.4582
11500	Anniston-Oxford, AL	23.4777	21.9712
11540	Appleton, WI	27.7424	25.9029
11700	Asheville, NC	27.4697	25.9704

^{*}Denotes wage data not available for the provider for that year.

**Based on the sum of the salaries and hours computed for Federal FYs 2005, 2006, and 2007.

***Denotes MedPAR data not available for the provider for FY 2005.

CBSA code	Urban area	FY 2007 average hourly wage	3-year average hourly wage
12020	Athens-Clarke County, GA	28.0394	27.4814
12060	Atlanta-Sandy Springs-Marietta, GA	29.0398	27.5973
12100	Atlantic City, NJ	34.6691	32.0567
12220	Auburn-Opelika, AL	23.9007	22.7914
12260	Augusta-Richmond County, GA–SC	28.5862	26.6851
12420	Austin-Round Rock, TX	27.6592	26.5039
12540 12580	Bakersfield, CA	32.3762 29.4225	29.5765 27.7580
12620	Bangor, ME	28.5032	27.5520
12700	Barnstable Town, MA	37.3300	35.1183
12940	Baton Rouge, LA	23.9749	23.3468
12980	Battle Creek, MI	28.6610	26.6466
13020	Bay City, MI	27.8853	26.4751
13140	Beaumont-Port Arthur, TX	25.8266	24.0155
13380	Bellingham, WA	32.4426	31.9484
13460 13644	Bend, OR	31.0837	29.7964
13740	Bethesda-Gaithersburg-Frederick, MD	32.1685 26.5564	31.0437 25.0079
13780	Binghamton, NY	26.5773	24.3089
13820	Birmingham-Hoover, AL	26.3579	25.2037
13900	Bismarck, ND	21.6654	20.9327
13980	Blacksburg-Christiansburg-Radford, VA	24.3556	22.6230
14020	Bloomington, IN	26.5655	24.3118
14060	Bloomington-Normal, IL	27.1016	25.5125
14260	Boise City-Nampa, ID	28.0081	26.0160
14484	Boston-Quincy, MA	34.8871	32.7850
14500	Boulder, CO	29.8919	27.9634
14540 14740	Bowling Green, KY	23.9663 32.2245	22.8146 30.0885
14860	Bridgeport-Stamford-Norwalk, CT	37.7967	35.6899
15180	Harlingen, TX	28.8551	27.7588
15260	Brunswick, GA	31.0703	29.3670
15380	Buffalo-Niagara Falls, NY	28.0965	26.4178
15500	Burlington, NC	25.3226	24.6210
15540	Burlington-South Burlington, VT	27.9794	26.2852
15764	Cambridge-Newton-Framingham, MA	32.6270	31.1502
15804	Camden, NJ	31.1549	29.6108
15940 15980	Canton-Massillon, OH	26.8311 28.0527	25.1139 26.3302
16180	Carson City, NV	29.3650	28.4400
16220	Casper, WY	26.9582	25.5096
16300	Cedar Rapids, IA	25.8224	24.7388
16580	Champaign-Urbana, IL	28.4141	26.7812
16620	Charleston, WV	25.7589	24.2660
16700	Charleston-North Charleston, SC	27.1568	25.9700
16740	Charlotte-Gastonia-Concord, NC–SC	27.9122	26.9168
16820	Charlottesville, VA	29.7688	28.4674
16860 16940	Chattanooga, TN-GA	26.5327 26.7156	25.4481 25.0071
16974	Chicago-Naperville-Joliet, IL	31.6404	30.1812
17020	Chico, CA	32.7875	29.9713
17140	Cincinnati-Middletown, OH–KY–IN	28.2340	26.7214
17300	Clarksville, TN-KY	24.9690	23.0942
17420	Cleveland, TN	24.3808	22.6533
17460	Cleveland-Elyria-Mentor, OH	27.8617	26.3788
17660	Coeur d'Alene, ID	27.3597	26.3413
17780	College Station-Bryan, TX	26.4006	25.2360
17820 17860	Columbia MO	28.0973	26.7757 23.4777
17900	Columbia, MO Columbia, SC	25.0579 26.5160	25.5945
17980	Columbia, GA-AL	25.2948	24.0613
18020	Columbus, IN	28.0068	26.5764
18140	Columbus, OH	29.8780	27.7524
18580	Corpus Christi, TX	25.0205	23.9295
18700	Corvallis, OR	33.6078	30.4640
19060	Cumberland, MD-WV	24.1695	24.2795
19124	Dallas-Plano-Irving, TX	29.5841	28.2768
19140	Dalton, GA	26.5548	25.7096
19180	Danville, IL	28.3299	24.9634

CBSA code	Urban area	FY 2007 average hourly wage	3-year average hourly wage
19260	Danville, VA	25.2022	23.9494
19340	Davenport-Moline-Rock Island, IA-IL	26.2005	24.5540
19380	Dayton, OH	27.2364	25.7362
19460	Decatur, AL	23.9150	23.6883
19500	Decatur, IL	24.3550	22.8257
19660	Deltona-Daytona Beach-Ormond Beach, FL	27.2901	25.6532
19740	Denver-Aurora, CO	31.7836	30.1612
19780	Des Moines-West Des Moines, IA	27.1922	26.2387
19804 20020	Detroit-Livonia-Dearborn, MI	30.7812 22.2783	29.0851 21.3349
20100	Dover, DE	30.1094	27.9303
20220	Dubuque, IA	26.6704	24.9867
20260	Duluth, MN-WI	30.2214	28.6977
20500	Durham, NC	28.6941	28.1744
20740	Eau Claire, WI	28.5056	26.1726
20764	Edison, NJ	33.0199	31.3235
20940	El Centro, CA	26.6950	25.1556
21060 21140	Elizabethtown, KY Elkhart-Goshen, IN	25.6000 27.8012	24.4113 26.4097
21300	Elmira, NY	24.7620	23.3890
21340	El Paso, TX	27.3947	25.6383
21500	Erie, PA	26.1902	24.4869
21604	Essex County, MA	30.8811	29.5200
21660	Eugene-Springfield, OR	32.5163	30.5454
21780	Evansville, IN-KY	26.3862	24.2557
21820	Fairbanks, AK	32.5975	31.2913
21940	Fajardo, PR	11.9787	11.2316
22020 22140	Fargo, ND-MN	24.1964 24.7543	23.9807 23.2955
22180	Fayetteville, NC	28.0323	26.3806
22220	Fayetteville-Springdale-Rogers, AR–MO	26.7687	24.6433
22380	Flagstaff, AZ	34.2142	32.1557
22420	Flint, MI	32.0203	30.4255
22500	Florence, SC	25.8070	24.8022
22520	Florence-Muscle Shoals, AL	23.3021	22.4484
22540	Fond du Lac, WI	30.7450	28.0398
22660 22744	Fort Collins-Loveland, CO Fort Lauderdale-Pompano Beach-Deerfield Beach, FL	27.3774 29.6372	27.5172 28.5403
22900	Fort Smith, AR-OK	23.2765	22.7417
23020	Fort Walton Beach-Crestview-Destin, FL	25.4368	24.4697
23060	Fort Wayne, IN	27.5263	26.9363
23104	Fort Worth-Arlington, TX	28.3363	26.7137
23420	Fresno, CA	32.7702	30.1663
23460	Gadsden, AL	23.9000	22.4775
23540	Gainesville, FL	27.9339	26.4188
23580	Gainesville, GA	27.3618	25.9487 26.2470
24020	Glens Falls, NY	25.5656	24.0003
24140	Goldsboro, NC	27.2105	24.9866
24220	Grand Forks, ND-MN	23.2018	23.1061
24300	Grand Junction, CO	28.6313	27.2192
24340	Grand Rapids-Wyoming, MI	28.3292	26.5178
24500	Great Falls, MT	25.1796	24.5500
24540	Greeley, CO	29.6191	27.1542
24580	Green Bay, WI	28.3855	26.7916
24660 24780	Greensboro-High Point, NC	26.6351 27.6626	25.4930 26.0809
24860	Greenville, SC	28.3669	27.1599
25020	Guayama, PR	09.5930	09.6934
25060	Gulfport-Biloxi, MS	25.9410	24.7777
25180	Hagerstown-Martinsburg, MD-WV	27.6180	26.6584
25260	Hanford-Corcoran, CA	31.0985	28.1098
25420	Harrisburg-Carlisle, PA	27.7934	26.1846
25500	Harrisonburg, VA	27.1676	25.7382
25540	Hartford-West Hartford-East Hartford, CT	32.5306	30.9139
25620	Hattiesburg, MS	22.5641	21.0861
25860 25980	Hickory-Lenoir-Morganton, NC	26.6596	25.5863
26100	Holland-Grand Haven, MI	27.3299	25.9201
	· · · · · · · · · · · · · · · · · · ·		

CBSA code	Urban area	FY 2007 average hourly wage	3-year average hourly wage
26180	Honolulu, HI	32.3512	30.9292
26300	Hot Springs, AR	26.1802	25.3280
26380	Houma-Bayou Cane-Thibodaux, A	24.2699	22.1607
26420	Houston-Sugar Land-Baytown, TX	29.9311	28.1062
26580	Huntington-Åshland, WV-KY-OH	26.1762	25.9741
26620	Huntsville, AL	26.5886	25.1724
26820	Idaho Falls, ID	26.7936	25.7310
26900	Indianapolis-Carmel, IN	28.9678	27.7854
26980	lowa City, IA	28.4615	27.0882
27060 27100	Ithaca, NY	29.2529 28.8148	27.4683 26.2508
27140	Jackson, MS	24.3583	23.1899
27180	Jackson, TN	26.0828	24.8971
27260	Jacksonville, FL	27.5221	26.2665
27340	Jacksonville, NC	25.0110	23.3845
27500	Janesville, WI	29.2614	27.1061
27620	Jefferson City, MO	25.5406	23.6903
27740	Johnson City, TN	23.9569	22.6132
27780	Johnstown, PA	25.3896	23.5735
27860	Jonesboro, AR	23.2669	22.3980
27900 28020	Joplin, MOKalamazoo-Portage, MI	26.0767 32.0173	24.3379 29.7247
28100	Kankakee-Bradley, IL	29.7142	29.3063
28140	Kansas City, MO-KS	27.7105	26.5218
28420	Kennewick-Richland-Pasco, WA	29.9252	29.0588
28660	Killeen-Temple-Fort Hood, TX	26.6669	24.9921
28700	Kingsport-Bristol-Bristol, TN-VA	24.0550	22.7725
28740	Kingston, NY	27.9971	25.8916
28940	Knoxville, TN	24.3875	23.5673
29020	Kokomo, IN	28.6352	26.4213
29100	La Crosse, WI–MN	28.2928	26.4773
29140 29180	Lafayette, I.A.	26.0274	24.7635
29340	Lafayette, LALake Charles, LA	24.8595 23.4919	23.4330 22.1092
29404	Lake County-Kenosha County, IL-WI	31.5831	29.4832
29460	Lakeland, FL	26.8539	25.1966
29540	Lancaster, PA	29.3703	27.6048
29620	Lansing-East Lansing, MI	29.8547	27.5157
29700	Laredo, TX	24.3950	23.4077
29740	Las Cruces, NM	27.0271	24.5756
29820	Las Vegas-Paradise, NV	33.0567	31.6630
29940	Lawrence, KS	24.7096	23.8060
30020 30140	Lebanon, PA	25.1598 25.9645	23.0756 24.4260
30300	Lewiston, ID-WA	28.6158	26.7504
30340	Lewiston-Auburn, ME	27.3831	26.2777
30460	Lexington-Fayette, KY	26.5828	25.5280
30620	Lima, OH	26.3736	25.5860
30700	Lincoln, NE	29.5529	28.3730
30780	Little Rock-North Little Rock, AR	28.7760	25.6122
30860	Logan, UT-ID	26.8219	25.5447
30980	Longview, TX	26.2133	24.6592
31020	Longview, WA	30.3627	27.9557
31084 31140	Los Angeles-Long Beach-Glendale, CA	34.6534	32.9160 25.7437
31180	Louisville-Jefferson County, KY-INLubbock, TX	27.1468 25.3114	24.3391
31340	Lynchburg, VA	25.5005	24.5752
31420	Macon, GA	29.0544	27.2917
31460	Madera, CA	25.2337	24.0664
31540	Madison, WI	32.1479	29.7320
31700	Manchester-Nashua, NH	30.3021	29.0984
31900	Mansfield, OH	27.3884	26.5027
32420	Mayagüez, PR	11.2889	11.4438
32580	McAllen-Edinburg-Mission, TX	26.0769	24.4574
32780	Medford, OR	31.8958	29.4566
32820	Memphis, TN-MS-AR	27.5968	26.0783
32900	Merced, CA	33.8352	30.8333
33124	Miami-Miami Beach-Kendall, FL	29.1208	27.5124
33140	Michigan City-La Porte, IN	26.7983	25.9329

CBSA code	Urban area	FY 2007 average hourly wage	3-year average hourly wage
33260	Midland, TX	28.2837	26.5950
33340	Milwaukee-Waukesha-West Allis, WI	30.6139	28.5884
33460	Minneapolis-St. Paul-Bloomington, MN–WI	31.9723	30.6935
33540	Missoula, MT	25.7182	25.7998
33660	Mobile, AL	23.2681	22.1095
33700	Modesto, CA	34.7979	33.3338
33740	Monroe, LA	23.9412	22.3954
33780	Monroe, MI	29.0221	26.8789
33860	Montgomery, AL	23.5234	23.1670
34060	Morgantown, WV	25.3671	24.0418
34100	Morristown, TN	23.6707	22.2354
34580 34620	Mount Vernon-Anacortes, WA	30.3080 24.7233	29.1509 24.0903
34740	Muskegon-Norton Shores, MI	29.9638	27.6896
34820	Myrtle Beach-Conway-North Myrtle Beach, SC	26.3388	25.0344
34900	Napa, CA	38.3501	35.6146
34940	Naples-Marco Island, FL	29.9690	28.7171
34980	Nashville-Davidson—Murfreesboro, TN	29.0906	27.7029
35004	Nassau-Suffolk, NY	38.4620	36.1106
35084	Newark-Union, NJ-PA	34.8610	32.9825
35300	New Haven-Milford, CT	35.7841	33.4729
35380	New Orleans-Metairie-Kenner, LA	25.6466	24.9412
35644 35660	New York-White Plains-Wayne, NY-NJ	39.5688 26.4739	37.2163 24.9201
35980	Norwich-New London, CT	35.6505	32.7603
36084	Oakland-Fremont-Hayward, CA	45.7373	43.0139
36100	Ocala, FL	25.5292	24.9445
36140	Ocean City, NJ	31.2907	30.2391
36220	Odessa, TX	29.7647	27.8892
36260	Ogden-Clearfield, UT	26.8970	25.5070
36420	Oklahoma City, OK	26.1146	25.0678
36500	Olympia, WA	32.5051	30.7166
36540 36740	Omaha-Council Bluffs, NE–IA Orlando-Kissimmee, FL	27.8702 28.3934	26.7732 26.8763
36780	Oshkosh-Neenah, WI	27.0950	25.5269
36980	Owensboro, KY	26.0440	24.2668
37100	Oxnard-Thousand Oaks-Ventura, CA	32.9949	31.6529
37340	Palm Bay-Melbourne-Titusville, FL	28.3087	27.1499
37460	Panama City-Lynn Haven, FL	24.2006	22.7018
37620	Parkersburg-Marietta-Vienna, WV-OH	24.0592	23.0883
37700	Pascagoula, MS	24.1489	22.7120
37860	Pensacola-Ferry Pass-Brent, FL	23.3305	22.6237
37900 37964	Peoria, IL	27.0600 32.6068	25.0857 30.7383
38060	Phoenix-Mesa-Scottsdale, AZ	30.0869	28.3131
38220	Pine Bluff, AR	25.8491	24.4087
38300	Pittsburgh, PA	25.4077	24.3788
38340	Pittsfield, MA	30.4071	28.8423
38540	Pocatello, ID	27.2195	26.2270
38660	Ponce, PR	13.9714	13.6681
38860	Portland-South Portland-Biddeford, ME	29.2449	28.2990
38900 38940	Portland-Vancouver-Beaverton, OR–WA	33.2416 29.2554	31.5854 28.0826
39100	Poughkeepsie-Newburgh-Middletown, NY	32.5172	31.0301
39140	Prescott, AZ	28.9051	27.6147
39300	Providence-New Bedford-Fall River, RI-MA	31.8595	30.4800
39340	Provo-Orem, UT	28.1069	26.6360
39380	Pueblo, CO	25.7454	24.3382
39460	Punta Gorda, FL	28.8128	26.5824
39540	Racine, WI	28.1129	25.7619
39580	Raleigh-Cary, NC	28.8272	27.4767
39660	Rapid City, SD	25.8230	24.8711
39740 39820	Reading, PA	28.7892 36.9179	26.7877 33.9636
39900	Reno-Sparks, NV	35.9585	31.3496
40060	Richmond, VA	26.6797	25.8302
40140	Riverside-San Bernardino-Ontario, CA	31.7977	30.5874
40220	Roanoke, VA	26.1048	23.9632
40340	Rochester, MN	33.3258	31.5976

CBSA code	Urban area	FY 2007 average hourly wage	3-year average hourly wage
40380	Rochester, NY	26.9944	25.6945
40420	Rockford, IL	29.7962	27.7018
40484	Rockingnam County-Strafford County, NH	30.0121	28.7106
40580	Rocky Mount, NC	26.3907	25.0513
40660	Rome, GA	28.7614	26.1851
40900	Sacramento—Arden-Arcade—Roseville, CA	38.5069	35.3185
40980	Saginaw-Saginaw Township North, MI	27.3125	26.3003
41060	St. Cloud, MN	32.7028	29.2101
41100 41140	St. George, UT	28.0291 30.3440	26.5758 28.0336
41180	St. Louis, MO-IL	26.6812	25.2397
41420	Salem, OR	30.4906	29.2331
41500	Salinas, CA	42.1655	39.2218
41540	Salisbury, MD	26.2842	25.2167
41620	Salt Lake City, UT	28.0986	26.6060
41660	San Angelo, TX	25.1540	23.3032
41700	San Antonio, TX	26.5240	25.1675
41740	San Diego-Carlsbad-San Marcos, CA	32.9130	31.5806
41780	Sandusky, OHSan Francisco-San Mateo-Redwood City, CA	27.4533	25.4522
41884 41900	San Germán-Cabo Rojo, PR	45.7224 14.3995	42.2326 13.6919
41940	San Jose-Sunnyvale-Santa Clara, CA	45.4409	42.2101
41980	San Juan-Caguas-Guaynabo, PR	13.1933	12.8054
42020	San Luis Obispo-Paso Robles, CA	33.0896	31.3414
42044	Santa Ana-Anaheim-Irvine, CA	33.6565	32.2329
42060	Santa Barbara-Santa Maria, CA	32.1995	31.1050
42100	Santa Cruz-Watsonville, CA	44.6455	42.0789
42140	Santa Fe, NM	32.0477	30.4670
42220	Santa Rosa-Petaluma, CA	42.4689	38.0360
42260	Sarasota-Bradenton-Venice, FL	28.8918	27.0657
42340 42540	Savannah, GA	27.1003 24.5216	26.2037 23.6058
42644	Scranton—Wilkes-Barre, PA	33.3915	32.0468
42680	Sebastian-Vero Beach, FL	29.3162	26.9491
43100	Sheboygan, WI	27.0944	25.2780
43300	Sherman-Denison, TX	25.6518	25.8894
43340	Shreveport-Bossier City, LA	26.2370	24.9393
43580	Sioux City, IA-NE-SD	26.8716	25.6458
43620	Sioux Falls, SD	27.7271	26.5164
43780	South Bend-Mishawaka, IN-MI	29.3973	27.1692
43900	Spartanburg, SC	26.7923	25.8987
44060 44100	Spokane, WA	30.9034	29.8263
44140	Springfield, IL	26.5425 30.1291	24.6316 28.5979
44180	Springfield, MO	25.4111	23.7305
44220	Springfield, OH	25.1686	23.9321
44300	State College, PA	25.6643	23.7164
44700	Stockton, CA	34.0233	31.2391
44940	Sumter, SC	24.7899	23.6087
45060	Syracuse, NY	28.9876	26.9574
45104	Tacoma, WA	31.7596	30.3791
45220	Tallahassee, FL	26.5663	24.5843
45300	Tampa-St. Petersburg-Clearwater, FL	27.2772	25.7846
45460 45500	Terre Haute, INTexarkana, AR	26.1137 24.0237	23.7180 23.1611
45780	Toledo, OH	28.0359	26.6301
45820	Topeka, KS	25.9836	24.8278
45940	Trenton-Ewing, NJ	32.3220	29.9814
46060	Tucson, AZ	27.8441	25.6497
46140	Tulsa, OK	24.6404	23.8913
46220	Tuscaloosa, AL	25.9777	24.0371
46340	Tyler, TX	26.4318	25.7626
46540	Utica-Rome, NY	25.9564	23.7574
46660	Valdosta, GA	25.1934	24.0205
46700	Vallejo-Fairfield, CA	43.8674	41.4044
47020	Victoria, TX	24.9845	23.3071
47220 47260	Vineland-Millville-Bridgeton, NJ Virginia Beach-Norfolk-Newport News, VA-NC	30.7865 26.0160	28.7657 24.7890
47300	Visalia-Porterville, CA	29.9158	28.2959
77000	VIGUILA I OTOTVIIIE, OA	23.3130	20.2303

TABLE 3A.—FY 2007 AND 3-YEAR AVERAGE HOURLY WAGE FOR URBAN AREAS BY CBSA—Continued [*Based on the salaries and hours computed for Federal FYs 2005, 2006, and 2007.]

CBSA code	Urban area	FY 2007 average hourly wage	3-year average hourly wage
47380	Waco, TX	25.9394	23.7524
47580	Warner Robins, GA	26.1288	24.3113
47644	Warren-Troy-Farmington Hills, MI	29.9724	28.0999
47894	Washington-Arlington-Alexandria, DC-VA-MD-WV	32.5489	30.7238
47940	Waterloo-Cedar Falls, IA	25.4836	24.1398
48140	Wausau, WI	29.4678	27.3375
48260	Weirton-Steubenville, WV-OH	23.8928	22.5021
48300	Wenatchee, WA	30.1956	27.5727
48424	West Palm Beach-Boca Raton-Boynton Beach, FL	28.2754	27.8801
48540	Wheeling, WV-OH	21.0012	20.2153
48620	Wichita, KS	26.7361	25.7825
48660	Wichita Falls, TX	25.3878	23.5588
48700	Williamsport, PA	23.9343	23.1797
48864	Wilmington, DE-MD-NJ	31.3445	30.0596
48900	Wilmington, NC	28.9725	26.7451
49020	Winchester, VA-WV	29.8215	28.6809
49180	Winston-Salem, NC	27.4181	25.7927
49340	Worcester, MA	32.0147	30.6187
49420	Yakima, WA	29.1309	28.2366
49500	Yauco, PR	11.1812	11.8242
49620	York-Hanover, PA	28.1586	26.1713
49660	Youngstown-Warren-Boardman, OH-PA	26.0913	24.8348
49700	Yuba City, CA	31.2174	29.7427
49740	Yuma, AZ	27.0111	25.4677

¹ This area has no average hourly wage because there are no short-term, acute care hospitals in the area.

TABLE 3B.—FY 2007 AND 3-YEAR* AVERAGE HOURLY WAGE FOR RURAL AREAS BY CBSA [*Based on the sum of the salaries and hours computed for federal FYs 2005, 2006, and 2007.]

CBSA code	Nonurban area	FY 2007 average hourly wage	3-Year average hourly wage
01	Alabama	22.7266	21.2362
02	Alaska	31.7349	32.0692
03	Arizona	26.8924	25.0201
04	Arkansas	22.1322	20.8590
05	California	33.2165	30.4210
06	Colorado	26.9566	25.9101
07	Connecticut	35.5471	33.2841
08	Delaware	29.2141	27.0822
10	Florida	25.8957	24.2399
11	Georgia	23.2040	21.7117
12	Hawaii	31.5122	29.7080
13	ldaho	23.7761	22.5379
14	Illinois	24.7833	23.2471
15	Indiana	25.3962	24.0538
16	lowa	25.5462	23.7246
17	Kansas	23.7576	22.4610
18	Kentucky	23.1433	21.7879
19	Louisiana	22.7152	20.9287
20	Maine	24.8875	24.4422
21	Maryland	26.3358	25.6324
22	Massachusetts 1		
23	Michigan	26.7707	24.8965
24	Minnesota	27.2664	25.6919
25	Mississippi	23.1173	21.5916
26	Missouri	24.0814	22.2178
27	Montana	25.6649	24.3121
28	Nebraska	25.6086	24.5327
29	Nevada	27.2229	25.6122
30	New Hampshire	32.3754	29.3617
31	New Jersey 1		
32	New Mexico	24.8330	24.0136
33	New York	24.7417	23.0382
34	North Carolina	25.5870	24.0377
35	North Dakota	21.8478	20.8336
36	Ohio	25.7486	24.4334

CBSA code	Nonurban area	FY 2007 average hourly wage	3-Year average hourly wage
37	Oklahoma	23.2698	21.6211
38	Oregon	28.8316	27.3621
39	Pennsylvania	24.6146	23.2486
40	Puerto Rico 1		
41	Rhode Island ¹		
42	South Carolina	25.7744	24.3480
43	South Dakota	24.6052	23.4919
44	Tennessee	23.8699	22.2751
45	Texas	24.3889	22.6173
46	Utah	24.4689	22.9744
47	Vermont	28.5315	26.6381
49	Virginia	24.0216	22.5475
50	Washington	30.2634	28.7978
51	West Virginia	22.9916	21.8032
52	Wisconsin	28.4880	26.5687
53	Wyoming	26.8294	25.5743

¹ All counties in the State or Territory are classified as urban, with the exception of Massachusetts. Massachusetts has area(s) designated as rural. However, no short-term, acute care hospitals are located in the area(s) for FY 2007.

TABLE 4A-1.—WAGE INDEX AND CAPITAL GEOGRAPHIC ADJUSTMENT FACTOR (GAF) FOR URBAN AREAS BY CBSA

-			
CBSA code	Urban area (constituent counties)	Wage index	GAF
10180	Abilene, TX	0.8380	0.8860
10100	Callahan County, TX.	0.0000	0.0000
	Jones County, TX.		
	Taylor County, TX.		
10380	Aguadilla-Isabela-San Sebastián, PR	0.3815	0.5169
	Aguada Municipio, PR.		
	Aguadilla Municipio, PR.		
	Añasco Municipio, PR.		
	Isabela Municipio, PR.		
	Lares Municipio, PR.		
	Moca Municipio, PR.		
	Rinc≤n Municipio, PR.		
	San Sebastián Municipio.		
10420	² Akron, OH	0.8683	0.9078
	Portage County, OH.		
	Summit County, OH.		
10500	Albany, GA	0.9056	0.9344
	Baker County, GA.		
	Dougherty County, GA.		
	Lee County, GA.		
	Terrell County, GA.		
40500	Worth County, GA.	0.0040	0.0407
10580	Albany-Schenectady-Troy, NY	0.8849	0.9197
	Albany County, NY.		
	Rensselaer County, NY.		
	Saratoga County, NY.		
	Schenectady County, NY.		
10740	Schoharie County, NY. Albuguergue, NM	0.0564	0.000
10740	Bernalillo County, NM.	0.9564	0.9699
	Sandoval County, NM.		
	Torrance County, NM.		
	Valencia County, NM.		
10780	Alexandria, LA	0.7961	0.8554
10700	Grant Parish, LA.	0.7301	0.0554
	Rapides Parish, LA.		
10900	Allentown-Bethlehem-Easton, PA-NJ (PA Hospitals)	1.0093	1.0064
10000	Warren County, NJ.	1.0000	1.0004
	Carbon County, PA.		
	Lehigh County, PA.		
	Northampton County, PA.		
10900	² Allentown-Bethlehem-Easton, PA-NJ (NJ Hospitals)	1.1402	1.0940
	Warren County, NJ.	52	
	Carbon County, PA.		
	•		

CBSA code	Urban area (constituent counties)	Wage index	GAF
	Lehigh County, PA.		
11000	Northampton County, PA.	0.0500	0.0074
11020	Altoona, PA	0.8538	0.8974
11100		0.9248	0.9479
	Armstrong County, TX.		
	Carson County, TX. Potter County, TX.		
	Randall County, TX.		
11180	Ames, IA	0.9705	0.9797
11000	Story County, IA.	1 1004	1 1000
11260	³ Anchorage, AK	1.1904	1.1268
	Matanuska-Susitna Borough, AK.		
11300	Anderson, IN	0.8820	0.9176
11340	Madison County, IN. Anderson, SC	0.8919	0.9246
11040	Anderson County, SC.	0.0313	0.3240
11460	3 Ann Arbor, MI	1.0678	1.0459
11500	Washtenaw County, MI.	0.7007	0.0504
11500	Anniston-Oxford, AL	0.7997	0.8581
11540	² Appleton, WI	0.9607	0.9729
	Calumet County, WI.		
11700	Outagamie County, WI. Asheville, NC	0.9264	0.9490
11700	Buncombe County, NC.	0.3204	0.3430
	Haywood County, NC.		
	Henderson County, NC.		
12020	Madison County, NC. Athens-Clarke County, GA	0.9456	0.9624
12020	Clarke County, GA.	0.0 100	0.002
	Madison County, GA.		
	Oconee County, GA. Oglethorpe County, GA.		
12060	¹ Atlanta-Sandy Springs-Marietta, GA	0.9793	0.9858
	Barrow County, GA.		
	Bartow County, GA. Butts County, GA.		
	Carroll County, GA.		
	Cherokee County, GA.		
	Clayton County, GA.		
	Cobb County, GA. Coweta County, GA.		
	Dawson County, GA.		
	DeKalb County, GA.		
	Douglas County, GA. Fayette County, GA.		
	Forsyth County, GA.		
	Fulton County, GA.		
	Gwinnett County, GA. Haralson County, GA.		
	Heard County, GA.		
	Henry County, GA.		
	Jasper County, GA.		
	Lamar County, GA. Meriwether County, GA.		
	Newton County, GA.		
	Paulding County, GA.		
	Pickens County, GA. Pike County, GA.		
	Rockdale County, GA.		
	Spalding County, GA.		
10100	Walton County, GA.	4 4000	4 4400
12100	Atlantic City, NJ	1.1692	1.1130
12220	Auburn-Opelika, AL	0.8060	0.8627
	Lee County, AL.		
12260	Augusta-Richmond County, GA-SC	0.9640	0.9752

CBSA code	Urban area (constituent counties)	Wage index	GAF
	Columbia County, GA.		
	McDuffie County, GA. Richmond County, GA.		
	Aichmond County, GA. Aiken County, SC.		
	Edgefield County, SC.		
12420	¹ Austin-Round Rock, TX	0.9328	0.9535
	Bastrop County, TX. Caldwell County, TX.		
	Hays County, TX.		
	Travis County, TX.		
10510	Williamson County, TX.	4 4000	4 0000
12540	² Bakersfield, CA	1.1202	1.0808
12580	¹ Baltimore-Towson, MD	0.9922	0.9947
	Anne Arundel County, MD.	0.0022	0.00
	Baltimore County, MD.		
	Carroll County, MD. Harford County, MD.		
	Howard County, MD.		
	Queen Anne's County, MD.		
	Baltimore City, MD.		
12620	Bangor, ME	0.9612	0.9733
12700	Penobscot County, ME. Barnstable Town, MA	1.2589	1.1708
12700	Barnstable County, MA.	1.2000	1.1700
12940	Baton Rouge, LA	0.8085	0.8645
	Ascension Parish, LA.		
	East Baton Rouge Parish, LA. East Feliciana Parish, LA.		
	Iberville Parish, LA.		
	Livingston Parish, LA.		
	Pointe Coupee Parish, LA.		
	St. Helena Parish, LA. West Baton Rouge Parish, LA.		
	West Feliciana Parish, LA.		
12980	Battle Creek, MI	0.9666	0.9770
12000	Calhoun County, MI.	1 0000	1 0055
13020	³ Bay City, MI Bay County, MI.	1.0080	1.0055
13140	Beaumont-Port Arthur, TX	0.8710	0.9098
	Hardin County, TX.		
	Jefferson County, TX.		
13380	Orange County, TX. Bellingham, WA	1.0941	1.0635
10000	Whatcom County, WA.	1.0011	1.0000
13460	Bend, OR	1.0483	1.0328
13644	Deschutes County, OR. ¹ Bethesda-Gaithersburg-Frederick, MD	1.0848	1.0573
13044	Frederick County, MD.	1.0046	1.0573
	Montgomery County, MD.		
13740	Billings, MT	0.8956	0.9273
	Carbon County, MT. Yellowstone County, MT.		
13780	Binghamton, NY	0.8963	0.9278
10700	Broome County, NY.	0.0000	0.0270
	Tioga County, NY.		
13820	¹ Birmingham-Hoover, AL	0.8889	0.9225
	Blount County, AL.		
	Chilton County, AL.		
	Jefferson County, AL.		
	St. Clair County, AL.		
	Shelby County, AL. Walker County, AL.		
13900	^{2,3} Bismarck, ND	0.7368	0.8113
	Burleigh County, ND.		
10000	Morton County, ND.	0.001	0.0=1-
13980	Blacksburg-Christiansburg-Radford, VA	0.8214	0.8740
	Giles County, VA.		

Table 4A–1.—Wage Index And Capital Geographic Adjustment Factor (GAF) for Urban Areas by CBSA—Continued

CBSA code	Urban area (constituent counties)	Wage index	GAF
	Pulaski County, VA.		
1.1000	Radford City, VA.	0.0050	0.0075
14020	Bloomington, IN	0.8959	0.9275
	Monroe County, IN.		
	Owen County, IN.		
14060	Bloomington-Normal, IL	0.9140	0.9403
14260	McLean County, IL. Boise City-Nampa, ID	0.9445	0.9617
14200	Ada County, ID.	0.9445	0.9617
	Boise County, ID.		
	Canyon County, ID.		
	Gem County, ID.		
14484	Owyhee County, ID. ¹ Boston-Quincy, MA	1.1765	1.1177
14404	Norfolk County, MA.	1.1705	1.11//
	Plymouth County, MA.		
	Suffolk County, MA.		
14500	Boulder, CO	1.0081	1.0055
14540	Boulder County, CO. Bowling Green, KY	0.8082	0.8643
14540	Edmonson County, KY.	0.0002	0.0040
	Warren County, KY.		
14740		1.0867	1.0586
14860	Kitsap County, WA. Bridgeport-Stamford-Norwalk, CT	1.2746	1.1808
14000	Fairfield County, CT.	1.2740	1.1000
15180	Brownsville-Harlingen, TX	0.9731	0.9815
	Cameron County, TX.		
15260	Brunswick, GA	1.0478	1.0325
	Brantley County, GA. Glynn County, GA.		
	McIntosh County, GA.		
15380	¹ Buffalo-Niagara Falls, NY	0.9475	0.9637
	Erie County, NY.		
15500	Niagara County, NY. ² Burlington, NC	0.8629	0.9040
15500	Alamance County, NC.	0.6629	0.9040
15540	² Burlington-South Burlington, VT	0.9622	0.9740
	Chittenden County, VT.		
	Franklin County, VT. Grand Isle County, VT.		
15764	Cambridge-Newton-Framingham, MA	1.1003	1.0676
	Middlesex County, MA.		
15804	1,2 Camden, NJ	1.1402	1.0940
	Burlington County, NJ.		
	Camden County, NJ. Gloucester County, NJ.		
15940	Canton-Massillon, OH	0.9048	0.9338
	Carroll County, OH.		
15000	Stark County, OH.	0.0460	0.0007
15980	Cape Coral-Fort Myers, FL	0.9460	0.9627
16180	Carson City, NV	0.9903	0.9933
	Carson City, NV.		
16220	^{2,3} Casper, WY	0.9199	0.9444
16300	Natrona County, WY. ^{2,3} Cedar Rapids, IA	0.8803	0.9164
10300	Benton County, IA.	0.0003	0.3104
	Jones County, IA.		
10500	Linn County, IA.	0.000	0.0=:-
16580	Champaign-Urbana, IL	0.9582	0.9712
	Ford County, IL.		
	Piatt County, IL.		
16620	Charleston, WV	0.8687	0.9081
	Boone County, WV.		
	Clay County, WV. Kanawha County, WV.		
	Nanawia Oddity, WV.		

CBSA code	Urban area (constituent counties)	Wage index	GAF
	Putnam County, WV.		_
16700	Charleston-North Charleston, SC	0.9197	0.9443
	Charleston County, SC.		
	Dorchester County, SC.		
16740	Charlotte-Gastonia-Concord, NC-SC Anson County, NC.	0.9413	0.9594
	Cabarrus County, NC.		
	Gaston County, NC.		
	Mecklenburg County, NC. Union County, NC.		
	York County, SC.		
16820	Charlottesville, VA	1.0039	1.0027
	Albemarle County, VA. Fluvanna County, VA.		
	Greene County, VA.		
	Nelson County, VA.		
16860	Charlottesville City, VA. Chattanooga, TN-GA	0.8948	0.9267
10000	Catoosa County, GA.	0.0040	0.5207
	Dade County, GA.		
	Walker County, GA. Hamilton County, TN.		
	Marion County, TN.		
	Sequatchie County, TN.		
16940	2,3 Cheyenne, WYLaramie County, WY.	0.9199	0.9444
16974	¹ Chicago-Naperville-Joliet, IL	1.0670	1.0454
	Cook County, IL.		
	DeKalb County, IL. DuPage County, IL.		
	Grundy County, IL.		
	Kane County, IL.		
	Kendall County, IL. McHenry County, IL.		
	Will County, IL.		
17020	² Chico, CA	1.1202	1.0808
17140	Butte County, CA. ¹ Cincinnati-Middletown, OH-KY-IN	0.9522	0.9670
	Dearborn County, IN.		
	Franklin County, IN. Ohio County, IN.		
	Boone County, KY.		
	Bracken County, KY.		
	Campbell County, KY. Gallatin County, KY.		
	Grant County, KY.		
	Kenton County, KY.		
	Pendleton County, KY. Brown County, OH.		
	Butler County, OH.		
	Clermont County, OH.		
	Hamilton County, OH. Warren County, OH.		
17300	Clarksville, TN-KY	0.8420	0.8889
	Christian County, KY.		
	Trigg County, KY. Montgomery County, TN.		
	Stewart County, TN.		
17420	Cleveland, TN	0.8222	0.8745
	Bradley County, TN. Polk County, TN.		
17460	¹ Cleveland-Elyria-Mentor, OH	0.9396	0.9582
	Cuyahoga County, OH.		
	Geauga County, OH. Lake County, OH.		
	Lorain County, OH.		
	Medina County, OH.		
17660	Coeur d'Alene, ID	0.9227	0.9464

CBSA code	Urban area (constituent counties)	Wage index	GAF
17780	College Station-Bryan, TX Brazos County, TX. Burkenton County, TX.	0.8903	0.9235
17820	Robertson County, TX. Colorado Springs, CO	0.9475	0.9637
17860	Boone County, MO.	0.8456	0.8915
17900	Howard County, MO. Columbia, SC	0.8942	0.9263
17980	Saluda County, SC. Columbus, GA-AL	0.8530	0.8968
18020	Columbus, IN	0.9445	0.9617
18140	Bartholomew County, IN. Columbus, OH Delaware County, OH. Fairfield County, OH. Franklin County, OH. Licking County, OH. Madison County, OH. Morrow County, OH. Pickaway County, OH.	1.0076	1.0052
18580	Union County, OH. Corpus Christi, TX	0.8438	0.8902
18700		1.1334	1.0895
19060	Benton County, OR. ² Cumberland, MD-WV (MD Hospitals)	0.8881	0.9219
19060	Cumberland, MD-WV (WV Hospitals)	0.8151	0.8694
19124		0.9977	0.9984
19140	Dalton, GA	0.8955	0.9272
19180	Danville, IL	0.9554	0.9692
19260	Pittsylvania County, VA. Danville City, VA.	0.8499	0.8946
19340	Davenport-Moline-Rock Island, IA-IL	0.8836	0.9187
19380	Dayton, OH	0.9185	0.9434

Table 4A–1.—Wage Index And Capital Geographic Adjustment Factor (GAF) for Urban Areas by CBSA—Continued

CBSA code	Urban area (constituent counties)	Wage index	GAF
	Miami County, OH.		
	Montgomery County, OH. Preble County, OH.		
19460	Decatur, AL	0.8065	0.8631
	Lawrence County, AL.		
10500	Morgan County, AL.	0.0050	0.0044
19500	² Decatur, IL	0.8358	0.8844
19660	Deltona-Daytona Beach-Ormond Beach, FL	0.9203	0.9447
	Volusia County, FL.		
19740	¹ Denver-Aurora, CO	1.0719	1.0487
	Adams County, CO. Arapahoe County, CO.		
	Broomfield County, CO.		
	Clear Creek County, CO.		
	Denver County, CO.		
	Douglas County, CO.		
	Elbert County, CO. Gilpin County, CO.		
	Jefferson County, CO.		
	Park County, CO.		
19780	Des Moines-West Des Moines, IA	0.9170	0.9424
	Dallas County, IA. Guthrie County, IA.		
	Madison County, IA.		
	Polk County, IA.		
	Warren County, IA.		
19804	1,3 Detroit-Livonia-Dearborn, MI	1.0381	1.0259
20020	Wayne County, MI. Dothan, AL	0.7664	0.8334
20020	Geneva County, AL.	0.7664	0.0004
	Henry County, AL.		
	Houston County, AL.		
20100	Dover, DE	1.0154	1.0105
20220	Dubuque, IA	0.8994	0.9300
	Dubuque County, IA.		
20260	Duluth, MN-WI	1.0285	1.0194
	Carlton County, MN.		
	St. Louis County, MN. Douglas County, WI.		
20500	Durham, NC	0.9677	0.9778
	Chatham County, NC.		
	Durham County, NC. Orange County, NC.		
	Person County, NC.		
20740	Eau Claire, WI	0.9613	0.9733
	Chippewa County, WI.		
20764	Eau Claire County, WI. 1,2 Edison, NJ	1.1402	1 0040
20764	Middlesex County, NJ.	1.1402	1.0940
	Monmouth County, NJ.		
	Ocean County, NJ.		
00040	Somerset County, NJ.	1 1000	1 0000
20940	² El Centro, CA	1.1202	1.0808
21060	Elizabethtown, KY	0.8633	0.9042
	Hardin County, KY.		
04440	Larue County, KY.	0.0070	0.0500
21140	Elkhart-Goshen, IN Elkhart County, IN.	0.9376	0.9568
21300	² Elmira, NY	0.8430	0.8896
	Chemung County, NY.	3.0100	3.000
21340	El Paso, TX	0.9238	0.9472
01500	El Paso County, TX.	0.0000	0.0405
21500	Erie, PA Erie County, PA.	0.8832	0.9185
21604	² Essex County, MA	1.0757	1.0512
	Essex County, MA.		
21660	³ Eugene-Springfield, OR	1.0966	1.0652

Table 4A–1.—Wage Index And Capital Geographic Adjustment Factor (GAF) for Urban Areas by CBSA—Continued

CBSA code	Urban area (constituent counties)	Wage index	GAF
0.1700	Lane County, OR.	2 2222	0.0000
21780	Evansville, IN-KY	0.8898	0.9232
	Posey County, IN.		
	Vanderburgh County, IN.		
	Warrick County, IN. Henderson County, KY.		
	Webster County, KY.		
21820	Fairbanks, AK	1.0993	1.0670
21940	Fairbanks North Star Borough, AK. Fajardo, PR	0.4040	0.5376
21940	Ceiba Municipio, PR.	0.4040	0.5570
	Fajardo Municipio, PR.		
22020	Luquillo Municipio, PR. ³ Fargo, ND-MN (ND Hospitals)	0.8367	0.8851
22020	Clay County, MN.	0.0307	0.0001
	Cass County, ND.		
22020	^{2,3} Fargo, ND-MN (MN Hospitals)	0.9195	0.9441
	Cass County, ND.		
22140	² Farmington, NM	0.8375	0.8856
00100	San Juan County, NM. Fayetteville, NC	0.0450	0.0000
22180	Cumberland County, NC.	0.9453	0.9622
	Hoke County, NC.		
22220	Fayetteville-Springdale-Rogers, AR-MO	0.9027	0.9323
	Benton County, AR. Madison County, AR.		
	Washington County, AR.		
2222	McDonald County, MO.	4 4 5 0 0	4 4000
22380	Flagstaff, AZ	1.1538	1.1029
22420	Flint, MI	1.0798	1.0540
22522	Genesee County, MI.	0.0700	
22500	Florence, SC	0.8703	0.9093
	Florence County, SC.		
22520	Florence-Muscle Shoals, AL	0.7876	0.8492
	Colbert County, AL. Lauderdale County, AL.		
22540	Fond du Lac, WI	1.0368	1.0251
	Fond du Lac County, WI.		
22660	Fort Collins-Loveland, CO	0.9233	0.9468
22744	¹ Fort Lauderdale-Pompano Beach-Deerfield Beach, FL	1.0320	1.0218
	Broward County, FL.		
22900	Fort Smith, AR-OK	0.7850	0.8472
	Crawford County, AR. Franklin County, AR.		
	Sebastian County, AR.		
	Le Flore County, OK.		
23020	Sequoyah County, OK. ² Fort Walton Beach-Crestview-Destin, FL	0.8733	0.9114
20020	Okaloosa County, FL.	0.0700	0.0111
23060	Fort Wayne, IN	0.9283	0.9503
	Allen County, IN. Wells County, IN.		
	Whitley County, IN.		
23104	¹ Fort Worth-Arlington, TX	0.9556	0.9694
	Johnson County, TX. Parker County, TX.		
	Tarrant County, TX.		
	Wise County, TX.		
23420	² Fresno, CA	1.1202	1.0808
23460	Fresno County, CA. Gadsden, AL	0.8060	0.8627
	Etowah County, AL.	3.0000	3.5027
23540	Gainesville, FL	0.9420	0.9599
	Alachua County, FL.		

TABLE 4A-1.—WAGE INDEX AND CAPITAL GEOGRAPHIC ADJUSTMENT FACTOR (GAF) FOR URBAN AREAS BY CBSA—Continued

CBSA code	Urban area (constituent counties)	Wage index	GAF
23580	Gainesville, GA	0.9227	0.9464
23844	Gary, IN	0.9397	0.9583
24020	Porter County, IN. Glens Falls, NY Warren County, NY. Washington County, NY.	0.8622	0.9035
24140	Goldsboro, NC	0.9176	0.9428
24220	³ Grand Forks, ND-MN (ND Hospitals)	0.7824	0.8453
24220	^{2,3} Grand Forks, ND-MN (MN Hospitals)	0.9195	0.9441
24300		0.9655	0.9762
24340	Grand Rapids-Wyoming, MI Barry County, MI. Ionia County, MI. Kent County, MI. Newaygo County, MI.	0.9554	0.9692
24500	, , ,	0.8747	0.9124
24540		0.9989	0.9992
24580	² Green Bay, ŴI	0.9607	0.9729
24660	Oconto County, WI. Greensboro-High Point, NC. Guilford County, NC. Randolph County, NC. Rockingham County, NC.	0.8982	0.9291
24780	Greenville, NC. Greene County, NC. Pitt County, NC.	0.9329	0.9535
24860	Greenville, ŚĆ	0.9566	0.9701
25020	Guayama, PR	0.3235	0.4617
25060	Gulfport-Biloxi, MS Hancock County, MS. Harrison County, MS. Stone County, MS.	0.8748	0.9125
25180	Hagerstown-Martinsburg, MD-WV	0.9314	0.9525
25260	² Hanford-Corcoran, CA Kings County, CA.	1.1202	1.0808
25420	Harrisburg-Carlisle, PA Cumberland County, PA. Dauphin County, PA. Perry County, PA.	0.9373	0.9566
25500	Harrisonburg, VA	0.9162	0.9418
25540	1,2 Hartford-West Hartford-East Hartford, CT Hartford County, CT. Litchfield County, CT. Middlesex County, CT. Tolland County, CT.	1.1988	1.1322

CBSA code	Urban area (constituent counties)	Wage index	GAF
25620	² Hattiesburg, MS	0.7796	0.8432
	Forrest County, MS.		
	Lamar County, MS. Perry County, MS.		
25860	Hickory-Lenoir-Morganton, NC	0.8991	0.9298
	Alexander County, NC.		
	Burke County, NC.		
	Caldwell County, NC. Catawba County, NC.		
25980	Hinesville-Fort Stewart, GA	0.7825	0.8454
	Liberty County, GA.		
26100	Long County, GA. Holland-Grand Haven, MI	0.9217	0.9457
20100	Ottawa County, MI.	0.5217	0.5457
26180	Honolulu, HI	1.0911	1.0615
26300	Honolulu County, HI. Hot Springs, AR	0.8829	0.9182
20300	Garland County, AR.	0.0029	0.9162
26380	Houma-Bayou Cane-Thibodaux, LA	0.8185	0.8718
	Lafourche Parish, LA		
26420	Terrebonne Parish, LA. ¹ Houston-Sugar Land-Baytown, TX	1.0094	1.0064
20120	Austin County, TX.	1.0001	1.0001
	Brazoria County, TX.		
	Chambers County, TX. Fort Bend County, TX.		
	Galveston County, TX.		
	Harris County, TX.		
	Liberty County, TX.		
	Montgomery County, TX. San Jacinto County, TX.		
	Waller County, TX.		
26580	Huntington-Ashland, WV-KY-OH	0.8828	0.9182
	Boyd County, KY. Greenup County, KY.		
	Lawrence County, OH.		
	Cabell County, WV.		
26620	Wayne County, WV. Huntsville, AL	0.8967	0.9281
20020	Limestone County, AL.	0.0307	0.5201
	Madison County, AL.		
26820	³ Idaho Falls, ID	0.9036	0.9329
	Jefferson County, ID.		
26900	¹ Indianapolis-Carmel, IN	0.9769	0.9841
	Boone County, IN.		
	Brown County, IN. Hamilton County, IN.		
	Hancock County, IN.		
	Hendricks County, IN.		
	Johnson County, IN. Marion County, IN.		
	Morgan County, IN.		
	Putnam County, IN.		
26980	Shelby County, IN. Iowa City, IA	0.9598	0.9723
20000	Johnson County, IA.	0.0000	0.0720
	Washington County, IA.		
27060	Ithaca, NY	0.9865	0.9907
27100	Jackson, MI	0.9717	0.9805
	Jackson County, MI.		
27140	Jackson, MS	0.8214	0.8740
	Copiah County, MS. Hinds County, MS.		
	Madison County, MS.		
	Rankin County, MS.		
27180	Simpson County, MS. Jackson, TN	0.8796	0.9159
£, 100	Chester County, TN.	0.0790	0.0108

TABLE 4A-1.—WAGE INDEX AND CAPITAL GEOGRAPHIC ADJUSTMENT FACTOR (GAF) FOR URBAN AREAS BY CBSA—Continued

CBSA code	Urban area (constituent counties)	Wage index	GAF
07060	Madison County, TN.	0.0004	0.0500
27260	Jacksonville, FL Baker County, FL.	0.9281	0.9502
	Clay County, FL.		
	Duval County, FL.		
	Nassau County, FL.		
	St. Johns County, FL.		
27340		0.8629	0.9040
27500	Onslow County, NC. Janesville, WI	0.9868	0.9909
27300	Rock County, WI.	0.9000	0.5505
27620		0.8613	0.9028
	Callaway County, MO.		
	Cole County, MO.		
	Moniteau County, MO.		
27740	Osage County, MO. ² Johnson City, TN	0.8122	0.8672
27740	Carter County, TN.	0.6122	0.0072
	Unicoi County, TN.		
	Washington County, TN.		
27780		0.8562	0.8991
07000	Cambria County, PA.	0.0045	0.0005
27860	Jonesboro, AR	0.8345	0.8835
	Poinsett County, AR.		
27900		0.8794	0.9158
	Jasper County, MO.		
	Newton County, MO.		
28020		1.0797	1.0539
	Kalamazoo County, MI. Van Buren County, MI.		
28100		1.0021	1.0014
	Kankakee County, IL.		
28140	¹ Kansas City, MO-KS	0.9345	0.9547
	Franklin County, KS.		
	Johnson County, KS. Leavenworth County, KS.		
	Linn County, KS.		
	Miami County, KS.		
	Wyandotte County, KS.		
	Bates County, MO.		
	Caldwell County, MO. Cass County, MO.		
	Clay County, MO.		
	Clinton County, MO.		
	Jackson County, MO.		
	Lafayette County, MO.		
	Platte County, MO.		
28420	Ray County, MO. ² Kennewick-Richland-Pasco, WA	1.0206	1.0141
20420	Benton County, WA.	1.0200	1.0141
	Franklin County, WA.		
28660		0.8993	0.9299
	Bell County, TX.		
	Coryell County, TX.		
28700	Lampasas County, TX. Kingsport-Bristol-Bristol, TN-VA	0.8215	0.8740
20700	Hawkins County, TN.	0.0213	0.0740
	Sullivan County, TN.		
	Bristol City, VA.		
	Scott County, VA.		
00740	Washington County, VA.	0.0446	0.001:
28740	Kingston, NY	0.9442	0.9614
28940		0.8227	0.8749
_00-0	Anderson County, TN.	0.0221	J.U143
	Blount County, TN.		
	Knox County, TN.		
	Loudon County, TN.		
	Union County, TN.		

CBSA code	Urban area (constituent counties)	Wage index	GAF
29020	Kokomo, IN	0.9657	0.9764
29100	Tipton County, IN. ² La Crosse, WI-MN (WI Hospitals) Houston County, MN.	0.9607	0.9683
29100	La Crosse County, WI. La Crosse, WI-MN (MN Hospitals) Houston County, MN. La Crosse County, WI.	0.9541	0.9729
29140	Lafayette, IN	0.8777	0.9145
29180	Tippecanoe County, IN. Lafayette, LA Lafayette Parish, LA. St. Martin Parish, LA.	0.8408	0.8880
29340	Lake Charles, LA	0.7922	0.8526
29404		1.0651	1.0441
29460		0.9056	0.9344
29540		0.9942	0.9960
29620	Lansing-East Lansing, MI	1.0068	1.0047
29700	Laredo, TX	0.8227	0.8749
29740	Las Cruces, NM	0.9124	0.9391
29820		1.1148	1.0773
29940		0.8333	0.8826
30020		8485	0.8936
30140		0.8756	0.9130
30300		0.9650	0.9759
30300	² Lewiston, ID-WA (WA Hospitals)	1.0206	1.0141
30340	Lewiston-Auburn, ME	0.9235	0.9470
30460	Lexington-Fayette, KY	0.8965	0.9279
30620	Lima, OH	0.8925	0.9251
30700	Lancaster County, NE. Seward County, NE.	0.9966	0.9977
30780	Little Rock-North Little Rock, AR	0.9704	0.9796
30800	Logan, UT-ID	0.9045	0.9336

Table 4A–1.—Wage Index And Capital Geographic Adjustment Factor (GAF) for Urban Areas by CBSA—Continued

CBSA code	Urban area (constituent counties)	Wage index	GAF
	Franklin County, ID.		
20090	Cache County, UT.	0.0046	0.0066
30980	Longview, TX	0.8946	0.9266
	Rusk County, TX.		
	Upshur County, TX.		
31020	Longview, WA	1.0239	1.0163
31084	Cowlitz County, WA. 1,3 Los Angeles-Long Beach-Glendale, CA	1.1686	1.1126
31004	Los Angeles County, CA.	1.1000	1.1120
31140	¹ Louisville-Jefferson County, KY-IN	0.9155	0.9413
	Clark County, IN.		
	Floyd County, IN.		
	Harrison County, IN.		
	Washington County, IN. Bullitt County, KY.		
	Henry County, KY.		
	Jefferson County, KY.		
	Meade County, KY.		
	Nelson County, KY.		
	Oldham County, KY. Shelby County, KY.		
	Spencer County, KY.		
	Trimble County, KY.		
31180	Lubbock, TX	0.8536	0.8973
	Crosby County, TX.		
01040	Lubbock County, TX.	0.0000	0.0010
31340	Lynchburg, VA	0.8600	0.9019
	Appomattox County, VA.		
	Bedford County, VA.		
	Campbell County, VA.		
	Bedford City, VA.		
01.400	Lynchburg City, VA.	0.0700	0.0061
31420	Macon, GA	0.9798	0.9861
	Crawford County, GA.		
	Jones County, GA.		
	Monroe County, GA.		
04.400	Twiggs County, GA.	4 4000	4 0000
31460	² Madera, CA	1.1202	1.0808
31540	Madison, WI	1.0841	1.0569
01010	Columbia County, WI.	1.0011	1.0000
	Dane County, WI.		
0.1700	Iowa County, WI.	4.4700	4 4450
31700	² Manchester-Nashua, NH	1.1732	1.1156
	Merrimack County, NH.		
31900	Mansfield, OH	0.9236	0.9470
	Richland County, OH.		
32420	Mayagüez, PR	0.3807	0.5162
	Hormigueros Municipio, PR.		
32580	Mayagüez Municipio, PR. McAllen-Edinburg-Mission, TX	0.8794	0.9158
32300	Hidalgo County, TX.	0.6794	0.9130
32780	Medford, OR	1.0756	1.0512
	Jackson County, OR.		
32820	¹ Memphis, TN-MS-AR	0.9307	0.9520
	Crittenden County, AR.		
	DeSoto County, MS. Marshall County, MS.		
	Tate County, MS.		
	Tunica County, MS.		
	Fayette County, TN.		
	Shelby County, TN.		
	Tipton County, TN.		4
	I D CO CO C C C C C C C C C C C C C C C C	1.1410	1.0945
32900	Merced, CA	1.1410	1.00-10

CBSA code	Urban area (constituent counties)	Wage index	GAF
	Miami-Dade County, FL.		
33140	Michigan City-La Porte, IN	0.9037	0.9330
33260	Midland, TX	0.9538	0.9681
33340	Midland County, TX. 1 Milwaukee-Waukesha-West Allis, WI	1.0324	1.0221
000+0	Milwaukee County, WI.	1.0024	1.0221
	Ozaukee County, WI. Washington County, WI.		
	Waukesha County, WI.		
33460	Minneapolis-St. Paul-Bloomington, MN-WI Anoka County, MN.	1.0782	1.0529
	Carver County, MN.		
	Chisago County, MN. Dakota County, MN.		
	Hennepin County, MN.		
	Isanti County, MN.		
	Ramsey County, MN. Scott County, MN.		
	Sherburne County, MN.		
	Washington County, MN. Wright County, MN.		
	Pierce County, WI.		
33540	St. Croix County, WI. Missoula, MT	0.8783	0.9150
	Missoula County, MT.		
33660	Mobile, AL	0.7847	0.8470
33700	Modesto, CA	1.1735	1.1158
33740	Stanislaus County, CA. Monroe, LA	0.8074	0.8637
00740	Ouachita Parish, LA.	0.007 +	0.0007
33780	Union Parish, LA. Monroe, MI	0.9787	0.9854
00700	Monroe County, MI.	0.0707	
33860	Montgomery, AL	0.7933	0.8534
	Elmore County, AL.		
	Lowndes County, AL. Montgomery County, AL.		
34060		0.8555	0.8986
	Monongalia County, WV. Preston County, WV.		
34100		0.8122	0.8672
	Grainger County, TN.		
	Hamblen County, TN. Jefferson County, TN.		
34580	·	1.0221	1.0151
34620	Skagit County, WA. ² Muncie, IN	0.8564	0.8993
0.47.40	Delaware County, IN.	4 0405	4 0070
34740	³ Muskegon-Norton Shores, MI	1.0105	1.0072
34820		0.8882	0.9220
34900	Horry County, SC. Napa, CA	1.2933	1.1926
	Napa County, CA.	4 0407	
34940	Naples-Marco Island, FL	1.0107	1.0073
34980	¹ Nashville-Davidson—Murfreesboro, TN	0.9810	0.9869
	Cannon County, TN. Cheatham County, TN.		
	Davidson County, TN.		
	Dickson County, TN. Hickman County, TN.		
	Macon County, TN.		
	Robertson County, TN.		
	Rutherford County, TN. Smith County, TN.		
	Sumner County, TN.		

TABLE 4A-1.—WAGE INDEX AND CAPITAL GEOGRAPHIC ADJUSTMENT FACTOR (GAF) FOR URBAN AREAS BY CBSA—Continued

35004	Trousdale County, TN. Williamson County, TN. Wilson County, TN. 3 Nassau-Suffolk, NY Nassau County, NY. Suffolk County, NY. Newark-Union, NJ-PA Essex County, NJ. Hunterdon County, NJ. Morris County, NJ. Sussex County, NJ. Union County, NJ. Pike County, PA. New Haven-Milford, CT New Haven County, CT. New Orleans-Metairie-Kenner, LA Jefferson Parish, LA. Orleans Parish, LA. St. Bernard Parish, LA. St. Charles Parish, LA. St. Charles Parish, LA. St. John the Baptist Parish, LA. St. Tammany Parish, LA. 3 New York-White Plains-Wayne, NY-NJ Bergen County, NJ.	1.2971 1.1756 1.2068 0.8649	1.1950 1.1172 1.1374 0.9054
35004	Wilson County, TN. Nassau-Suffolk, NY Nassau County, NY. Suffolk County, NY. Newark-Union, NJ-PA Essex County, NJ. Hunterdon County, NJ. Morris County, NJ. Sussex County, NJ. Union County, NJ. Pike County, PA. New Haven-Milford, CT New Haven County, CT. New Haven County, CT. New Orleans-Metairie-Kenner, LA Jefferson Parish, LA. Orleans Parish, LA. St. Bernard Parish, LA. St. Charles Parish, LA. St. John the Baptist Parish, LA. St. Tammany Parish, LA. 3 New York-White Plains-Wayne, NY-NJ	1.1756 1.2068 0.8649	1.1172 1.1374
35004	Nassau-Suffolk, NY Nassau County, NY. Suffolk County, NY. Newark-Union, NJ-PA Essex County, NJ. Hunterdon County, NJ. Morris County, NJ. Sussex County, NJ. Union County, NJ. Pike County, PA. New Haven-Milford, CT New Haven County, CT. New Orleans-Metairie-Kenner, LA Jefferson Parish, LA. Orleans Parish, LA. St. Bernard Parish, LA. St. Charles Parish, LA. St. John the Baptist Parish, LA. St. Tammany Parish, LA. St. Tammany Parish, LA. NY-NY-NY-NY-NY-NY-NY-NY-NY-NY-NY-NY-NY-N	1.1756 1.2068 0.8649	1.1172 1.1374
35084	Nassau County, NY. Suffolk County, NY. Newark-Union, NJ-PA Essex County, NJ. Hunterdon County, NJ. Morris County, NJ. Sussex County, NJ. Union County, NJ. Pike County, PA. New Haven-Milford, CT New Haven County, CT. New Orleans-Metairie-Kenner, LA Jefferson Parish, LA. Orleans Parish, LA. St. Bernard Parish, LA. St. Charles Parish, LA. St. John the Baptist Parish, LA. St. Tammany Parish, LA. St. Tammany Parish, LA. St. Tammany Parish, LA. St. Tammany Parish, LA.	1.1756 1.2068 0.8649	1.1172 1.1374
35084	Suffolk County, NY. Newark-Union, NJ-PA Essex County, NJ. Hunterdon County, NJ. Morris County, NJ. Sussex County, NJ. Union County, NJ. Pike County, PA. New Haven-Milford, CT New Haven County, CT. New Orleans-Metairie-Kenner, LA Jefferson Parish, LA. Orleans Parish, LA. Plaquemines Parish, LA. St. Bernard Parish, LA. St. Charles Parish, LA. St. John the Baptist Parish, LA. St. Tammany Parish, LA. St. Tammany Parish, LA.	1.2068 0.8649	1.1374
35300 3 N 35380 1 N	Essex County, NJ. Hunterdon County, NJ. Morris County, NJ. Sussex County, NJ. Union County, NJ. Pike County, PA. New Haven-Milford, CT. New Haven County, CT. New Orleans-Metairie-Kenner, LA. Jefferson Parish, LA. Orleans Parish, LA. Plaquemines Parish, LA. St. Bernard Parish, LA. St. Charles Parish, LA. St. John the Baptist Parish, LA. St. Tammany Parish, LA. St. Tammany Parish, LA. St. Tammany Parish, LA. St. Tammany Parish, LA.	1.2068 0.8649	1.1374
353003 1 N	Hunterdon County, NJ. Morris County, NJ. Sussex County, NJ. Union County, NJ. Pike County, PA. New Haven-Milford, CT. New Haven County, CT. New Orleans-Metairie-Kenner, LA. Jefferson Parish, LA. Orleans Parish, LA. Plaquemines Parish, LA. St. Bernard Parish, LA. St. Charles Parish, LA. St. John the Baptist Parish, LA. St. Tammany Parish, LA. St. Tammany Parish, LA. St. Tammany Parish, LA. St. Tammany Parish, LA.	0.8649	
35300 ³ N 35380 1 N	Morris County, NJ. Sussex County, NJ. Union County, NJ. Pike County, PA. New Haven-Milford, CT. New Haven County, CT. New Orleans-Metairie-Kenner, LA. Jefferson Parish, LA. Orleans Parish, LA. Plaquemines Parish, LA. St. Bernard Parish, LA. St. Charles Parish, LA. St. John the Baptist Parish, LA. St. John the Baptist Parish, LA. St. Tammany Parish, LA. 3 New York-White Plains-Wayne, NY-NJ	0.8649	
35300 3 N	Sussex County, NJ. Union County, NJ. Pike County, PA. New Haven-Milford, CT	0.8649	
35300 3 N	Union County, NJ. Pike County, PA. New Haven-Milford, CT. New Haven County, CT. New Orleans-Metairie-Kenner, LA. Jefferson Parish, LA. Orleans Parish, LA. St. Bernard Parish, LA. St. Charles Parish, LA. St. John the Baptist Parish, LA. St. Tammany Parish, LA. St. Tammany Parish, LA. St. Tammany Parish, LA. St. Tammany Parish, LA.	0.8649	
353003 N	New Haven-Milford, CT	0.8649	
353801	New Haven County, CT. New Orleans-Metairie-Kenner, LA Jefferson Parish, LA. Orleans Parish, LA. Plaquemines Parish, LA. St. Bernard Parish, LA. St. Charles Parish, LA. St. John the Baptist Parish, LA. St. Tammany Parish, LA. St. Tammany Parish, LA. 3 New York-White Plains-Wayne, NY-NJ	0.8649	
3538011	New Orleans-Metairie-Kenner, LA Jefferson Parish, LA. Orleans Parish, LA. Plaquemines Parish, LA. St. Bernard Parish, LA. St. Charles Parish, LA. St. John the Baptist Parish, LA. St. Jammany Parish, LA. St. Tammany Parish, LA. 3 New York-White Plains-Wayne, NY-NJ		0.9054
	Jefferson Parish, LA. Orleans Parish, LA. Plaquemines Parish, LA. St. Bernard Parish, LA. St. Charles Parish, LA. St. John the Baptist Parish, LA. St. Tammany Parish, LA. 3 New York-White Plains-Wayne, NY-NJ		0.5054
	Orleans Parish, LA. Plaquemines Parish, LA. St. Bernard Parish, LA. St. Charles Parish, LA. St. John the Baptist Parish, LA. St. Tammany Parish, LA. 3 New York-White Plains-Wayne, NY-NJ	1 3344	
	St. Bernard Parish, LA. St. Charles Parish, LA. St. John the Baptist Parish, LA. St. Tammany Parish, LA. 3 New York-White Plains-Wayne, NY-NJ	1 3344	
	St. Charles Parish, LA. St. John the Baptist Parish, LA. St. Tammany Parish, LA. ³ New York-White Plains-Wayne, NY-NJ	1 3344	
	St. John the Baptist Parish, LA. St. Tammany Parish, LA. ³ New York-White Plains-Wayne, NY-NJ	1 3344	
	St. Tammany Parish, LA. ³ New York-White Plains-Wayne, NY-NJ	1 3344	
	³ New York-White Plains-Wayne, NY-NJ	1 3344	
35644 1,3	Bergen County, NJ.	1.0077	1.2184
	Hudson County, NJ.		
	Passaic County, NJ. Bronx County, NY.		
	Kings County, NY.		
	New York County, NY.		
	Putnam County, NY.		
	Queens County, NY.		
	Richmond County, NY. Rockland County, NY.		
	Westchester County, NY.		
	Niles-Benton Harbor, MI	0.9028	0.9324
	Berrien County, MI.		
	orwich-New London, CT	1.2031	1.1350
	New London County, CT. Oakland-Fremont-Hayward, CA	1.5617	1.3570
	Alameda County, CA.	1.5517	1.0070
	Contra Costa County, CA.		
	Ocala, FL	0.8733	0.9114
	Marion County, FL. Ocean City, NJ	1.1402	1 0040
	Cape May County, NJ.	1.1402	1.0940
	dessa, TX	1.0038	1.0026
	Ector County, TX.		
	gden-Clearfield, UT	0.9080	0.9360
	Davis County, UT. Morgan County, UT.		
	Weber County, UT.		
	Oklahoma City, OK	0.8807	0.9167
	Canadian County, OK.		
	Cleveland County, OK.		
	Grady County, OK. Lincoln County, OK.		
	Logan County, OK.		
	McClain County, OK.		
	Oklahoma County, OK.		
	llympia, WA	1.0962	1.0649
	Thurston County, WA.	0.0200	0.0504
	maha-Council Bluffs, NE-IA	0.9399	0.9584
	Mills County, IA.		
	Pottawattamie County, IA.		
	Cass County, NE.		
	Douglas County, NE.		
	Sarpy County, NE. Saunders County, NE.		

CBSA code	Urban area (constituent counties)	Wage index	GAF
	Washington County, NE.		
36740	¹ Orlando-Kissimmee, FL	0.9575	0.9707
	Lake County, FL.		
	Orange County, FL. Osceola County, FL.		
	Seminole County, FL.		
36780	² Oshkosh-Neenah, WI	0.9607	0.9729
	Winnebago County, WI.		
36980	Owensboro, KY	0.8783	0.9150
	Daviess County, KY. Hancock County, KY.		
	McLean County, KY.		
37100	² Oxnard-Thousand Oaks-Ventura, CA	1.1202	1.0808
	Ventura County, CA.		
37340	Palm Bay-Melbourne-Titusville, FL	0.9547	0.9688
37460	Brevard County, FL. ² Panama City-Lynn Haven, FL	0.8733	0.9114
57 -100	Bay County, FL.	0.0700	0.0114
37620	Parkérsburg-Marietta-Vienna, WV-OH (WV Hospitals)	0.8114	0.8667
	Washington County, OH.		
	Pleasants County, WV. Wirt County, WV.		
	Wood County, WV.		
37620	² Parkersburg-Marietta-Vienna, WV-OH (OH Hospitals)	0.8683	0.9078
	Washington County, OH.		
	Pleasants County, WV.		
	Wirt County, WV. Wood County, WV.		
37700		0.8144	0.8688
	George County, MS.	0.01.1	0.0000
	Jackson County, MS.		
37860	² Pensacola-Ferry Pass-Brent, FL	0.8733	0.9114
	Escambia County, FL. Santa Rosa County, FL.		
37900	Peoria, IL	0.9126	0.9393
	Marshall County, IL.		
	Peoria County, IL.		
	Stark County, IL. Tazewell County, IL.		
	Woodford County, IL.		
37964	¹ Philadelphia, PA	1.0996	1.0672
	Bucks County, PA.		
	Chester County, PA.		
	Delaware County, PA. Montgomery County, PA.		
	Philadelphia County, PA.		
38060	¹ Phoenix-Mesa-Scottsdale, AZ	1.0146	1.0100
	Maricopa County, AZ.		
38220	Pinal County, AZ. Pine Bluff. AR	0.8717	0.9103
00220	Cleveland County, AR.	0.0717	0.5100
	Jefferson County, AR.		
	Lincoln County, AR.		
38300	¹ Pittsburgh, PA	0.8568	0.8996
	Armstrong County, PA. Armstrong County, PA.		
	Beaver County, PA.		
	Butler County, PA.		
	Fayette County, PA.		
	Washington County, PA. Westmoreland County, PA.		
38340	Pittsfield, MA	1.0757	1.0512
	Berkshire County, MA.		
38540	Pocatello, ID	0.9204	0.9448
	Bannock County, ID.		
38660	Power County, ID. Ponce, PR	0.4712	0.5973
38660	Juana Díaz Municipio, PR.	0.4712	0.5973
	Ponce Municipio, PR.		
	Villalba Municipio, PR.		

CBSA code	Urban area (constituent counties)	Wage index	GAF
38860	Portland-South Portland-Biddeford, ME	0.9862	0.9905
38900	York County, ME. 1 Portland-Vancouver-Beaverton, OR-WA	1.1210	1.0814
	Yamhill County, OR. Clark County, WA. Skamania County, WA.		
38940	Port St. Lucie-Fort Pierce, FL	0.9906	0.9936
39100	Poughkeepsie-Newburgh-Middletown, NY	1.0966	1.0652
39140	Orange County, NY. Prescott, AZ	0.9748	0.9827
39300	1,2 Providence-New Bedford-Fall River, RI-MA (RI Hospitals)	1.0744	1.0504
39300	Washington County, RI. 1,2 Providence-New Bedford-Fall River, RI-MA (MA Hospitals)	1.0757	1.0512
39340	Juab County, UT.	0.9479	0.9640
39380	Utah County, UT. ² Pueblo, CO	0.9091	0.9368
39460		0.9717	0.9805
39540		0.9607	0.9729
39580	Raleigh-Carry, NC Franklin County, NC. Johnston County, NC. Wake County, NC.	0.9722	0.9809
39660	Rapid City, SD Meade County, SD. Pennington County, SD.	0.8708	0.9096
39740	Reading, PA	0.9709	0.9800
39820	Redding, CA	1.2450	1.1619
39900	Reno-Sparks, NV	1.2126	1.1411
40060	Richmond, VA Amelia County, VA. Caroline County, VA. Charles City County, VA. Chesterfield County, VA. Cumberland County, VA. Dinwiddie County, VA. Goochland County, VA. Hanover County, VA. Henrico County, VA. King and Queen County, VA. King William County, VA. Louisa County, VA.	0.8997	0.9302

Table 4A–1.—Wage Index And Capital Geographic Adjustment Factor (GAF) for Urban Areas by CBSA—Continued

CBSA code	Urban area (constituent counties)	Wage index	GAF
	New Kent County, VA.		
	Powhatan County, VA.		
	Prince George County, VA. Sussex County, VA.		
	Colonial Heights City, VA.		
	Hopewell City, VA.		
	Petersburg City, VA. Richmond City, VA.		
40140	1,2 Riverside-San Bernardino-Ontario, CA	1.1202	1.0808
	Riverside County, CA.		
40220	San Bernardino County, CA. Roanoke, VA	0.8803	0.9164
10220	Botetourt County, VA.	0.0000	0.0101
	Craig County, VA.		
	Franklin County, VA. Roanoke County, VA.		
	Roanoke City, VA.		
	Salem City, VA.		
40340	Rochester, MN	1.1239	1.0833
	Olmsted County, MN.		
	Wabasha County, MN.		
40380	¹ Rochester, NY	0.9103	0.9377
	Monroe County, NY.		
	Ontario County, NY.		
	Orleans County, NY. Wayne County, NY.		
40420		1.0048	1.0033
	Boone County, IL.		
40404	Winnebago County, IL.	4 4700	4 4450
40484	² Rockingham County-Strafford County, NH	1.1732	1.1156
	Strafford County, NH.		
40580	Rocky Mount, NC	0.8900	0.9233
	Edgecombe County, NC. Nash County, NC.		
40660	Rome, GA	0.9699	0.9793
40000	Floyd County, GA. ¹ Sacramento—Arden-Arcade—Roseville, CA	1 0006	1 1050
40900	El Dorado County, CA.	1.2986	1.1959
	Placer County, CA.		
	Sacramento County, CA.		
40980	Yolo County, CA. Saginaw-Saginaw Township North, MI	0.9211	0.9453
	Saginaw County, MI.		0.0.00
41060	St. Cloud, MN	1.1029	1.0694
	Benton County, MN. Stearns County, MN.		
41100	St. George, UT	0.9452	0.9621
44440	Washington County, UT.	4 0000	1.0150
41140	St. Joseph, MO-KS Doniphan County, KS.	1.0233	1.0159
	Andrew County, MO.		
	Buchanan County, MO.		
41180	DeKalb County, MO. St. Louis, MO-IL	0.8998	0.9302
41100	Bond County, IL.	0.0000	0.0002
	Calhoun County, IL.		
	Clinton County, IL. Jersey County, IL.		
	Macoupin County, IL.		
	Madison County, IL.		
	Monroe County, IL. St. Clair County, IL.		
	St. Clair County, IL. Crawford County, MO.		
	Franklin County, MO.		
	Jefferson County, MO.		
	Lincoln County, MO. St. Charles County, MO.		

TABLE 4A-1.—WAGE INDEX AND CAPITAL GEOGRAPHIC ADJUSTMENT FACTOR (GAF) FOR URBAN AREAS BY CBSA—Continued

CBSA code	Urban area (constituent counties)	Wage index	GAF
	St. Louis County, MO. Warren County, MO. Washington County, MO.		
41420	St. Louis City, MO. Salem, OR	1.0283	1.0193
41500	Marion County, OR. Polk County, OR. Solines CA	1 4000	1 0706
41500	Salinas, CA	1.4220	1.2726
41540	² Salisbury, MD. Somerset County, MD.	0.8881	0.9219
41620	Wicomico County, MD. Salt Lake City, UT Salt Lake County, UT. Summit County, UT.	0.9476	0.9638
41660	Tooele County, UT. San Angelo, TX	0.8483	0.8935
41700	Atascosa County, TX. Bandera County, TX.	0.8945	0.9265
	Bexar County, TX. Comal County, TX. Guadalupe County, TX. Kendall County, TX. Medina County, TX.		
41740	Wilson County, TX. 1,2 San Diego-Carlsbad-San Marcos, CA	1.1202	1.0808
41780	San Diego County, CA. Sandusky, OH Erie County, OH.	0.9258	0.9486
41884	San Francisco-San Mateo-Redwood City, CA Marin County, CA. San Francisco County, CA.	1.5419	1.3452
41900	San Mateo County, ČA. San Germán-Cabo Rojo, PR Cabo Rojo Municipio, PR. Lajas Municipio, PR. Sabana Grande Municipio, PR.	0.4856	0.6098
41940	San Germán Municipio, PR. 1 San Jose-Sunnyvale-Santa Clara, CA San Benito County, CA.	1.5324	1.3395
41980	Santa Clara County, CA. San Juan-Caguas-Guaynabo, PR Aguas Buenas Municipio, PR.	0.4449	0.5743
	Aibonito Municipio, PR. Arecibo Municipio, PR. Barceloneta Municipio, PR. Barranquitas Municipio, PR. Bayamón Municipio, PR. Caguas Municipio, PR. Camuy Municipio, PR. Camvy Municipio, PR. Carolina Municipio, PR. Cataño Municipio, PR. Cataño Municipio, PR. Cate Municipio, PR. Ciales Municipio, PR. Cidra Municipio, PR. Cidra Municipio, PR. Comerío Municipio, PR. Corozal Municipio, PR. Dorado Municipio, PR. Florida Municipio, PR. Guaynabo Municipio, PR. Guaynabo Municipio, PR. Humacao Municipio, PR. Humacao Municipio, PR. Juncos Municipio, PR. Las Piedras Municipio, PR. Las Piedras Municipio, PR. Loíza Municipio, PR.		

Table 4A–1.—Wage Index And Capital Geographic Adjustment Factor (GAF) for Urban Areas by CBSA—Continued

CBSA code	Urban area (constituent counties)	Wage index	GAF
	Manatí Municipio, PR.		
	Maunabo Municipio, PR.		
	Morovis Municipio, PR.		
	Naguabo Municipio, PR.		
	Naranjito Municipio, PR. Orocovis Municipio, PR.		
	Quebradillas Municipio, PR.		
	Río Grande Municipio, PR.		
	San Juan Municipio, PR.		
	San Lorenzo Municipio, PR.		
	Toa Alta Municipio, PR. Toa Baja Municipio, PR.		
	Trujillo Alto Municipio, PR.		
	Vega Alta Municipio, PR.		
	Vega Baja Municipio, PR.		
0000	Yabucoa Municipio, PR. ² San Luis Obispo-Paso Robles, CA	1 1000	1.0808
2020	San Luis Obispo County, CA.	1.1202	1.0806
2044	¹ Santa Ana-Anaheim-Irvine, CA	1.1350	1.0906
	Orange County, CA.		
2060	² Santa Barbara-Santa Maria, CA	1.1202	1.0808
12100	Santa Barbara County, CA. Santa Cruz-Watsonville, CA	1.5056	1.3234
2100	Santa Cruz County, CA.	1.5050	1.3234
2140	Santa Fe, NM	1.0808	1.0547
	Santa Fe County, NM.		
2220	Santa Rosa-Petaluma, CA	1.4322	1.2789
2260	Sonoma County, CA. Sarasota-Bradenton-Venice, FL	0.9743	0.9823
	Manatee County, FL.	0.9743	0.3020
	Sarasota County, FL.		
2340	Savannah, GA	0.9139	0.9402
	Bryan County, GA.		
	Chatham County, GA. Effingham County, GA.		
12540	² Scranton—Wilkes-Barre, PA	0.8301	0.8803
	Lackawanna County, PA.		
	Luzerne County, PA.		
12644	Wyoming County, PA. ¹ Seattle-Bellevue-Everett, WA	1.1261	1.0847
12044	King County, WA.	1.1201	1.0047
	Snohomish County, WA.		
12680	Sebastian-Vero Beach, FL	0.9886	0.9922
10400	Indian River County, FL.	0.0007	0.0700
13100	² Sheboygan, WI Sheboygan County, WI.	0.9607	0.9729
3300	Sherman-Denison, TX	0.8651	0.9055
	Grayson County, TX.		
13340	Shreveport-Bossier City, LA	0.8848	0.9196
	Bossier Parish, LA. Caddo Parish, LA.		
	De Soto Parish, LA.		
3580	Sioux City, IA-NE-SD	0.9062	0.9348
	Woodbury County, IA.		
	Dakota County, NE.		
	Dixon County, NE. Union County, SD.		
3620	Sioux Falls, SD	0.9351	0.9551
	Lincoln County, SD.		
	McCook County, SD.		
	Minnehaha County, SD.		
3780	Turner County, SD. South Bend-Mishawaka, IN-MI	0.9914	0.994
	St. Joseph County, IN.	0.5514	0.334
	Cass County, MI.		
3900	Spartanburg, SC	0.9072	0.9355
4000	Spartanburg County, SC.	1.0400	4 000-
4060	Spokane, WA	1.0422	1.0287
	Oporano County, vva.		

TABLE 4A-1.—WAGE INDEX AND CAPITAL GEOGRAPHIC ADJUSTMENT FACTOR (GAF) FOR URBAN AREAS BY CBSA—Continued

CBSA code	Urban area (constituent counties)	Wage index	GAF
	Menard County, IL.		
	Sangamon County, IL.		
44140	² Springfield, MA	1.0757	1.0512
	Franklin County, MA.		
	Hampden County, MA. Hampshire County, MA.		
44180	Springfield, MO	0.8570	0.8997
44100	Christian County, MO.	0.0070	0.0007
	Dallas County, MO.		
	Greene County, MO.		
	Polk County, MO.		
44000	Webster County, MO.		0.0070
44220	² Springfield, OH	0.8683	0.9078
44300	Clark County, OH. State College, PA	0.0655	0.0050
44300	Centre County, PA.	0.8655	0.9058
44700	Stockton, CA	1.1474	1.0987
11700	San Joaquin County, CA.		1.0007
44940	² Sumter, SC	0.8692	0.9085
	Sumter County, SC.		
45060	Syracuse, NY	0.9776	0.9846
	Madison County, NY.		
	Onondaga County, NY.		
45104	Oswego County, NY. Tacoma, WA	1.0710	1.0481
45104	Pierce County, WA.	1.0710	1.0461
45220	Tallahassee, FL	0.8959	0.9275
10220	Gadsden County, FL.	0.0000	0.0270
	Jefferson County, FL.		
	Leon County, FĹ.		
	Wakulla County, FL.		
45300	¹ Tampa-St. Petersburg-Clearwater, FL	0.9265	0.9491
	Hernando County, FL.		
	Hillsborough County, FL.		
	Pasco County, FL. Pinellas County, FL.		
45460	Terre Haute, IN	0.8806	0.9166
10 100	Clay County, IN.	0.0000	0.0100
	Sullivan County, IN.		
	Vermillion County, IN.		
	Vigo County, IN.		
45500	² Texarkana, TX-Texarkana, AR (TX Hospitals)	0.8225	0.8748
	Miller County, AR.		
45500	Bowie County, TX.	0.8107	0.8661
45500	Texarkana, TX-Texarkana, AR (AR Hospitals)	0.6107	0.0001
	Bowie County, TX.		
45780	Toledo, OH	0.9455	0.9623
	Fulton County, OH.		
	Lucas County, OH.		
	Ottawa County, OH.		
45000	Wood County, OH.	0.0700	0.0405
45820	Topeka, KS	0.8763	0.9135
	Jackson County, KS. Jefferson County, KS.		
	Osage County, KS.		
	Shawnee County, KS.		
	Wabaunsee County, KS.		
45940	² Trenton-Ewing, NJ	1.1402	1.0940
	Mercer County, NJ.		
46060	Tucson, AZ	0.9390	0.9578
101.10	Pima County, AZ.		
46140	Tulsa, OK	0.8310	0.8809
	Creek County, OK.		
	Okmulgee County, OK. Osage County, OK.		
	Pawnee County, OK.		
	Rogers County, OK.		
	Tulsa County, OK.		
	Wagoner County, OK.		

CBSA code	Urban area (constituent counties)	Wage index	GAF
46220	Tuscaloosa, AL	0.8761	0.9134
46340	Tuscaloosa County, AL. Tyler, TX	0.8963	0.9278
46540	Smith County, TX. Utica-Rome, NY Herkimer County, NY.	0.8753	0.9128
46660	Oneida County, NY. Valdosta, GA Brooks County, GA. Echols County, GA.	0.8632	0.9042
10700	Lanier County, GA. Lowndes County, GA.	4 4704	1 0070
46700	Vallejo-Fairfield, CA	1.4794	1.3076
47020	Victoria, TX	0.8426	0.8893
47220	² Vineland-Millville-Bridgeton, NJ Cumberland County, NJ.	1.1402	1.0940
47260	1 Virginia Beach-Norfolk-Newport News, VA-NC	0.8774	0.9143
	Surry County, VA. York County, VA. Chesapeake City, VA. Hampton City, VA. Newport News City, VA. Norfolk City, VA. Poquoson City, VA. Portsmouth City, VA. Suffolk City, VA.		
47300	Virginia Beach City, VA. Williamsburg City, VA. ² Visalia-Porterville, CA	1.1202	1.0808
47380	Tulare County, CA. Waco, TX	0.8748	0.9125
47580	McLennan County, TX. Warner Robins, GA		
	Houston County, GA.	0.8812	0.9170
47644	Warren-Troy-Farmington Hills, MI Lapeer County, MI. Livingston County, MI. Macomb County, MI. Oakland County, MI. St. Clair County, MI.	1.0108	1.0074
47894	1 Washington-Arlington-Alexandria, DC-VA-MD-WV District of Columbia, DC. Calvert County, MD. Charles County, MD. Prince George's County, MD. Arlington County, VA. Clarke County, VA. Fairfax County, VA. Fauquier County, VA. Loudoun County, VA. Prince William County, VA. Spotsylvania County, VA. Stafford County, VA. Warren County, VA. Alexandria City, VA. Fairfax City, VA. Fairfax City, VA. Falls Church City, VA. Fredericksburg City, VA. Manassas City, VA.	1.0977	1.0659

CBSA code	Urban area (constituent counties)	Wage index	GAF
	Manassas Park City, VA.		
	Jefferson County, WV.		
47940	2,3 Waterloo-Cedar Falls, IA	0.8803	0.9164
	Black Hawk County, IA. Bremer County, IA.		
	Grundy County, IA.		
48140	Wausau, WI	0.9947	0.9964
	Marathon County, WI.	0.00	0.000.
48260	Weirton-Steubenville, WV-OH (WV Hospitals)	0.8057	0.8625
	Jefferson County, OH.		
	Brooke County, WV.		
40000	Hancock County, WV.	0.0000	0.0070
48260	² Weirton-Steubenville, WV-OH (OH Hospitals)	0.8683	0.9078
	Brooke County, WV.		
	Hancock County, WV.		
48300	² Wenatchee, WA	1.0206	1.0141
	Chelan County, WA.		
	Douglas County, WA.		
48424	, , , , , , , , , , , , , , , , , , , ,	0.9535	0.9679
40540	Palm Beach County, FL. ² Wheeling, WV-OH (WV Hospitals)	0.7754	0.0401
48540	Belmont County, OH.	0.7754	0.8401
	Marshall County, WV.		
	Ohio County, WV.		
48540	² Wheeling, WV-OH (OH Hospitals)	0.8683	0.9078
	Belmont County, OH.		
	Marshall County, WV.		
10000	Ohio County, WV.	0.0010	0.0045
48620	Wichita, KS	0.9016	0.9315
	Butler County, KS. Harvey County, KS.		
	Sedgwick County, KS.		
	Sumner County, KS.		
48660	Wichita Falls, TX	0.8562	0.8991
	Archer County, TX.		
	Clay County, TX.		
48700	Wichita County, TX. ² Williamsport, PA	0.8301	0.8803
46700	Lycoming County, PA.	0.6301	0.0003
48864	Wilmington, DE-MD-NJ (DE, MD Hospitals)	1.0570	1.0387
	New Castle County, DE.		
	Cecil County, MD.		
	Salem County, NJ.		
48864	² Wilmington, DE-MD-NJ (NJ Hospitals)	1.1402	1.0940
	New Castle County, DE.		
	Cecil County, MD. Salem County, NJ.		
48900	Wilmington, NC	0.9771	0.9843
	Brunswick County, NC.		2.20.0
	New Hanover County, NC.		
	Pender County, NC.		
49020	Winchester, VA-WV	1.0057	1.0039
	Frederick County, VA.		
	Winchester City, VA. Hampshire County, WV.		
49180	Winston-Salem, NC	0.9246	0.9477
40100	Davie County, NC.	0.0240	0.0477
	Forsyth County, NC.		
	Stokes County, NC.		
	Yadkin County, NC.		
49340	Worcester, MA	1.0796	1.0538
40.400	Worcester County, MA.	4 0000	4.04.44
49420	² Yakima, WA	1.0206	1.0141
49500	Yakima County, WA. Yauco, PR	0.3771	0.5128
TUUUU	Guánica Municipio, PR.	0.3771	0.0120
	Guayanilla Municipio, PR.		
	Peñuelas Municipio, PR.		
	Yauco Municipio, PR.		

Table 4A-1.—Wage Index And Capital Geographic Adjustment Factor (GAF) for Urban Areas by CBSA-Continued

CBSA code	Urban area (constituent counties)	Wage index	GAF
49620	York-Hanover, PA	0.9496	0.9652
49660	Youngstown-Warren-Boardman, OH-PA Mahoning County, OH. Trumbull County, OH. Mercer County, PA.	0.8799	0.9161
49700	2 Yuba City, CA. Sutter County, CA. Yuba County, CA.	1.1202	1.0808
49740	² Yuma, AZ	0.9269	0.9493

¹ Large urban area.

TABLE 4A-2.—WAGE INDEX AND CAPITAL GEOGRAPHIC ADJUSTMENT FACTOR (GAF) FOR CERTAIN URBAN AREAS BY CBSA FOR THE PERIOD APRIL 1 THROUGH SEPTEMBER 30, 2007 *

CBSA code	Urban area (constituent counties)	Wage index	GAF
11260	Anchorage, AK	1.1927	1.1283
11460	Ann Arbor, MI	1.0678	1.0459
13020	Bay City, MI	1.0044	1.0030
13900	Bismarck, ND	0.7368	0.8113
16220	Casper, WY	0.9091	0.9368
16300	Cedar Rapids, IA	0.8708	0.9096
16940	Cheyenne, WY	0.9048	0.9338
19804	Detroit-Livonia-Dearborn, MI	1.0381	1.0259
21660	Eugene-Springfield, OR	1.0966	1.0652
22020	Fargo, ND-MN (ND Hospitals)	0.8367	0.8851
22020	Fargo, ND-MN (MN Hospitals)	0.9280	0.9501
24220	Grand Forks, ND-MN (ND Hospitals)	0.7824	0.8453
24220	Grand Forks, ND-MN (MN Hospitals)	0.9280	0.9501
24300	Grand Junction, CO	0.9879	0.9917
26820	Idaho Falls, ID	0.9217	0.9457
31084	Los Angeles-Long Beach-Santa Ana, CA	1.1686	1.1126
34740	Muskegon-Norton Shores, MI	1.0105	1.0072
35004	Nassau-Suffolk, NY	1.2971	1.1950
35300	New Haven-Milford, CT	1.2142	1.1421
35644	New York-White Plains-Wayne, NY-NJ	1.3344	1.2184
47940	Waterloo-Cedar Falls, IA	0.8615	0.9029

^{*}See Table 4A-1 for the wage index and GAF that are effective from October 1, 2006 through March 31, 2007. For areas that are not listed on this table, the wage index and GAF on Table 4A-1 are effective for the entire FY 2007.

TABLE 4B-1.—WAGE INDEX AND CAPITAL GEOGRAPHIC ADJUSTMENT (GAF) FOR RURAL AREAS BY CBSA-FY 2007

CBSA code	Nonurban area	Wage index	GAF
01	Alabama	0.7664	0.8334
02	Alaska	1.0702	1.0476
03	Arizona	0.9269	0.9493
04	Arkansas	0.7475	0.8193
05	California	1.1202	1.0808
06	Colorado	0.9091	0.9368
07	Connecticut	1.1988	1.1322
08	Delaware	1.0009	1.0006
10	Florida	0.8733	0.9114
11	Georgia	0.7825	0.8454
12	Hawaii	1.0627	1.0425
13	Idaho	0.8568	0.8996
14	Illinois	0.8358	0.8844
15	Indiana	0.8564	0.8993
16	lowa ²	0.8803	0.9164
17	Kansas	0.8018	0.8596
18	Ventualar	0.7805	0.8439

²Hospitals geographically located in the area are assigned the statewide rural wage index for FY 2007.

³For this area, the wage index and GAF on this table are only effective from October 1, 2006 through March 31, 2007. See Table 4A–2 for the values that are effective from April 1 through September 30, 2007.

TABLE 4B-1.—WAGE INDEX AND CAPITAL GEOGRAPHIC ADJUSTMENT (GAF) FOR RURAL AREAS BY CBSA-FY 2007-Continued

CBSA code	Nonurban area	Wage index	GAF
19	Louisiana	0.7660	0.8331
20	Maine	0.8393	0.8869
21	Maryland	0.8881	0.9219
22	Massachusetts ¹	1.0757	1.0512
23	Michigan	0.9028	0.9324
24	Minnesota ²	0.9195	0.9441
25	Mississippi	0.7796	0.8432
26	Missouri	0.8353	0.8841
27	Montana	0.8655	0.9058
28	Nebraska	0.8636	0.9045
29	Nevada	0.9181	0.9432
30	New Hampshire	1.1732	1.1156
31	New Jersey ¹	1.1402	1.0940
32	New Mexico	0.8375	0.8856
33	New York	0.8430	0.8896
34	North Carolina	0.8629	0.9040
35	North Dakota	0.7368	0.8113
36	Ohio	0.8683	0.9078
37	Oklahoma	0.7847	0.8470
38	Oregon ²	1.0194	1.0132
39	Pennsylvania	0.8301	0.8803
40	Puerto Rico ¹		
41	Rhode Island ¹	1.0744	1.0504
42	South Carolina	0.8692	0.9085
43	South Dakota	0.8298	0.8801
44	Tennessee	0.8122	0.8672
45	Texas	0.8225	0.8748
46	Utah	0.8252	0.8767
47	Vermont	0.9622	0.9740
49	Virginia	0.8101	0.8657
50	Washington	1.0206	1.0141
51	West Virginia	0.7754	0.8401
52	Wisconsin	0.9607	0.9729
53	Wyoming ²	0.9199	0.9444

¹ All counties in the State or Territory are classified as urban, with the exception of Massachusetts. Massachusetts has area(s) designated as

Massachusetts. New Jersey, and Rhode Island rural floors are imputed as discussed in the FY 2007.

Massachusetts, New Jersey, and Rhode Island rural floors are imputed as discussed in the FY 2005 IPPS final rule, (69 FR 49109).

For this area, the wage index and GAF on this table are only effective from October 1, 2006 through March 31, 2007. See Table 4C–2 for the values that are effective from April 1 through September 30, 2007.

TABLE 4B-2.—WAGE INDEX AND CAPITAL GEOGRAPHIC ADJUSTMENT FACTOR (GAF) FOR CERTAIN RURAL AREAS BY CBSA FOR THE PERIOD APRIL 1 THROUGH SEPTEMBER 30, 2007 *

CBSA code	Nonurban area	Wage index	GAF
16	lowa	0.8615	0.9029
24		0.9280	0.9501
38		0.9764	0.9838
53		0.9048	0.9338

^{*}See Table 4B-1 for the wage index and GAF that are effective from October 1, 2006 through March 31, 2007. For areas that are not listed on this table, the wage index and GAF on Table 4B-1 are effective for the entire FY 2007.

TABLE 4C-1.—WAGE INDEX AND CAPITAL GEOGRAPHIC ADJUSTMENT FACTOR (GAF) FOR HOSPITALS THAT ARE RECLASSIFIED BY CBSA

CBSA code	Area	Wage index	GAF
10180	Abilene, TX	0.8380	0.8860
10420	Akron, OH	0.8683	0.9078
10580	Albany-Schenectady-Troy, NY	0.8849	0.9197
10740	Albuquerque, NM	0.9444	0.9616
10780	Alexandria, LA	0.7961	0.8554
10900	Allentown-Bethlehem-Easton, PA-NJ	0.9990	0.9993
11020	Altoona, PA	0.8538	0.8974
11100	Amarillo, TX	0.9248	0.9479
11180	Ames, IA	0.9219	0.9458

Table 4C-1.—Wage Index and Capital Geographic Adjustment Factor (GAF) for Hospitals that are Reclassified by CBSA—Continued

TIEGEAGGITIED DT ODOA OOITIITUUG				
CBSA code	Area	Wage index	GAF	
11460	¹ Ann Arbor, MI	1.0563	1.0382	
11500	Anniston-Oxford, AL	0.7997	0.8581	
11700	Asheville, NC	0.9264	0.9490	
12020	Athens-Clarke County, GA	0.9456	0.9624	
12060	Atlanta-Sandy Springs-Marietta, GA	0.9793	0.9858	
12260 12420	Augusta-Richmond County, GA-SC	0.9531 0.9328	0.9676 0.9535	
12620	Bangor, ME	0.9612	0.9733	
12700	Barnstable Town, MA	1.2156	1.1430	
12940	Baton Rouge, LA	0.8085	0.8645	
13020	¹ Bay City, MI	1.0080	1.0055	
13644	Bethesda-Gaithersburg-Frederick, MD	1.0848	1.0573	
13780	Binghamton, NY	0.8626	0.9037	
13820 14260	Birmingham-Hoover, AL	0.8889 0.9313	0.9225 0.9524	
14484	Boston-Quincy, MA	1.1343	1.0901	
14540	Bowling Green, KY	0.8082	0.8643	
15380	Buffalo-Niagara Falls, NY	0.9475	0.9637	
15540	Burlington-South Burlington, VT	0.9436	0.9610	
15764	Cambridge-Newton-Framingham, MA	1.1003	1.0676	
16180	Carson City, NV	0.9468	0.9633	
16580 16620	Champaign-Urbana, IL Charleston, WV	0.9096 0.8415	0.9372 0.8885	
16700	Charleston, WV Charleston, SC Charleston, SC Charleston	0.9197	0.9443	
16740	Charlotte-Gastonia-Concord, NC-SC	0.9413	0.9594	
16820	Charlottesville, VA	0.9709	0.9800	
16860	Chattanooga, TN-GA	0.8822	0.9177	
16974	Chicago-Naperville-Joliet, IL	1.0564	1.0383	
17140	Cincinnati-Middletown, OH-KY-IN	0.9522	0.9670	
17300 17460	Clarksville, TN-KYCleveland-Elyria-Mentor, OH	0.8014 0.9229	0.8593 0.9465	
17780	College Station-Bryan, TX	0.8903	0.9235	
17860	Columbia, MO	0.8456	0.8915	
17900	Columbia, SC	0.8942	0.9263	
17980	Columbus, GA-AL	0.8371	0.8854	
18140	Columbus, OH	0.9891	0.9925	
18700 19124	Corvallis, OR	1.0956	1.0645	
19340	Dallas-Plano-Irving, TX	0.9743 0.8836	0.9823 0.9187	
19380	Dayton, OH	0.9185	0.9434	
19460	Decatur, AL	0.8065	0.8631	
19740	Denver-Aurora, CO	1.0555	1.0377	
19780	Des Moines-West Des Moines,IA	0.9009	0.9310	
19804	¹ Detroit-Livonia-Dearborn, MI	1.0381	1.0259	
20100	Dover, DE Duluth, MN-WI	1.0009	1.0006	
20260 20500	Durham, NC	1.0285 0.9677	1.0194 0.9778	
20764	Edison, NJ	1.1402	1.0940	
21060	Elizabethtown, KY	0.8144	0.8688	
21500	Erie, PA	0.8451	0.8911	
21660	¹ Eugene-Springfield, OR	1.0494	1.0336	
21780	Evansville, IN-KY	0.8553	0.8985	
22020 22180	1 Fargo, ND-MN	0.8367 0.9245	0.8851 0.9477	
22220	Fayetteville, NCFayetteville-Springdale-Rogers, AR-MO	0.8816	0.9477	
22380	Flagstaff, AZ	1.1073	1.0723	
22420	Flint, MI	1.0602	1.0408	
22520	Florence-Muscle Shoals, AL	0.7876	0.8492	
22660	Fort Collins-Loveland, CO	0.9233	0.9468	
22744	Fort Lauderdale-Pompano Beach-Deerfield Beach, FL	1.0320	1.0218	
22900	Fort Smith, AR-OK	0.7847	0.8470	
23020 23060	Fort Walton Beach-Crestview-Destin, FL	0.8733 0.9283	0.9114 0.9503	
23104	Fort Wayne, IN	0.9556	0.9694	
23540	Gainesville, FL	0.9420	0.9599	
23844	Gary, IN	0.9397	0.9583	
24340	Grand Rapids-Wyoming, MI	0.9554	0.9692	
24500	Great Falls, MT	0.8747	0.9124	
24540	Greeley, CO	0.9857	0.9902	
24580	Green Bay, WI (WI Hospitals)	0.9607	0.9729	

TABLE 4C-1.—WAGE INDEX AND CAPITAL GEOGRAPHIC ADJUSTMENT FACTOR (GAF) FOR HOSPITALS THAT ARE RECLASSIFIED BY CBSA—Continued

CBSA code	Area	Wage index	GAF
24580	Green Bay, WI (MI Hospitals)	0.9573	0.9706
24780	Greenville, NC	0.9223	0.9461
24860	Greenville, SC	0.9208	0.9451
25060	Gulfport-Biloxi, MS	0.8461	0.8919
25420	Harrisburg-Carlisle, PA	0.9230	0.9466
25540	Hartford-West Hartford-East Hartford, CT (CT Hospitals)	1.1988	1.1322
25540	Hartford-West Hartford-East Hartford, CT (MA Hospitals)	1.0970	1.0655
25860	Hickory-Lenoir-Morganton, NC	0.8860	0.9205
26100	Holland-Grand Haven, MI	0.9217	0.9457
26180 26420	Honolulu, HI	1.0911	1.0615
26580	Houston-Sugar Land-Baytown, TX	1.0094 0.8681	1.0064 0.9077
26580	Huntington-Ashland, WV-KY-OH (OH Hospitals)	0.8683	0.9077
26620	Huntriglon All	0.8756	0.9078
26820	Huntsville, AL	0.8736	0.9130
26900	¹ Idaho Falls, ID	0.9036	0.9329
26980	Indianapolis-Carrier, IN	0.9454	0.9623
27060	Ithaca, NY	0.9407	0.9520
27140	Jackson, MS	0.8214	0.8740
27180	Jackson, TN	0.8643	0.9050
27260	Jacksonville, FL	0.9281	0.9502
27860	Jonesboro, AR (AR Hospitals)	0.8345	0.8835
27860	Jonesboro, AR (MO Hospitals)	0.8353	0.8841
27900	Joplin, MO	0.8626	0.9037
28020	Kalamazoo-Portage, MI	1.0797	1.0539
28100	Kankakee-Bradley, IL	1.0021	1.0014
28140	Kansas City, MO-KS	0.9345	0.9547
28420	Kennewick-Richland-Pasco, WA	1.0206	1.0141
28700	Kingsport-Bristol-Bristol, TN-VA	0.8215	0.8740
28740	Kingston, NY	0.9195	0.9441
28940	Knoxville, TN	0.8227	0.8749
29180	Lafayette, LA	0.8408	0.8880
29404	Lake County-Kenosha County, IL-WI	1.0651	1.0441
29460	Lakeland, FĹ	0.9056	0.9344
29540	Lancaster, PA	0.9942	0.9960
29620	Lansing-East Lansing, MI	0.9896	0.9929
29740	Las Cruces, NM	0.9124	0.9391
29820	Las Vegas-Paradise, NV	1.1006	1.0678
30020	Lawton, OK	0.8485	0.8936
30460	Lexington-Fayette, KY	0.8643	0.9050
30620	Lima, OH	0.8925	0.9251
30700	Lincoln, NE	0.9617	0.9736
30780	Little Rock-North Little Rock, AR	0.9265	0.9491
30980	Longview, TX	0.8946	0.9266
31084	¹ Los Angeles-Long Beach-Santa Ana, CA	1.1530	1.1024
31140	Louisville-Jefferson County, KY-IN	0.9155	0.9413
31340	Lynchburg, VA	0.8600	0.9019
31420	Macon, GA	0.9443	0.9615
31540	Madison, WI	1.0621	1.0421
31700	Manchester-Nashua, NH	1.1732	1.1156
32780	Medford, OR	1.0404	1.0275
32820	Memphis, TN-MS-AR	0.8984	0.9293
33124 33260		0.9821 0.9387	0.9877 0.9576
33340	Midland, TX		1.0143
33460	Minneapolis-St. Paul-Bloomington, MN-WI	1.0209 1.0782	1.0529
33540	Missoula, MT	0.8783	0.9150
33740	Monroe, LA	0.8783	0.8637
33860	Montgomery, AL	0.8074	0.8534
34060	Morgantown, WV	0.7555	0.8986
34980	Nashville-Davidson—Murfreesboro, TN	0.0555	0.9690
35084	Newark-Union, NJ-PA	1.1756	1.1172
35380	New Orleans-Metairie-Kenner, LA	0.8649	0.9054
35644	New York-White Plains-Wayne, NY-NJ	1.3134	1.2053
35980	Norwich-New London, CT	1.2031	1.1350
36084	Oakland-Fremont-Hayward, CA	1.5617	1.1350
36140	Ocean City, NJ	1.0336	1.0229
36220	Odessa, TX	0.9714	0.9803
36260	Ogden-Clearfield, UT	0.9080	0.9360
		0.9080	
36420	Oklahoma City, OK	0.8807	0.9167

TABLE 4C-1.—WAGE INDEX AND CAPITAL GEOGRAPHIC ADJUSTMENT FACTOR (GAF) FOR HOSPITALS THAT ARE RECLASSIFIED BY CBSA—Continued

36740 O 37860 P 37900 P 37964 P 38220 P 38300 P 38340 P 38340 P 38540 P 38540 P 38940 P 39900 P 39100 P 39100 P 39100 P 4020 R 40380 R 40420 R	Omaha-Council Bluffs, NE-IA Orlando-Kissimmee, FL Pensacola-Ferry Pass-Brent, FL Peniladelphia, PA (PA Hospitals) Piniadelphia, PA (NJ Hospitals) Pine Bluff, AR Pittsburgh, PA (OH Hospitals) Pittsburgh, PA (OH Hospitals) Pittsburgh, PA (OH Hospitals) Pittsfield, MA Pocatello, ID Portland-South Portland-Biddeford, ME Portland-Vancouver-Beaverton, OR-WA Port St. Lucie-Fort Pierce, FL Poughkeepsie-Newburgh-Middletown, NY Provo-Orem, UT Baleigh-Cary, NC Reading, PA Reading, PA Reading, PA Reading, CA Reno-Sparks, NV Richmond, VA Roanoke, VA Rochester, MN Rochester, MN Rochester, MN Rochester, NY Rockford, IL	0.9399 0.9575 0.7871 0.8966 1.0996 1.1402 0.8397 0.8568 0.8683 0.9887 0.9204 0.9472 1.1210 0.9906 1.0660 0.9479 0.9492 0.9709 1.2203 1.1713 0.8997 0.8700 1.1239 0.9103	0.9584 0.9707 0.8488 0.9280 1.0672 1.0940 0.8872 0.8996 0.9078 0.9922 0.9448 0.9635 1.0814 0.9936 1.0447 0.9640 0.9649 0.9800 1.1461 1.11144 0.9302 0.9090
37860 P. 37900 P. 37964 P. 37964 P. 38920 P. 38300 P. 38340 P. 38540 P. 38540 P. 38940 P. 39940 P. 39940 P. 39100 P. 39100 P. 39100 P. 40100 R. 4020 R. 40380 R. 40420 R.	Pensacola-Ferry Pass-Brent, FL Peoria, IL Philadelphia, PA (PA Hospitals) Philadelphia, PA (NJ Hospitals) Pine Bluff, AR Pittsburgh, PA (PA, WV Hospitals) Pittsburgh, PA (OH Hospitals) Pittsfield, MA Pocatello, ID Portland-South Portland-Biddeford, ME Portland-Vancouver-Beaverton, OR-WA Port St. Lucie-Fort Pierce, FL Poughkeepsie-Newburgh-Middletown, NY Provo-Orem, UT Raleigh-Cary, NC Reading, PA Redding, CA Reno-Sparks, NV Richmond, VA Roanoke, VA Rochester, MN Rochester, MN	0.7871 0.8966 1.0996 1.1402 0.8397 0.8568 0.8683 0.9887 0.9204 0.9472 1.1210 0.9906 1.0660 0.9479 0.9492 0.9709 1.2203 1.1713 0.8997 0.8700 1.1239	0.8488 0.9280 1.0672 1.0940 0.8872 0.8967 0.9978 0.9922 0.9448 0.9635 1.0814 0.9936 1.0447 0.9649 0.9800 1.1461 1.1144 0.9302
37900 P. 37964 P. 37964 P. 38220 P. 38300 P. 38340 P. 38540 P. 38540 P. 38940 P. 38940 P. 39940 P. 39940 P. 39940 P. 40960 R. 40020 R. 40380 R. 40420 R.	Peoria, IL Philadelphia, PA (PA Hospitals) Philadelphia, PA (NJ Hospitals) Pine Bluff, AR Pittsburgh, PA (PA, WV Hospitals) Pittsburgh, PA (OH Hospitals) Pittsburgh, PA (OH Hospitals) Pittsfield, MA Pocatello, ID Portland-South Portland-Biddeford, ME Portland-Vancouver-Beaverton, OR-WA Port St. Lucie-Fort Pierce, FL Poughkeepsie-Newburgh-Middletown, NY Provo-Orem, UT Raleigh-Cary, NC Reading, PA Redding, CA Reno-Sparks, NV Richmond, VA Roanoke, VA Rochester, MN Rochester, MN	0.8966 1.0996 1.1402 0.8397 0.8568 0.8683 0.9887 0.9204 0.9472 1.1210 0.9906 1.0660 0.9479 0.9492 0.9709 1.2203 1.1713 0.8997 0.8700 1.1239	0.9280 1.0672 1.0940 0.8872 0.8996 0.9978 0.9922 0.9448 0.9635 1.0814 0.9936 1.0447 0.9649 0.9800 1.1461 1.1144 0.9302
37964 P 37964 P 37964 P 38220 P 38300 P 38340 P 38540 P 38860 P 38940 P 39100 P 39100 P 39140 P 39580 R 39740 R 39820 R 39900 R 40040 R 40320 R 40380 R	Philadelphia, PA (PA Hospitals) Philadelphia, PA (NJ Hospitals) Pine Bluff, AR Pittsburgh, PA (PA, WV Hospitals) Pittsburgh, PA (OH Hospitals) Pittsfield, MA Pocatello, ID Portland-South Portland-Biddeford, ME Portland-Vancouver-Beaverton, OR-WA Port St. Lucie-Fort Pierce, FL Poughkeepsie-Newburgh-Middletown, NY Provo-Orem, UT Raleigh-Cary, NC Reading, PA Redding, CA Reno-Sparks, NV Richmond, VA Roanoke, VA Rochester, MN Rochester, MN	1.0996 1.1402 0.8397 0.8568 0.8683 0.9887 0.9204 0.9472 1.1210 0.9906 1.0660 0.9479 0.9492 0.9709 1.2203 1.1713 0.8997 0.8700 1.1239	1.0672 1.0940 0.8872 0.8996 0.9078 0.9922 0.9448 0.9635 1.0814 0.9936 1.0447 0.9649 0.9800 1.1461 1.1144 0.9302
37964 P 38220 P 38300 P 38300 P 38340 P 38540 P 38900 P 38900 P 38900 P 39100 P 39140 P 39140 P 39580 R 39740 R 39820 R 40040 R 40340 R 40380 R 40420 R	Philadelphia, PA (NJ Hospitals) Pine Bluff, AR Pittsburgh, PA (PA, WV Hospitals) Pittsburgh, PA (OH Hospitals) Pittsburgh, PA (OH Hospitals) Pittsfield, MA Pocatello, ID Portland-South Portland-Biddeford, ME Portland-Vancouver-Beaverton, OR-WA Port St. Lucie-Fort Pierce, FL Poughkeepsie-Newburgh-Middletown, NY Provo-Orem, UT Raleigh-Cary, NC Reading, PA Redding, CA Reno-Sparks, NV Richmond, VA Roanoke, VA Rochester, MN Rochester, MN	1.1402 0.8397 0.8568 0.8683 0.9887 0.9204 0.9472 1.1210 0.9906 1.0660 0.9479 0.9492 0.9709 1.2203 1.1713 0.8997 0.8700 1.1239	1.0940 0.8872 0.8996 0.9078 0.9922 0.9448 0.9635 1.0814 0.9936 1.0447 0.9649 0.9649 0.9800 1.1461 1.1144
38220 P 38300 P 38300 P 38340 P 38540 P 38860 P 38900 P 39100 P 39340 P 39580 R 39740 R 40060 R 40020 R 40340 R 40380 R 40420 R	Pine Bluff, AR Pittsburgh, PA (PA, WV Hospitals) Pittsburgh, PA (OH Hospitals) Pittsfield, MA Pocatello, ID Portland-South Portland-Biddeford, ME Portland-Vancouver-Beaverton, OR-WA Port St. Lucie-Fort Pierce, FL Poughkeepsie-Newburgh-Middletown, NY Provo-Orem, UT Raleigh-Cary, NC Reading, PA Redding, CA Reno-Sparks, NV Richmond, VA Roanoke, VA Rochester, MN Rochester, MN	0.8397 0.8568 0.8683 0.9887 0.9204 0.9472 1.1210 0.9906 1.0660 0.9479 0.9492 0.9709 1.2203 1.1713 0.8997 0.8700 1.1239	0.8872 0.8996 0.9078 0.9922 0.9448 0.9635 1.0814 0.9936 1.0447 0.9649 0.9649 0.9800 1.1461 1.1144
38300 P 38340 P 38340 P 38540 P 38860 P 38900 P 39100 P 39340 P 39580 R 39740 R 39820 R 39900 R 40060 R 40020 R 40380 R 40420 R	Pittsburgh, PA (PA, WV Hospitals) Pittsburgh, PA (OH Hospitals) Pittsfield, MA Pocatello, ID Portland-South Portland-Biddeford, ME Portland-Vancouver-Beaverton, OR-WA Port St. Lucie-Fort Pierce, FL Poughkeepsie-Newburgh-Middletown, NY Provo-Orem, UT Raleigh-Cary, NC Reading, PA Redding, CA Reno-Sparks, NV Richmond, VA Roanoke, VA Rochester, MN Rochester, MN	0.8568 0.8683 0.9887 0.9204 0.9472 1.1210 0.9906 1.0660 0.9479 0.9492 0.9709 1.2203 1.1713 0.8997 0.8700 1.1239	0.8996 0.9078 0.9922 0.9448 0.9635 1.0814 0.9936 1.0447 0.9640 0.9649 0.9800 1.1461 1.1144 0.9302
38300 P 38340 P 38540 P 38540 P 38590 P 39900 P 39340 P 39580 R 39740 R 39820 R 39900 R 40060 R 40220 R 40380 R	Pittsburgh, PA (OH Hospitals) Pittsfield, MA Pocatello, ID Portland-South Portland-Biddeford, ME Portland-Vancouver-Beaverton, OR-WA Port St. Lucie-Fort Pierce, FL Poughkeepsie-Newburgh-Middletown, NY Provo-Orem, UT Raleigh-Cary, NC Reading, PA Redding, CA Reno-Sparks, NV Richmond, VA Roanoke, VA Rochester, MN Rochester, MN	0.8683 0.9887 0.9204 0.9472 1.1210 0.9906 1.0660 0.9479 0.9492 0.9709 1.2203 1.1713 0.8997 0.8700 1.1239	0.9078 0.9922 0.9448 0.9635 1.0814 0.9936 1.0447 0.9640 0.9649 0.9800 1.1461 1.1144 0.9302
38340 P. 38540 P. 38540 P. 38900 P. 39940 P. 39340 P. 39340 P. 39580 R. 39740 R. 39820 R. 39900 R. 40060 R. 40220 R. 40380 R. 40420 R.	Pittsfield, MA Pocatello, ID Portland-South Portland-Biddeford, ME Portland-Vancouver-Beaverton, OR-WA Port St. Lucie-Fort Pierce, FL Poughkeepsie-Newburgh-Middletown, NY Provo-Orem, UT Raleigh-Cary, NC Reading, PA Redding, CA Reno-Sparks, NV Richmond, VA Roanoke, VA Rochester, MN Rochester, MN	0.9204 0.9472 1.1210 0.9906 1.0660 0.9479 0.9492 0.9709 1.2203 1.1713 0.8997 0.8700 1.1239	0.9448 0.9635 1.0814 0.9936 1.0447 0.9640 0.9800 1.1461 1.1144 0.9302
38540 P. 38860 P. 38900 P. 38940 P. 39100 P. 39140 P. 39580 R. 39740 R. 39820 R. 39900 R. 40060 R. 40220 R. 40380 R. 40420 R.	Pocatello, ID Portland-South Portland-Biddeford, ME Portland-Vancouver-Beaverton, OR-WA Port St. Lucie-Fort Pierce, FL Poughkeepsie-Newburgh-Middletown, NY Provo-Orem, UT Raleigh-Cary, NC Reading, PA Redding, CA Reno-Sparks, NV Richmond, VA Roanoke, VA Rochester, MN Rochester, MN	0.9472 1.1210 0.9906 1.0660 0.9479 0.9492 0.9709 1.2203 1.1713 0.8997 0.8700 1.1239	0.9635 1.0814 0.9936 1.0447 0.9640 0.9649 0.9800 1.1461 1.1144 0.9302
38900 P. 38940 P. 39100 P. 39340 P. 39580 R. 39740 R. 39820 R. 39900 R. 40060 R. 40220 R. 40340 R. 40380 R. 40420 R.	Portland-Vancouver-Beaverton, OR-WA Port St. Lucie-Fort Pierce, FL Poughkeepsie-Newburgh-Middletown, NY Provo-Orem, UT Raleigh-Cary, NC Reading, PA Redding, CA Reno-Sparks, NV Richmond, VA Roanoke, VA Rochester, MN Rochester, MN	1.1210 0.9906 1.0660 0.9479 0.9492 0.9709 1.2203 1.1713 0.8997 0.8700 1.1239	1.0814 0.9936 1.0447 0.9640 0.9649 0.9800 1.1461 1.1144 0.9302
38940 P. 39100 P. 39100 P. 39340 P. 39580 R. 39740 R. 39820 R. 40060 R. 40220 R. 40340 R. 40380 R. 40420 R.	Port St. Lucie-Fort Pierce, FL Poughkeepsie-Newburgh-Middletown, NY Provo-Orem, UT Raleigh-Cary, NC Reading, PA Redding, CA Reno-Sparks, NV Richmond, VA Roanoke, VA Rochester, MN Rochester, MN	0.9906 1.0660 0.9479 0.9492 0.9709 1.2203 1.1713 0.8997 0.8700 1.1239	0.9936 1.0447 0.9640 0.9649 0.9800 1.1461 1.1144 0.9302
39100 P. 39340 P. 39580 R. 39740 R. 39820 R. 39900 R. 40060 R. 40220 R. 40340 R. 40380 R.	Poughkeepsie-Newburgh-Middletown, NY Provo-Orem, UT Raleigh-Cary, NC Reading, PA Redding, CA Reno-Sparks, NV Richmond, VA Roanoke, VA Rochester, MN Rochester, NY	1.0660 0.9479 0.9492 0.9709 1.2203 1.1713 0.8997 0.8700 1.1239	1.0447 0.9640 0.9649 0.9800 1.1461 1.1144 0.9302
39340 P 39580 R 39740 R 39820 R 39900 R 40060 R 40220 R 40340 R 40380 R	Provo-Orem, UT Raleigh-Cary, NC Reading, PA Redding, CA Reno-Sparks, NV Richmond, VA Roanoke, VA Rochester, MN Rochester, NY	0.9479 0.9492 0.9709 1.2203 1.1713 0.8997 0.8700 1.1239	0.9640 0.9649 0.9800 1.1461 1.1144 0.9302
39580 R 39740 R 39820 R 39900 R 40060 R 40220 R 40340 R 40380 R	Raleigh-Cary, NC Reading, PA Redding, CA Reno-Sparks, NV Richmond, VA Roanoke, VA Rochester, MN Rochester, MN	0.9492 0.9709 1.2203 1.1713 0.8997 0.8700 1.1239	0.9649 0.9800 1.1461 1.1144 0.9302
39740 R 39820 R 39900 R 40060 R 40220 R 40340 R 40380 R	Reading, PA Redding, CA Reno-Sparks, NV Richmond, VA Roanoke, VA Rochester, MN Rochester, NY	0.9709 1.2203 1.1713 0.8997 0.8700 1.1239	0.9800 1.1461 1.1144 0.9302
39820 R 39900 R 40060 R 40220 R 40340 R 40380 R	Redding, CA Reno-Sparks, NV Richmond, VA Roanoke, VA Rochester, MN	1.2203 1.1713 0.8997 0.8700 1.1239	1.1461 1.1144 0.9302
39900 R 40060 R 40220 R 40340 R 40380 R 40420 R	Reno-Sparks, NV Richmond, VA Roanoke, VA Rochester, MN Rochester, NY	1.1713 0.8997 0.8700 1.1239	1.1144 0.9302
40060 R 40220 R 40340 R 40380 R 40420 R	Richmond, VA	0.8997 0.8700 1.1239	0.9302
40220 R 40340 R 40380 R 40420 R	Roanoke, VA	0.8700 1.1239	
40340 R 40380 R 40420 R	Rochester, MN	1.1239	(1,4(14()
40380 R 40420 R	Rochester, NY	l l	1.0833
40420 R			0.9377
		0.9828	0.9882
+∪404 K	Rockingham County, NH	1.0237	1.0162
40660 R	Rome, GA	0.9699	0.9793
40900 S	Sacramento—Arden-Arcade—Roseville, CA	1.2986	1.1959
40980 S	Saginaw-Saginaw Township North, MI	0.9028	0.9324
	St. Cloud, MN	1.0302	1.0206
41100 S	St. George, UT	0.9452	0.9621
	St. Joseph, MO-KS	1.0045	1.0031
	St. Louis, MO-IL	0.8889	0.9225
	Salt Lake City, UT	0.9476	0.9638
	San Antonio, TXSan Francisco-San Mateo-Redwood City, CA	0.8945 1.5260	0.9265 1.3357
41980 S	San Juan-Caguas-Guaynabo, PR	0.4449	0.5743
42044 S	Santa Ana-Anaheim-Irvine, CA	1.1202	1.0808
42140 S	Santa Fe, NM	0.9808	0.9868
	Santa Rosa-Petaluma, CA	1.4116	1.2663
	Sarasota-Bradenton-Venice, FL	0.9743	0.9823
42340 S	Savannah, GA	0.9023	0.9320
42644 S	Seattle-Bellevue-Everett, WA	1.1096	1.0738
43300 S	Sherman-Denison, TX	0.8526	0.8965
	Shreveport-Bossier City, LA	0.8688	0.9082
	Sioux City, IA-NE-SD	0.8693	0.9085
.0020	Sioux Falls, SD	0.9238	0.9472
	South Bend-Mishawaka, IN-MI	0.9721	0.9808
_ '	Spartanburg, SC	0.9072	0.9355
	Spokane, WASpringfield, MO	1.0244 0.8412	1.0166 0.8883
	State College, PA	0.8301	0.8803
	Sumter, SC	0.8692	0.8803
	Syracuse, NY	0.9498	0.9653
	Tallahassee, FL	0.8802	0.9163
	Fampa-St. Petersburg-Clearwater, FL	0.9265	0.9491
	Fexarkana, TX-Texarkana, AR	0.8107	0.8661
	Foledo, OH	0.9455	0.9623
	Topeka, KS	0.8639	0.9047
	Гulsa, ÖK	0.8310	0.8809
46220 To	Tuscaloosa, AL	0.8362	0.8847
	「yler, TX	0.8963	0.9278
	/aldosta, GA	0.8632	0.9042
	/allejo-Fairfield, CA	1.4095	1.2650
	/irginia Beach-Norfolk-Newport News, VA	0.8774	0.9143
	Vaco, TX	0.8748	0.9125
	Washington-Arlington-Alexandria, DC-VA-MD-WV	1.0877	1.0593
	Vausau, WI	0.9947	0.9964
48620 W	Vichita, KS	0.8776 0.8301	0.9145 0.8803

TABLE 4C-1.—WAGE INDEX AND CAPITAL GEOGRAPHIC ADJUSTMENT FACTOR (GAF) FOR HOSPITALS THAT ARE RECLASSIFIED BY CBSA—Continued

CBSA code	Area	Wage index	GAF
48864	Wilmington, DE-MD-NJ	1.0570	1.0387
48900	Wilmington, NC	0.9473	0.9636
49180	Winston-Salem, NC	0.9246	0.9477
49340	Worcester, MA	1.1732	1.1156
49660	Youngstown-Warren-Boardman, OH-PA	0.8690	0.9083
04	Arkansas	0.7660	0.8331
05	California	1.1202	1.0808
07	Connecticut	1.1988	1.1322
10	Florida (FL Hospitals)	0.8733	0.9114
10	Florida (GA Hospitals)	0.8489	0.8939
14	Illinois (IL Hospitals)	0.8358	0.8844
14	Illinois (KY Hospitals)	0.8248	0.8764
14	Illinois (MO Hospitals)	0.8353	0.8841
16	¹ lowa	0.8700	0.9090
17	Kansas	0.8018	0.8596
23	Michigan	0.9028	0.9324
26	Missouri	0.8353	0.8841
30	New Hampshire	1.1394	1.0935
33	New York	0.8430	0.8896
34	North Carolina	0.8629	0.9040
36	Ohio	0.8683	0.9078
37	Oklahoma	0.7847	0.8470
38	¹ Oregon	1.0194	1.0132
39	Pennsylvania	0.8430	0.8896
44	Tennessee	0.8122	0.8672
45	Texas	0.8225	0.8748
47	Vermont	0.9380	0.9571
50	Washington (WA Hospitals)	1.0206	1.0141
50	Washington (ID Hospitals)	0.9978	0.9985
52	Wisconsin	0.9607	0.9729
53	¹ Wyoming	0.9066	0.9351

¹ For this area, the wage index and GAF on this table are only effective from October 1, 2006 through March 31, 2007. See Table 4C–2 for the values that are effective from April 1 through September 30, 2007.

TABLE 4C2.—WAGE INDEX AND CAPITAL GEOGRAPHIC ADJUSTMENT FACTOR (GAF) FOR CERTAIN HOSPITALS THAT ARE RECLASSIFIED BY CBSA FOR THE PERIOD APRIL 1 TRHOUGH SEPTEMBER 30, 2007*

CBSA code	Area	Wage index	GAF
11260	Anchorage, AK	1.1927	1.1283
11460	Ann Arbor, MI	1.0440	1.0299
13020	Bay City, MI	1.0044	1.0030
13900	Bismarck, ND	0.73680	0.8113
19804	Detroit-Livonia-Dearborn, MI	1.0281	1.0192
21660	Eugene-Springfield, OR	1.0598	1.0406
22020	Fargo, ND-MN	0.8367	0.8851
24300	Grand Junction, CO	0.9879	0.9917
26820	Idaho Falls, ID	0.9217	0.9457
31084	Los Angeles-Long Beach-Santa Ana, CA	1.1520	1.1017
34740	Muskegon-Norton Shores, MI	0.9762	0.9836
35004	Nassau-Suffolk, NY	1.2730	1.1797
35300	New Haven-Milford, CT	1.2142	1.1421
35644	New York-White Plains-Wayne, NY-NJ	1.3113	1.2039
16	lowa	0.8615	0.9029
24	Minnesota	0.9280	0.9501
38	Oregon	0.97640	0.9838
53	Wyoming	0.9048	0.9338

^{**} See Table 4C-1 for the wage index and GAF that are effective from October 1, 2006 through March 31, 2007. For areas that are not listed on this table, the wage index and GAF on Table 4C-1 are effective for the entire FY 2007.

TABLE 4F.—PUERTO RICO WAGE INDEX AND CAPITAL GEOGRAPHIC ADJUSTMENT FACTOR (GAF) BY CBSA

CBSA code	Area	Wage Index	GAF	Wage Index— reclassified rospitals	GAF— Reclassified hospitals
10380	Aguadilla-Isabela-San Sebastián, PR	0.8736	0.9116		

TABLE 4F.—PUERTO RICO WAGE INDEX AND CAPITAL GEOGRAPHIC ADJUSTMENT FACTOR (GAF) BY CBSA—Continued

CBSA code	CBSA code Area		GAF	Wage Index— reclassified rospitals	GAF— Reclassified hospitals
	Pońce, PRSan Germán-Cabo Rojo, PR	0.9168 0.7326 0.8739 1.0781 1.1052 1.0119 0.8668	0.9422 0.8081; 0.9118; 1.0528 1.0709 1.0081 0.9067	1.0119	1.0081

The following list represents all hospitals located in counties that became newly eligible in FY 2005, FY 2006 or FY 2007 to have their wage index increased by the out-migration adjustment listed in this table. This table now reflects any additional hospitals located in counties that may newly qualify for the adjustment in FY 2007 based on the 100 percent occupational mix adjusted wage index data. Hospitals cannot receive the outmigration adjustment if they are reclassified under section 1886(d)(10) of the Act, reclassified under section 508 of Pub. L. 108-173, or redesignated

under section 1886(d)(8) of the Act. If a hospital has a half fiscal year reclassification, the hospital will be eligible for the out-migration adjustment for the portion of the fiscal year that it is not reclassified. Hospitals that have been reclassified under section 1886(d)(10) of the Act, reclassified under section 508 of Pub. L. 108-173, or redesignated under section 1886(d)(8) of the Act for any portion of the fiscal year are designated with an asterisk. It is important to note that the asterisked information in Table 4J may reflect withdrawal/termination decisions CMS has made on behalf of hospitals. For

example, in some cases, CMS may have withdrawn or terminated a reclassification under section 1886(d)(10) of the Act in order for a hospital to receive its home wage index plus an out-migration adjustment. Hospitals have 30 days from this publication of the final occupation mixadjusted data and other tables on the CMS Web site to reverse a decision CMS has made on its behalf and choose a wage index, adjustment, or reclassification for which they are otherwise eligible.

TABLE 4J.—OUT-MIGRATION ADJUSTMENT —FY 2007

Provider No.	Reclassified between 10/1/06 and 3/31/07	Reclassified between 4/1/07 and 9/30/07	Out-migration adjustment	Qualifying county name
010005	*	*	0.0259	MARSHALL
010008	*	*	0.0212	CRENSHAW
010009	*	*	0.0259	MARSHALL
010012	*	*	0.0205	DE KALB
010022	*	*	0.0714	CHEROKEE
010025	*	*	0.0235	CHAMBERS
010029	*	*	0.0107	LEE
010035	*	*	0.0375	CULLMAN
010038			0.0062	CALHOUN
010045	*	*	0.0160	FAYETTE
010047			0.0155	BUTLER
010052			0.0103	TALLAPOOSA
010054	*	*	0.0092	MORGAN
010061			0.0506	JACKSON
010065	*	*	0.0103	TALLAPOOSA
010078			0.0062	CALHOUN
010083	*	*	0.0121	BALDWIN
010085	*	*	0.0092	MORGAN
010100	*	*	0.0121	BALDWIN
010101	*	*	0.0310	TALLADEGA
010109			0.0451	PICKENS
010129			0.0121	BALDWIN
010143	*	*	0.0375	CULLMAN
010146			0.0062	CALHOUN
010150	*	*	0.0155	BUTLER
010158	*	*	0.0093	FRANKLIN
010164	*	*	0.0310	TALLADEGA
040014	*	*	0.0159	WHITE
040019	*	*	0.0697	ST. FRANCIS
040047	*	*	0.0090	RANDOLPH
040069	*	*	0.0140	MISSISSIPPI
040071	*	*	0.0026	JEFFERSON
040076	*	*	0.1075	HOT SPRING
040100	*	*	0.0159	WHITE
050008			0.0026	SAN FRANCISCO

TABLE 4J.—OUT-MIGRATION ADJUSTMENT —FY 2007—Continued

	Provider No.	Reclassified between 10/1/06 and 3/31/07	Reclassified between 4/1/07 and 9/30/07	Out-migration adjustment	Qualifying county name
ინიიიი		*	*	0.0478	NAPA
		*	*	0.0478	NAPA
		*	*	0.0131	AMADOR
				0.0101	SAN LUIS OBISPO
		*	*	0.0219	TEHAMA
		*	*	0.0219	VENTURA
				0.0026	SAN FRANCISCO
				0.0026	SAN FRANCISCO
		*	*	0.0020	ORANGE
		*	*	0.0029	ORANGE
		*	*	0.0269	SOLANO
		*	*	0.0026	SAN FRANCISCO
			*	0.0156	VENTURA
				0.0555	SAN JOAQUIN
		*	*	0.0152	SAN BERNARDINO
		*	*	0.0308	SONOMA
		*	*	0.0152	SAN BERNARDINO
		*	*	0.0269	SOLANO
				0.0463	MERCED
				0.0555	SAN JOAQUIN
				0.0555	SAN JOAQUIN
		*	*	0.0353	SAN BERNARDINO
				0.0170	YUBA
		*	*	0.0308	SONOMA
		*	*	0.0152	SAN BERNARDINO
		*	*	0.0316	NEVADA
				0.0026	SAN FRANCISCO
			*	0.0156	VENTURA
				0.0555	SAN JOAQUIN
		*	*	0.0029	ORANGE
		*	*	0.0029	ORANGE
		*	*	0.0308	SONOMA
		*	*	0.0029	ORANGE
				0.0052	SANTA CRUZ
		*	*	0.0029	ORANGE
		*	*	0.0029	ORANGE
		*	*	0.0026	SAN FRANCISCO
		*	*	0.0029	ORANGE
				0.0103	SAN LUIS OBISPO
			*	0.0156	VENTURA
				0.0052	SANTA CRUZ
		*	*	0.0152	SAN BERNARDINO
		*	*	0.0152	SAN BERNARDINO
		*	*	0.0152	
050291		*	*	0.0308	SONOMA
		*	*	0.0152	SAN BERNARDINO
		*	*	0.0152	SAN BERNARDINO
				0.0555	SAN JOAQUIN
				0.0176	TUOLUMNE
050327		*	*	0.0152	SAN BERNARDINO
050335				0.0176	TUOLUMNE
050336				0.0555	SAN JOAQUIN
050348		*	*	0.0029	ORANGE
050367		*	*	0.0269	SOLANO
050385		*	*	0.0308	SONOMA
050394			*	0.0156	VENTURA
050407				0.0026	SAN FRANCISCO
050426		*	*	0.0029	ORANGE
050444				0.0463	MERCED
050454				0.0026	SAN FRANCISCO
050457				0.0026	SAN FRANCISCO
050469		*	*	0.0152	SAN BERNARDINO
050476				0.0257	LAKE
050494		*		0.0316	NEVADA
050506				0.0103	SAN LUIS OBISPO
050517		*	*	0.0152	
		*	*	0.0029	ORANGE
		*	*	0.0463	
		*	*		ORANGE

TABLE 4J.—OUT-MIGRATION ADJUSTMENT —FY 2007—Continued

	Provider No.	Reclassified between	Reclassified between	Out-migration	Qualifying county name
		10/1/06 and 3/31/07	4/1/07 and 9/30/07	adjustment	adding southly fluitto
		*	*	0.0029	ORANGE
		*	*	0.0308 0.0029	SONOMA ORANGE
050549		*	*	0.0156	VENTURA
		*	*	0.0029 0.0029	ORANGE ORANGE
		*	*	0.0029	ORANGE
				0.0062	MADERA
		*	*	0.0029 0.0029	ORANGE ORANGE
		*	*	0.0152	SAN BERNARDINO
		*	*	0.0029 0.0152	ORANGE SAN BERNARDINO
		*	*	0.0152	ORANGE
		*	*	0.0029	ORANGE
		*	*	0.0029 0.0029	ORANGE ORANGE
		*	*	0.0029	ORANGE
			*	0.0156	VENTURA
		*	*	0.0152 0.0103	SAN BERNARDINO SAN LUIS OBISPO
		*	*	0.0478	NAPA
				0.0026	SAN FRANCISCO
		*	*	0.0029 0.0269	ORANGE SOLANO
		*	*	0.0308	SONOMA
		*	*	0.0029	ORANGE
				0.0555 0.0052	SAN JOAQUIN SANTA CRUZ
		*	*	0.0029	ORANGE
		*	*	0.0308	SONOMA ORANGE
				0.0029 0.0029	ORANGE
				0.0029	ORANGE
			*	0.0029 0.0156	ORANGE VENTURA
111111		*	*	0.0294	WELD
		*	*	0.0203	BOULDER
060010 060027		*	*	0.0153 0.0203	LARIMER BOULDER
060030				0.0153	LARIMER
11111		*	*	0.0203	BOULDER
111111		*	*	0.0203 0.0009	BOULDER WINDHAM
		*	*	0.0047	FAIRFIELD
		*	*	0.0047 0.0047	FAIRFIELD
				0.0047	FAIRFIELD MIDDLESEX
070021				0.0009	WINDHAM
		*	*	0.0047 0.0047	FAIRFIELD FAIRFIELD
		*	*	0.0047	FAIRFIELD
080001				0.0063	NEW CASTLE
				0.0063 0.0118	NEW CASTLE VOLUSIA
				0.0118	VOLUSIA
		*	*	0.0118	VOLUSIA
				0.0021 0.0060	CHARLOTTE MARION
				0.0118	VOLUSIA
				0.0118	VOLUSIA
				0.0021 0.0125	CHARLOTTE COLUMBIA
				0.0398	FLAGLER
				0.0125	COLUMBIA
				0.0231 0.0060	DE SOTO MARION
100232		*	*	0.0347	PUTNAM
100236				0.0021	CHARLOTTE

TABLE 4J.—OUT-MIGRATION ADJUSTMENT —FY 2007—Continued

Provider No.	Reclassified between 10/1/06 and 3/31/07	Reclassified between 4/1/07 and 9/30/07	Out-migration adjustment	Qualifying county name
100252	*	*	0.0233	OKEECHOBEE
100290			0.0582	SUMTER
110023	*	*	0.0500	GORDON
110027 110029	*	*	0.0387 0.0063	FRANKLIN HALL
110041	*	*	0.0777	HABERSHAM
110069	*	*	0.0474	HOUSTON
110124			0.0428	WAYNE
110146	*	*	0.0805	CAMDEN
110150 110153	*	*	0.0261 0.0474	BALDWIN HOUSTON
110187	*	*	0.1172	LUMPKIN
110189	*	*	0.0031	FANNIN
110190			0.0182	MACON
110205	*	*	0.0779	GILMER
130003			0.0095 0.0275	NEZ PERCE BONNER
130049	*	*	0.0275	KOOTENAI
130066			0.0349	KOOTENAI
140012	*	*	0.0220	LEE
140026			0.0346	LA SALLE
140033			0.0147	LAKE
140043	*	*	0.0046 0.0081	WHITESIDE MORGAN
140058			0.0081	LAKE
140100			0.0147	LAKE
140110	*	*	0.0346	LA SALLE
140130			0.0147	LAKE
140155	*	*	0.0027	KANKAKEE
140160 140161	*	*	0.0286 0.0138	STEPHENSON LIVINGSTON
140186	*	*	0.0027	KANKAKEE
140202			0.0147	LAKE
140205			0.0163	BOONE
140234	*	*	0.0346	LA SALLE
140291	*	*	0.0147	LARE
150006	*	*	0.0113 0.0113	LA PORTE LA PORTE
150022			0.0249	MONTGOMERY
150030	*	*	0.0201	HENRY
150035			0.0083	PORTER
150045	*	*	0.0416	DE KALB
150065	*	*	0.0139 0.0189	JACKSON MARSHALL
150088	*	*	0.0196	
150091			0.0573	HUNTINGTON
150102	*	*	0.0160	STARKE
150113	*	*	0.0196	MADISON
150146	*	*	0.0199	RIPLEY
150146			0.0319 0.0218	NOBLE MUSCATINE
160030			0.0040	STORY
160032			0.0272	JASPER
160080	*	*	0.0049	CLINTON
170137	*	*	0.0336	DOUGLAS
180012 180066	*	*	0.0083 0.0567	HARDIN LOGAN
180127	*	*	0.0352	FRANKLIN
180128			0.0282	LAWRENCE
190001	*	*	0.0645	WASHINGTON
190003	*	*	0.0107	IBERIA
190015	*	*	0.0401	TANGIPAHOA
190017 190054			0.0235 0.0107	ST. LANDRY IBERIA
190078			0.0107	ST. LANDRY
190088			0.0705	WEBSTER
190099	*	*	0.0390	AVOYELLES
190106	*	*	0.0238	ALLEN
190133	I	l	0.0238	ALLEN

TABLE 4J.—OUT-MIGRATION ADJUSTMENT —FY 2007—Continued

	Provider No.	Reclassified between 10/1/06 and 3/31/07	Reclassified between 4/1/07 and 9/30/07	Out-migration adjustment	Qualifying county name
190144				0.0705	WEBSTER
				0.0161	CALDWELL
				0.0161	CALDWELL
190191		*	*	0.0235	ST. LANDRY
				0.0161	CALDWELL
				0.0129	LINCOLN
		,	,	0.0071	ANDROSCOGGIN
		*	*	0.0466 0.0071	OXFORD ANDROSCOGGIN
		*	*	0.0140	HANCOCK
				0.0129	WASHINGTON
				0.0040	MONTGOMERY
				0.0040	MONTGOMERY
				0.0040	MONTGOMERY
				0.0040	MONTGOMERY
				0.0209	ANNE ARUNDEL ST. MARYS
				0.0512 0.0209	ANNE ARUNDEL
				0.0209	HOWARD
				0.0040	MONTGOMERY
		*	*	0.0056	WORCESTER
		*	*	0.0249	MIDDLESEX
		*	*	0.0306	ESSEX
		*	*	0.0249	MIDDLESEX
		*	*	0.0056	WORCESTER
		*	*	0.0056	WORCESTER
		*	*	0.0056 0.0306	WORCESTER ESSEX
		*	*	0.0306	ESSEX
		*	*	0.0306	ESSEX
		*	*	0.0249	MIDDLESEX
220058		*	*	0.0056	WORCESTER
220062		*	*	0.0056	WORCESTER
		*	*	0.0249	MIDDLESEX
		*	*	0.0249	MIDDLESEX
		*	*	0.0306 0.0249	ESSEX MIDDLESEX
		*	*	0.0249	MIDDLESEX
				0.0249	MIDDLESEX
		*	*	0.0056	WORCESTER
220095		*	*	0.0056	WORCESTER
		*	*	0.0249	MIDDLESEX
		*	*	0.0249	MIDDLESEX
		*	*	0.0249	MIDDLESEX
		*	*	0.0056	WORCESTER
		*	*	0.0249 0.0306	MIDDLESEX ESSEX
				0.0056	WORCESTER
		*	*	0.0035	OTTAWA
230013		*	*	0.0091	OAKLAND
				0.0359	ST. JOSEPH
		*	*	0.0091	OAKLAND
				0.0136	BERRIEN
		*	*	0.0113	
		*	*	0.0091 0.0178	OAKLAND
				0.0178	HILLSDALE BAY
		*	*	0.0099	
		*	*	0.0487	LIVINGSTON
		*	*	0.0091	
		*	*	0.0035	OTTAWA
				0.0145	CALHOUN
		*	*	0.0136	BERRIEN
		*	*	0.0389	JACKSON
		*	*	0.0079	MECOSTA
		*	*	0.0359 0.0339	ST. JOSEPH MONROE
		*		0.0039	NEWAYGO
		*	*		SHIAWASSEE
		•	•	0.0001	

TABLE 4J.—OUT-MIGRATION ADJUSTMENT —FY 2007—Continued

	Provider No.	Reclassified between 10/1/06 and 3/31/07	Reclassified between 4/1/07 and 9/30/07	Out-migration adjustment	Qualifying county name
220120		*	*	0.0091	OAKLAND
		*	*	0.0091	OAKLAND
		*	*	0.0035	OTTAWA
		*	*	0.0033	MACOMB
		*	*	0.0082	MACOMB
		*	*	0.0082	OAKLAND
		*	*	0.0145	CALHOUN
				0.0228	MIDLAND
		*	*	0.0228	OAKLAND
		*	*	0.0081	MACOMB
		*	*	0.0082	OAKLAND
		*	*	0.0081	MACOMB
		*	*	0.0082	MACOMB
		*	*	0.0002	OAKLAND
		*	*	0.0091	OAKLAND
		*	*	0.0487	LIVINGSTON
		*	*	0.0467	GOODHUE
					WINONA
		*	*	0.0868	
		*	*	0.0138	ITASCA
		*	*	0.0419	STEELE
		*	*	0.0454	RICE
		*	*	0.0506	MC LEOD
		*	*	0.0705	PINE
				0.0294	JACKSON
		*	*	0.0007	COLE
				0.0007	COLE
				0.0158	RANDOLPH
				0.0425	JOHNSON
		î	^	0.0089	DODGE
				0.0137	GAGE
		Î	•	0.0026	CARSON CITY
				0.0026	CARSON CITY
				0.0026	CARSON CITY
				0.0069	HILLSBOROUGH
				0.0069	HILLSBOROUGH
				0.0361	ROCKINGHAM
				0.0069	HILLSBOROUGH
				0.0361	ROCKINGHAM
				0.0361	ROCKINGHAM
				0.0069	HILLSBOROUGH
		*	*	0.0351	ESSEX
310009				0.0351	ESSEX
310010				0.0092	MERCER
				0.0115	CAPE MAY
		*	*	0.0351	
		*	*	0.0351	ESSEX
		*	*	0.0092	MERCER
		* .	*	0.0350	MIDDLESEX
		*	*	0.0350	MIDDLESEX
				0.0092	MERCER
		*	*	0.0351	ESSEX
		, , , , , , , , , , , , , , , , , , ,	_	0.0350	MIDDLESEX
				0.0351	ESSEX
		Î	•	0.0351	ESSEX
				0.0092	MERCER
		*	_	0.0351	ESSEX
			·	0.0351	ESSEX
		*		0.0350	MIDDLESEX
				0.0092	MERCER
		*	*	0.0351	ESSEX
				0.0351	ESSEX
				0.0350	MIDDLESEX
				0.0629	SAN MIGUEL
				0.0442	RIO ARRIBA
				0.0063	DONA ANA
				0.0063	DONA ANA
		*	*	0.0959	ULSTER
330008		*	*	0.0470	WYOMING
330027		*	*	0.0137	NASSAU

TABLE 4J.—OUT-MIGRATION ADJUSTMENT —FY 2007—Continued

	_	Reclassified Reclassified between between		Out-migration		
	Provider No.	10/1/06 and 3/31/07	4/1/07 and 9/30/07	adjustment	Qualifying county name	
330094		*	*	0.0778	COLUMBIA	
		*	*	0.0137 0.0560	NASSAU ORANGE	
		*		0.0560	ORANGE	
			*	0.0137	NASSAU	
		*	*	0.0137 0.0137	NASSAU NASSAU	
		*	*	0.0026	WARREN	
		*	*	0.0137	NASSAU	
		*	*	0.0560 0.0959	ORANGE ULSTER	
330225			*	0.0137	NASSAU	
		*	*	0.0270 0.0137	CAYUGA NASSAU	
330264		*		0.0137	ORANGE	
				0.0063	FULTON	
			*	0.0137 0.0137	NASSAU NASSAU	
			*	0.0137	NASSAU	
		*	*	0.1139	SULLIVAN	
340015 340020				0.0267 0.0207	ROWAN LEE	
340021		*	*	0.0216	CLEVELAND	
				0.0216	CLEVELAND	
			· ·	0.0144 0.0053	IREDELL WAKE	
340070				0.0448	ALAMANCE	
340073		*		0.0053	WAKE	
340085 340096				0.0377 0.0377	DAVIDSON DAVIDSON	
340104				0.0216	CLEVELAND	
		*	*	0.0053	WAKE	
		*	*	0.0161 0.0961	WILSON GRANVILLE	
		*	*	0.0144	IREDELL	
				0.0308 0.0053	MARTIN WAKE	
340144		*	*	0.0033	IREDELL	
		*	*	0.0563	LINCOLN	
340173 360013		*	*	0.0053 0.0166	WAKE SHELBY	
360025				0.0087	ERIE	
360036		*	*	0.0263	WAYNE	
			Î	0.0141 0.0028	HURON STARK	
		*	*	0.0159	PORTAGE	
		*	*	0.0028	STARK	
		*	*	0.0168 0.0087	CLARK HANCOCK	
360100				0.0028	STARK	
		*	*	0.0213	SANDUSKY	
				0.0028 0.0028	STARK STARK	
360156				0.0213	SANDUSKY	
		*	*	0.0159 0.0168	CLINTON CLARK	
		*	*	0.0108		
				0.0120	DEFIANCE	
		*	*	0.0193 0.0831	OTTAWA BRYAN	
		*	*	0.0463	MAYES	
				0.0084	STEPHENS	
		*	*	0.0121 0.0205	CRAIG DELAWARE	
				0.0356	POTTAWATOMIE	
				0.0356	POTTAWATOMIE	
		*	*	0.0130 0.0201	JOSEPHINE LINN	
					MARION	

TABLE 4J.—OUT-MIGRATION ADJUSTMENT —FY 2007—Continued

	Provider No.	Reclassified between 10/1/06 and 3/31/07	Reclassified between 4/1/07 and 9/30/07	Out-migration adjustment	Qualifying county name
380051				0.0075	MARION
				0.0075	MARION
				0.0012	CAMBRIA
		*	*	0.0284	SCHUYLKILL
		*	*	0.0284	SCHUYLKILL
390044		*	*	0.0200	BERKS
390046		*	*	0.0098	YORK
				0.0042	HUNTINGDON
		*	*	0.0501	ADAMS
		*	*	0.0259	LEBANON
		,	•	0.0200	BERKS
				0.0098 0.0012	YORK CAMBRIA
				0.0012	CAMBRIA
		*	*	0.0325	FRANKLIN
				0.0053	WARREN
				0.0206	GREENE
390151		*	*	0.0325	FRANKLIN
390162				0.0200	NORTHAMPTON
390181				0.0284	SCHUYLKILL
390183				0.0284	SCHUYLKILL
				0.1127	MONROE
				0.0098	YORK
		*	*	0.0001	SPARTANBURG
		*	*	0.0113	OCONEE
		*	*	0.0035	GEORGETOWN
		*	*	0.0210 0.0103	ANDERSON COLLETON
		*	*	0.0103	UNION
				0.0133	CHEROKEE
				0.0109	CHESTERFIELD
		*	*	0.0097	ORANGEBURG
420070		*	*	0.0101	SUMTER
420083		*	*	0.0001	SPARTANBURG
420098				0.0035	GEORGETOWN
440008				0.0663	HENDERSON
		*	*	0.0387	BRADLEY
				0.0056	HAMBLEN
		Î	•	0.0441	MONTGOMERY
440047				0.0499 0.0321	GIBSON JEFFERSON
440060				0.0321	GIBSON
440063				0.0499	WASHINGTON
		*	*	0.0056	HAMBLEN
		*	*	0.0513	MAURY
				0.0011	WASHINGTON
440115				0.0499	GIBSON
440148		*	*	0.0568	DE KALB
				0.0007	COCKE
				0.0372	HAYWOOD
				0.0407	HARDEMAN
		*	*	0.0011	WASHINGTON
		*	*	0.0387 0.0416	BRADLEY HARRISON
		*	*	0.0416	TARRANT
		*	*	0.0037	COMAL
		*	*	0.0097	TARRANT
		*	*	0.0097	TARRANT
450099		*	*	0.0180	GRAY
450121		*	*	0.0097	TARRANT
450135		*	*	0.0097	TARRANT
		*	*	0.0097	TARRANT
		*	*	0.0573	ANDREWS
				0.0134	KLEBERG
		*	*	0.0264	WASHINGTON
		*	*	0.0328	CHEROKEE
		*	*	0.0368	WHARTON
			*	0.0411	WOOD
450324		î l	Î .	0.0132	GRAYSON

TABLE 4J.—OUT-MIGRATION ADJUSTMENT —FY 2007—Continued

	Provider No.	Reclassified between 10/1/06 and 3/31/07	Reclassified between 4/1/07 and 9/30/07	Out-migration adjustment	Qualifying county name
450347		*	*	0.0427	WALKER
450370				0.0258	COLORADO
450389		*	*	0.0881	HENDERSON
		*	*	0.0132	GRAYSON
		*	*	0.0484	POLK
		*	*	0.0097	TARRANT
		*	*	0.0258	COLORADO
		*	*	0.0358	NAVARRO
450451		*	*	0.0551	SOMERVELL
450465				0.0435	MATAGORDA
450469		*	*	0.0132	GRAYSON
		*	*	0.0411	WOOD
450563		*	*	0.0097	TARRANT
450565				0.0486	PALO PINTO
450596				0.0808	HOOD
				0.0077	DE WITT
450639		*	*	0.0097	TARRANT
450672		*	*	0.0097	TARRANT
450675		*	*	0.0097	TARRANT
450677		*	*	0.0097	TARRANT
450694		*	*	0.0368	WHARTON
450747		*	*	0.0195	ANDERSON
450755				0.0484	HOCKLEY
450779		*	*	0.0097	TARRANT
450813		*	*	0.0195	ANDERSON
450872		*	*	0.0097	TARRANT
		*	*	0.0097	TARRANT
450886				0.0097	TARRANT
450888				0.0097	TARRANT
460017				0.0392	BOX ELDER
		*	*	0.0392	BOX ELDER
490019				0.1240	CULPEPER
490038				0.0022	SMYTH
490084				0.0167	ESSEX
490105		*	*	0.0022	SMYTH
490110				0.0082	MONTGOMERY
500003		*	*	0.0208	SKAGIT
500007				0.0208	SKAGIT
500019				0.0213	LEWIS
500021		*	*	0.0055	PIERCE
500024				0.0023	THURSTON
500039		*	*	0.0174	KITSAP
500041		*	*	0.0118	COWLITZ
500079		*	*	0.0055	PIERCE
500108		*	*	0.0055	PIERCE
500129		*	*	0.0055	PIERCE
500139				0.0023	THURSTON
500143				0.0023	THURSTON
510018		*	*	0.0209	JACKSON
510039				0.0112	OHIO
510047		*	*	0.0275	MARION
510050				0.0112	OHIO
510077		*	*	0.0021	MINGO
520028		*	*	0.0157	GREEN
520035				0.0077	SHEBOYGAN
520044				0.0077	SHEBOYGAN
520057				0.0118	SAUK
520059		*	*	0.0200	RACINE
520071		*	*	0.0239	JEFFERSON
		*	*	0.0118	SAUK
520096		*	*	0.0200	RACINE
520102		*	*	0.0298	WALWORTH
520116		*	*	0.0239	JEFFERSON
520132				0.0077	SHEBOYGAN
		I		I.	l

TABLE 5.— LIST OF DIAGNOSIS-RELATED GROUPS (DRGS), RELATIVE WEIGHTING FACTORS, AND GEOMETRIC AND ARITHMETIC MEAN LENGTH OF STAY (LOS)

DRG	FY 07 final rule post- acute care DRG	FY 07 final rule spe- cial pay DRG	MDC	TYPE	DRG title	Weights	Geo- metric mean LOS	Arithmetic mean LOS
1	Yes	No	01	SURG	Craniotomy Age >17 W CC	3.4651	7.3	9.8
2	Yes	No	01	SURG	Craniotomy Age >17 W/O CC	1.9525	3.4	4.4
3	No	No	01	SURG *	Craniotomy Age 0-17	2.0113	12.7	12.7
4	No	No	01	SURG	No Longer Valid	0.0000	0.0	0.0
5	No	No	01	SURG	No Longer Valid	0.0000	0.0	0.0
6	No	No	01	SURG	Carpal Tunnel Release	0.7910	2.1	3.1
7	Yes	Yes	01	SURG	Periph & Cranial Nerve & Other Nerv Syst Proc W CC.	2.6609	6.5	9.4
8	Yes	Yes	01	SURG	Periph & Cranial Nerve & Other Nerv Syst Proc W/O CC.	1.5953	2.0	2.8
9	No	No	01	MED	Spinal Disorders & Injuries	1.3647	4.4	6.2
10	Yes	No	01	MED	Nervous System Neoplasms W CC	1.2556	4.6	6.0
11	Yes	No	01	MED	Nervous System Neoplasms W/O CC	0.8592	2.7	3.6
12	Yes	No	01	MED	Degenerative Nervous System Disorders	0.9322	4.3	5.5
13	Yes	No	01	MED	Multiple Sclerosis & Cerebellar Ataxia	0.8541	4.0	4.9
14	Yes	No	01	MED	Intracranial Hemorrhage or Cerebral Infarction.	1.2118	4.3	5.5
15	Yes	No	01	MED	Nonspecific CVA & Precerebral Occlusion w/o Infarct.	0.9442	3.1	4.0
16	Yes	No	01	MED	Nonspecific Cerebrovascular Disorders w CC.	1.3579	5.0	6.5
17	Yes	No	01	MED	Nonspecific Cerebrovascular Disorders w/o CC.	0.7141	2.4	3.0
18	Yes	No	01	MED	Cranial & Peripheral Nerve Disorders w CC.	1.0038	4.1	5.2
19	Yes	No	01	MED	Cranial & Peripheral Nerve Disorders w/o CC.	0.7194	2.7	3.4
20	No	No	01	MED	No Longer Valid	0.0000	0.0	0.0
21	No	No	01	MED	Viral Meningitis	1.4130	4.7	6.2
22	No	No	01	MED	Hypertensive Encephalopathy	1.1652	3.9	5.0
23	No	No	01	MED	Nontraumatic Stupor & Coma	0.8015	3.0	3.9
24	No	No	01	MED	No Longer Valid	0.0000	0.0	0.0
25	No	No	01	MED	No Longer Valid	0.0000	0.0	0.0
26	No	No	01	MED	Seizure & Headache Age 0-17	1.0076	2.7	3.8
27	No	No	01	MED	Traumatic Stupor & Coma, Coma >1 Hr	1.3499	3.1	4.7
28	Yes	No	01	MED	Traumatic Stupor & Coma, Coma <1 Hr Age >17 w CC.	1.3357	4.2	5.7
29	Yes	No	01	MED	Traumatic Stupor & Coma, Coma <1 Hr Age >17 w/o CC.	0.7401	2.6	3.2
30	No	No	01	MED *	Traumatic Stupor & Coma, Coma <1 Hr Age 0–17.	0.3402		
31	No	No	01	MED	Concussion Age >17 w CC	0.9796	3.0	3.9
32	No	No	01	MED	Concussion Age >17 w/o CC	0.6408	1.9	2.3
33	No	No	01	MED *	Concussion Age 0–17	0.2136		
34	Yes	No	01	MED	Other Disorders Of Nervous System w CC.	1.0175	3.6	4.8
35	Yes	No	01	MED	Other Disorders Of Nervous System w/o CC.	0.6587	2.5	3.1
36	No	No	02	SURG	Retinal Procedures	0.8056	1.4	1.9
37	No	No	02	SURG	Orbital Procedures	1.2064	2.7	4.1
38	No	No	02	SURG	Primary Iris Procedures	0.6195	2.2	2.8
39	No	No	02	SURG	Lens Procedures With Or Without Vitrectomy.	0.6461	1.6	2.1
40	No	No	02	SURG	Extraocular Procedures Except Orbit Age >17.	1.0309	3.1	4.2
41	No	No	02	SURG *	Extraocular Procedures Except Orbit Age 0–17.	0.3462		
42	No	No	02	SURG	Intraocular Procedures Except Retina, Iris & Lens.	0.7717	1.7	2.5
43	No	No	02	MED	Hyphema	0.6192	2.4	3.0
44	No	No	02	MED	Acute Major Eye Infections	0.7186	3.8	4.8
45	No	No	02	MED	Neurological Eye Disorders	0.7434	2.5	3.0
46	No	No	02	MED	Other Disorders Of The Eye Age >17 w CC.	0.7915	3.2	4.2
47	No	No	02	MED	Other Disorders Of The Eye Age >17 w/ o CC.	0.5520	2.4	3.0
	No	No No	02 03	MED * SURG	Other Disorders Of The Eye Age 0–17 Major Head & Neck Procedures	0.3050 1.6684	3.2	4.5

Table 5.— List of Diagnosis-Related Groups (DRGS), Relative Weighting Factors, and Geometric and Arithmetic Mean Length of Stay (LOS)—Continued

DRG	FY 07 final rule post- acute care DRG	FY 07 final rule spe- cial pay DRG	MDC	TYPE	DRG title	Weights	Geo- metric mean LOS	Arithmetic mean LOS
50	No	No	03	SURG	Sialoadenectomy	0.8800	1.5	1.9
51	No	No	03	SURG	Salivary Gland Procedures Except Sialoadenectomy.	0.8788	1.9	2.7
52	No	No	03	SURG	Cleft Lip & Palate Repair	0.6498	1.3	1.5
53	No	No	03	SURG	Sinus & Mastoid Procedures Age >17	1.3540	2.5	4.0
54	No	No	03	SURG *	Sinus & Mastoid Procedures Age 0–17	0.4944		
55	No	No	03	SURG	Miscellaneous Ear, Nose, Mouth & Throat Procedures.	0.9652	1.9	2.9
56	No	No	03	SURG	Rhinoplasty	0.8936	1.9	2.7
57	No	No	03	SURG	T&A Proc, Except Tonsillectomy &/Or Adenoidectomy Only, Age >17.	0.9975	2.1	3.3
58	No	No	03	SURG *	T&A Proc, Except Tonsillectomy &/Or Adenoidectomy Only, Age 0–17.	0.2807		
59	No	No	03	SURG	Tonsillectomy &/Or Adenoidectomy Only,	0.6812	1.8	2.4
60	No	No	03	SURG *	Age >17. Tonsillectomy &/Or Adenoidectomy Only,	0.2137	1.5	1.5
61	No	No	00	CLIDO	Age 0–17.	1 5007	0.7	
61 62	No No	No No	03 03	SURG SURG *	Myringotomy W Tube Insertion Age >17 Myringotomy W Tube Insertion Age 0–17	1.5987 0.3027	3.7 1.3	6.1 1.3
63	No	No	03	SURG	Other Ear, Nose, Mouth & Throat O.R.	1.3959	3.0	4.5
••					Procedures.		0.0	
64	No	No	03	MED	Ear, Nose, Mouth & Throat Malignancy	1.2498	4.2	6.2
65	No	No	03	MED	Dysequilibrium	0.6159	2.3	2.8
66	No	No	03	MED	Epistaxis	0.6280	2.4	3.1
67	No	No	03	MED	Epiglottitis	0.8242	2.8	3.7
68 69	No No	No No	03 03	MED	Otitis Media & Uri Age &>17 w CC Otitis Media & Uri Age &>17 w/o CC	0.6605 0.4910	3.2 2.5	3.9 3.0
70	No	No	03	MED	Otitis Media & Uri Age 0–17	0.4310	2.1	2.4
71	No	No	03	MED	Laryngotracheitis	0.7758	3.4	4.4
72	No	No	03	MED	Nasal Trauma & Deformity	0.7784	2.6	3.3
73	Yes	No	03	MED	Other Ear, Nose, Mouth & Throat Diagnoses Age >17.	0.8500	3.3	4.3
74	No	No	03	MED *	Other Ear, Nose, Mouth & Throat Diagnoses Age 0–17.	0.3441	2.1	2.1
75	Yes	No	04	SURG	Major Chest Procedures	3.0350	7.4	9.7
76	Yes	No	04	SURG	Other Resp System O.R. Procedures w CC.	2.8386	8.2	10.7
77	Yes	No	04	SURG	Other Resp System O.R. Procedures w/o CC.	1.1886	3.3	4.5
78	Yes	No	04	MED	Pulmonary Embolism	1.2357	5.3	6.2
79	Yes	No	04	MED	Respiratory Infections & Inflammations Age >17 w CC.	1.6268	6.7	8.3
80	Yes	No	04	MED	Respiratory Infections & Inflammations Age >17 w/o CC.	0.8943	4.3	5.3
81	No	No	04	MED *	Respiratory Infections & Inflammations Age 0–17.	1.5579	6.1	6.1
82	Yes	No	04	MED	Respiratory Neoplasms	1.4121	5.1	6.8
83	Yes	No	04	MED	Major Chest Trauma w CC	1.0308	4.2	5.3
84	Yes	No	04	MED	Major Chest Trauma w/o CCc	0.6028	2.6	3.1
85 86	Yes Yes	No No	04 04	MED	Pleural Effusion w CCPleural Effusion w/o CC	1.2459 0.7132	4.7 2.7	6.2 3.5
87	No	No	04	MED	Pulmonary Edema & Respiratory Failure	1.3838	4.9	6.4
88	No	No	04	MED	Chronic Obstructive Pulmonary Disease	0.8878	4.0	4.9
89	Yes	No	04	MED	Simple Pneumonia & Pleurisy Age >17 w	1.0376	4.6	5.6
90	Yes	No	04	MED	CC. Simple Pneumonia & Pleurisy Age >17	0.6148	3.2	3.7
91	No	No	04	MED	w/o CCc. Simple Pneumonia & Pleurisy Age 0-17	0.5598	2.5	3.4
92	Yes	No	04	MED	Interstitial Lung Disease w CC	1.1979	4.8	6.0
93	Yes	No	04	MED	Interstitial Lung Disease w/o CC	0.7437	3.0	3.8
94 95	No No	No No	04 04	MED	Pneumothorax w CCPneumothorax w/o CC	1.1474 0.5871	4.5 2.7	5.9 3.4
96	No	No	04	MED	Bronchitis & Asthma Age >17 w CC	0.3871	3.5	4.3
97	No	No	04	MED	Bronchitis & Asthma Age >17 w 00	0.5429	2.8	3.4
98	No	No	04	MED	Bronchitis & Asthma Age 0–17	0.5870	2.8	3.1
99	No	No	04	MED	Respiratory Signs & Symptoms w CC	0.7155	2.4	3.1
100	No	No	04	MED	Respiratory Signs & Symptoms w/o CC	0.5411	1.7	2.1

TABLE 5.— LIST OF DIAGNOSIS-RELATED GROUPS (DRGS), RELATIVE WEIGHTING FACTORS, AND GEOMETRIC AND ARITHMETIC MEAN LENGTH OF STAY (LOS)—Continued

DRG	FY 07 final rule post- acute care DRG	FY 07 final rule spe- cial pay DRG	MDC	TYPE	DRG title	Weights	Geo- metric mean LOS	Arithmetic mean LOS
101	Yes	No	04	MED	Other Respiratory System Diagnoses w CC.	0.8614	3.2	4.2
102	Yes	No	04	MED	Other Respiratory System Diagnoses w/o CC.	0.5622	2.0	2.5
103	No	No	PRE	SURG	Heart Transplant Or Implant Of Heart Assist System.	18.8653	22.2	35.4
104	Yes	No	05	SURG	Cardiac Valve & Oth Major Cardiothoracic Proc w Card Cath.	8.2903	12.8	15.1
105	Yes	No	05	SURG	Cardiac Valve & Oth Major Cardiothoracic Proc w/o Card Cath.	6.0567	8.4	10.2
106	No	No	05	SURG	Coronary Bypass w Ptca	6.7383	9.3	10.9
107 108	No Yes	No No	05 05	SURG	No Longer Valid Other Cardiothoracic Procedures	0.0000 5.7544	0.0 8.8	0.0 10.9
109	No	No	05	SURG	No Longer Valid	0.0000	0.0	0.0
110	No	No	05	SURG	Major Cardiovascular Procedures w CC	3.8064	5.4	8.1
111	No	No	05	SURG	Major Cardiovascular Procedures w/o	2.4879	2.3	3.1
	110	140	00	00110	CC.	2.1070	2.0	0.1
112	No	No	05	SURG	No Longer Valid	0.0000	0.0	0.0
113	Yes	No	05	SURG	Amputation For Circ System Disorders	3.2646	10.8	13.7
					Except Upper Limb & Toe.	51		
114	Yes	No	05	SURG	Upper Limb & Toe Amputation For Circ System Disorders.	1.7527	6.6	8.7
115	No	No	05	SURG	No Longer Valid	0.0000	0.0	0.0
116	No	No	05	SURG	No Longer Valid	0.0000	0.0	0.0
117	No	No	05	SURG	Cardiac Pacemaker Revision Except De-	1.3713	2.6	4.3
					vice Replacement.			
118	No		05	SURG	Cardiac Pacemaker Device Replacement	1.6687	2.0	3.0
119	No	No	05	SURG	Vein Ligation & Stripping	1.4554	3.3	5.4
120	Yes	No	05	SURG	Other Circulatory System O.R. Proce-	2.4173	6.0	9.2
					dures.			
121	Yes	No	05	MED	Circulatory Disorders w AMI & Major	1.6166	5.2	6.5
122	No	No	05	MED	Comp, Discharged Alive. Circulatory Disorders w AMI w/o Major	0.9621	2.7	3.4
100	No	No	05	MED	Comp, Discharged Alive.	1 4000	0.0	4 7
123	No	No	05 05	MED	Circulatory Disorders w AMI, Expired	1.4902	2.9	4.7
124	No	No	05	MED	Circulatory Disorders Except AMI, w Card Cath & Complex Diag.	1.4099	3.3	4.4
125	No	No	05	MED	Circulatory Disorders Except Ami, w Card Cath w/o Complex Diag.	1.0530	2.1	2.7
126	Yes	No	05	MED	Acute & Subacute Endocarditis	2.6653	9.0	11.2
127	Yes	No	05	MED	Heart Failure & Shock	1.0490	4.1	5.2
128	No	No	05	MED	Deep Vein Thrombophlebitis	0.7499	4.4	5.2
129	No	No	05	MED	Cardiac Arrest, Unexplained	1.0118	1.6	2.5
130	Yes	No	05	MED		0.9712	4.3	5.5
131	Yes	No	05	MED	Peripheral Vascular Disorders w/o CC	0.5755	3.1	3.7
132	No	No	05	MED	Atherosclerosis w CC	0.6318	2.2	2.8
133	No	No	05	MED	Atherosclerosis w/o CC	0.5494	1.8	2.1
134	No	No	05	MED	Hypertension	0.6189	2.5	3.1
135	No	No	05	MED	Cardiac Congenital & Valvular Disorders	0.9405	3.3	4.3
136	No	No	05	MED	Age >17w CC. Cardiac Congenital & Valvular Disorders	0.6580	2.1	2.7
137	No	No	05	MED *	Age >17 w/o CC. Cardiac Congenital & Valvular Disorders	0.8393		
138	No	No	05	MED	Age 0–17. Cardiac Arrhythmia & Conduction Dis-	0.8365	3.0	3.9
					orders w CC.	_		
139	No	No	05	MED	Cardiac Arrhythmia & Conduction Disorders w/o CC.	0.5297	2.0	2.4
140	No	No	05	MED	Angina Pectoris	0.5041	1.9	2.4
141	No	No	05	MED	Syncope & Collapse w CC	0.7633	2.7	3.4
142	No	No	05	MED	Syncope & Collapse w/o CC	0.6012	2.1	2.5
143	No	No	05	MED	Chest Pain	0.5637	1.7	2.1
144	Yes	No	05	MED	Other Circulatory System Diagnoses w	1.3381	4.3	5.9
145	Yes	No	05	MED	CC. Other Circulatory System Diagnoses w/o CC.	0.5834	2.0	2.6
146	Yes	No	06	SURG	Rectal Resection w CC	2.7431	8.4	9.9
	Yes		06			1.5124	4.9	5.6

Table 5.— List of Diagnosis-Related Groups (DRGS), Relative Weighting Factors, and Geometric and Arithmetic Mean Length of Stay (LOS)—Continued

					,			
DRG	FY 07 final rule post- acute care DRG	FY 07 final rule spe- cial pay DRG	MDC	TYPE	DRG title	Weights	Geo- metric mean LOS	Arithmetic mean LOS
148	No	No	06	SURG	No Longer Valid	0.0000	0.0	0.0
149	Yes	No	06	SURG	Major Small & Large Bowel Procedures	1.4357	5.1	5.7
					w/o CC.			
150	Yes	No	06	SURG	Peritoneal Adhesiolysis w CC	2.7871	8.7	10.8
151	Yes	No	06	SURG	Peritoneal Adhesiolysis w/o CC	1.2863	4.0	5.0
152	No	No	06	SURG	Minor Small & Large Bowel Procedures	1.8859	6.5	7.9
	l			0	w CC.			
153	No	No	06	SURG	Minor Small & Large Bowel Procedures	1.0983	4.4	4.9
					w/o CC.			
154	No	No	06	SURG	No Longer Valid	0.0000	0.0	0.0
155	Yes	No	06	SURG	Stomach, Esophageal & Duodenal Pro-	1.2948	3.0	4.0
					cedures Age >17 w/o CC.			
156	No	No	06	SURG *	Stomach, Esophageal & Duodenal Procedures Age 0–17.	0.8644	6.0	6.0
157	Yes	No	06	SURG	Anal & Stomal Procedures w CC	1.3430	4.1	5.8
158	Yes		06	SURG	Anal & Stomal Procedures w/o CC	0.6577	2.1	2.7
159	No	No	06	SURG	Hernia Procedures Except Inguinal &	1.4316	3.7	5.1
	'**	'*•	00	55110	Femoral Age >17 w CC.	1.7510	5.7] 3.1
160	No	No	06	SURG	Hernia Procedures Except Inguinal &	0.8675	2.2	2.7
404				OLIDO	Femoral Age >17 w/o CC.	4 0 400		
161	No	No	06	SURG	Inguinal & Femoral Hernia Procedures	1.2403	3.2	4.5
					Age >17 w CC.			
162	No	No	06	SURG	Inguinal & Femoral Hernia Procedures	0.6916	1.7	2.1
					Age >17 w/o CCc.			
163	No	No	06	SURG *	Hernia Procedures Age 0-17	0.6809	2.1	2.1
164	No		06	SURG	Appendectomy w Complicated Principal	2.1474	6.4	7.7
					Diag w CC.			
165	No	No	06	SURG	Appendectomy w Complicated Principal	1.1843	3.4	4.0
					Diag w/o CC.			
166	No	No	06	SURG	Appendectomy w/o Complicated Prin-	1.4035	3.2	4.3
					cipal Diag w CC.		_	
167	No	No	06	SURG	Appendectomy w/o Complicated Prin-	0.9001	1.8	2.1
107	110	110	00	00110	cipal Diag w/o CC.	0.0001	1.0	
168	No	No	03	SURG	Mouth Procedures w CC	1.2827	3.3	4.8
169	No	No	03	SURG	Mouth Procedures w/o CC	0.7679	1.8	2.3
				SURG				
170	Yes	No	06	SUNG	Other Digestive System O.R. Procedures w CC.	2.9921	7.8	10.9
171	Yes	No	06	SURG	Other Digestive System O.R. Procedures w/o CC.	1.2242	3.1	4.2
172	Yes	No	06	MED	Digestive Malignancy w CC	1.4293	5.1	6.9
173	Yes		06	MED	Digestive Malignancy w/o CC	0.7645	2.7	3.6
174	No	No	06	MED		1.0296	3.8	4.7
175	No		06	MED	G.I. Hemorrhage w/o CC	0.5808	2.4	2.9
176	Yes	No	06	MED	Complicated Peptic Ulcer	1.1275	4.0	5.1
177	No	No	06	MED	Uncomplicated Peptic Ulcer w CC	0.9333	3.6	4.4
178	No	No	06	MED	Uncomplicated Peptic Ulcer w/o CCc	0.6900	2.6	3.1
179	No	No	06	MED	Inflammatory Bowel Disease	1.0804	4.5	5.8
180	Yes	No	06	MED	G.I. Obstruction w CC	0.9930	4.1	5.3
181	Yes	No	06	MED	G.I. Obstruction w/o CC	0.5784	2.8	3.3
182	No	No	06	MED	Esophagitis, Gastroent & Misc Digest	0.7853	3.2	4.1
					Disorders Age >17 w CC.			
183	No	No	06	MED	Esophagitis, Gastroent & Misc Digest Disorders Age >17 w/o CC.	0.5841	2.3	2.8
184	No	No	06	MED	Esophagitis, Gastroent & Misc Digest Disorders Age 0–17.	0.6192	2.5	3.7
185	No	No	03	MED	Dental & Oral Dis Except Extractions & Restorations, Age >17.	0.8886	3.3	4.5
186	No	No	03	MED *		0.3294	2.9	2.9
187	No	No	03	MED	Dental Extractions & Restorations	0.8421	3.1	4.2
188	Yes	No	06	MED	Other Digestive System Diagnoses Age	1.0931	4.0	5.4
100		1	a =		>17w CC.	0		
189	Yes	No	06	MED	Other Digestive System Diagnoses Age	0.5916	2.4	3.0
	l	1	_		>17 w/o CC.		_	
190	No	No	06	MED	Other Digestive System Diagnoses Age	0.6351	2.3	3.0
101	Voc	l No	07	SLIBC	0-17.	2 0004	0.0	10.5
191	Yes	No	07	SURG	Pancreas, Liver & Shunt Procedures w CC.	3.9384	8.8	12.5

Table 5.— List of Diagnosis-Related Groups (DRGS), Relative Weighting Factors, and Geometric and Arithmetic Mean Length of Stay (LOS)—Continued

DRG	FY 07 final rule post- acute care DRG	FY 07 final rule spe- cial pay DRG	MDC	TYPE	DRG title	Weights	Geo- metric mean LOS	Arithmetic mean LOS
192	Yes	No	07	SURG	Pancreas, Liver & Shunt Procedures w/o CC.	1.6740	4.2	5.5
193	No	No	07	SURG	Biliary Tract Proc Except Only Cholecyst w or w/o C.D.E. w CC.	3.3831	10.1	12.6
194	No	No	07	SURG	Biliary Tract Proc Except Only Cholecyst w or w/o C.D.E. w/o CC.	1.5879	5.4	6.3
195	No	No	07	SURG	Cholecystectomy w C.D.E. w CC	3.0501	8.8	10.6
196		No	07	SURG	Cholecystectomy w C.D.E. w/o CC	1.5412	4.5	5.3
197	Yes	No	07	SURG	Cholecystectomy Except By Laparoscope w/o C.D.E. w CC.	2.5518	7.4	9.1
198	Yes	No	07	SURG	Cholecystectomy Except By Laparoscope w/o C.D.E. w/o CC.	1.1781	3.7	4.3
199	No	No	07	SURG	Hepatobiliary Diagnostic Procedure For Malignancy.	2.2350	6.4	9.0
200	No	No	07	SURG	Hepatobiliary Diagnostic Procedure For Non-Malignancy.	2.8402	6.5	10.4
201	No	No	07	SURG	Other Hepatobiliary or Pancreas O.R. Procedures.	3.7905	10.0	13.6
202	No	No	07	MED MED	Cirrhosis & Alcoholic Hepatitis	1.3396	4.6	6.2
203	No	No	07 07	MED	Malignancy of Hepatobiliary System or Pancreas. Disorders of Pancreas Except Malig-	1.3672 1.0989	4.8	6.5 5.4
204	Yes	No	07	MED	nancy. Disorders of Liver Except Malig, Cirr, Alc	1.2013	4.1	5.4
		No			Hepa w CC.		4.4	
206	Yes	No	07	MED	Disorders of Liver Except Malig,Cirr,Alc Hepa w/o CC.	0.7287	3.0	3.8
207 208	No No	No	07 07	MED	Disorders of The Biliary Tract w CC Disorders of The Biliary Tract w/o CC	1.1839 0.6890	4.1 2.4	5.3 3.0
209		No No	07	SURG	No Longer Valid	0.0000	0.0	0.0
210		Yes	08	SURG	Hip & Femur Procedures Except Major	1.9022	5.9	6.7
210	163	163	00	30110	Joint Age >17 w CC.	1.9022	5.9	0.7
211	Yes	Yes	08	SURG	Hip & Femur Procedures Except Major Joint Age >17 w/o CC.	1.2939	4.3	4.6
212	No	No	80	SURG	Hip & Femur Procedures Except Major Joint Age 0–17.	0.9164	2.2	2.5
213	Yes	No	80	SURG	Amputation for Musculoskeletal System & Conn Tissue Disorders.	2.1174	7.1	9.5
214	No	No	08	SURG	No Longer Valid	0.0000	0.0	0.0
215	No	No	08	SURG	No Longer Valid	0.0000	0.0	0.0
216	Yes	No	08	SURG	Biopsies of Musculoskeletal System &	1.8744	3.1	5.4
217	Yes	No	08	SURG	Connective Tissue. Wnd Debrid & Skn Grft Except Hand,for	3.0499	9.0	12.9
218	Yes	No	08	SURG	Muscskelet & Conn Tiss Dis. Lower Extrem & Humer Proc Except	1.7053	4.4	5.5
219	Yes	No	08	SURG	Hip,Foot,Femur Age >17 w CC. Lower Extrem & Humer Proc Except	1.1033	2.7	3.2
				SURG *	Hip,Foot,Femur Age >17 w/o CC. Lower Extrem & Humer Proc Except			
220	No	No	08		Hip,Foot,Femur Age 0-17.	0.5988	5.3	5.3
221	No	No	08	SURG	No Longer Valid	0.0000	0.0	0.0
222	No No	No	08	SURG	No Longer Valid Proc. or Other	0.0000	0.0	0.0
223	NO	No	08	SURG	Major Shoulder/Elbow Proc, or Other Upper Extremity Proc w CC.	1.1726	2.4	3.3
224	No	No	08	SURG	Shoulder, Elbow or Forearm Proc, Exc Major Joint Proc, w/o CC.	0.8574	1.6	1.9
225	Yes	No	08	SURG	Foot Procedures	1.2775	3.8	5.4
226	Yes	No	08	SURG	Soft Tissue Procedures w CCc	1.6340	4.6	6.5
227	Yes	No	08	SURG	Soft Tissue Procedures w/o CC	0.8618	2.1	2.6
228	No	No	08	SURG	Major Thumb or Joint Proc,or Oth Hand	1.1528	2.9	4.2
229	No	No	08	SURG	or Wrist Proc w CC. Hand or Wrist Proc, Except Major Joint	0.7208	2.0	2.5
				SURG	Proc, w/o CC.	1.3385		5.4
230	No	No	08	SURG	Local Excision & Removal of Int Fix Devices of Hip & Femur.	0.0000	3.6	
	No No		08		No Longer Valid Arthroscopy	0.0000	0.0 1.9	0.0 2.7
_0			00	. 55114		0.0702	1.3	. 2.7

Table 5.— List of Diagnosis-Related Groups (DRGS), Relative Weighting Factors, and Geometric and Arithmetic Mean Length of Stay (LOS)—Continued

DRG	FY 07 final rule post- acute care DRG	FY 07 final rule spe- cial pay DRG	MDC	TYPE	DRG title	Weights	Geo- metric mean LOS	Arithmetic mean LOS
233	Yes	Yes	08	SURG	Other Musculoskelet Sys & Conn Tiss O.R. Proc w CC.	1.9033	4.3	6.4
234	Yes	Yes	08	SURG	Other Musculoskelet Sys & Conn Tiss O.R. Proc w/o CC.	1.2565	1.9	2.7
235	Yes	No	08	MED	Fractures of Femur	0.8226	3.8	4.8
236	Yes	No	08	MED	Fractures of Hip & Pelvis Sprains, Strains, & Dislocations of Hip,	0.7688	3.8	4.5
237	No	No	08	MED	Pelvis & Thigh.	0.6573	3.0	3.8
238	Yes	No	08	MED	Osteomyelitis	1.4100	6.5	8.3
239	Yes	No	08	MED	Pathological Fractures & Musculoskeletal	1.1203	4.9	6.2
240	Yes	No	08	MED	& Conn Tiss Malignancy. Connective Tissue Disorders w CC	1.3807	4.9	6.5
241	Yes	No	08	MED	Connective Tissue Disorders w/o CC	0.6637	3.0	3.7
242	No	No	08	MED	Septic Arthritis	1.1045	5.1	6.5
243	No	No	08	MED	Medical Back Problems	0.7970	3.6	4.5
244	Yes	No	08	MED	Bone Diseases & Specific Arthropathies	0.7394	3.6	4.5
245	Yes	No	08	MED	w CC. Bone Diseases & Specific Arthropathies w/o CC.	0.4943	2.5	3.1
246	No	No	08	MED	Non-Specific Arthropathies	0.6311	2.8	3.6
247	No	No	08	MED	Signs & Symptoms of Musculoskeletal System & Conn Tissue.	0.5934	2.6	3.3
248	No	No	08	MED	Tendonitis, Myositis & Bursitis	0.8876	3.8	4.8
249 250	No	No	08	MED	Aftercare, Musculoskeletal System & Connective Tissue. Fx, Sprn, Strn & Disl of Forearm, Hand,	0.7506 0.7230	2.8 3.2	4.0 3.9
251	Yes	No	08	MED	Foot Age >17 w CC. Fx, Sprn, Strn & Disl of Forearm, Hand,	0.7230	2.3	2.8
252	No	No	08	MED *	Foot Age >17 w/o CC. Fx, Sprn, Strn & Disl of Forearm, Hand,	0.2600		
253	Yes	No	08	MED	Foot Age 0–17.	0.8180	3.8	4.6
254	Yes	No	08	MED		0.4978	2.6	3.1
255	No	No	08	MED *		0.3028		
256	Yes	No	08	MED	Ex Foot Age 0–17. Other Musculoskeletal System & Connective Tissue Diagnoses.	0.8714	3.9	5.0
257	No	No	09	SURG	Total Mastectomy For Malignancy w CC	0.9123	2.0	2.6
258	No	No	09	SURG	Total Mastectomy For Malignancy w/o	0.7130	1.5	1.7
259	No	No	09	SURG	CC. Subtotal Mastectomy For Malignancy w	1.0060	1.8	2.8
260	No	No	09	SURG	CC. Subtotal Mastectomy For Malignancy w/o	0.6819	1.2	1.4
261	No	No	09	SURG	CC. Breast Proc for Non-Malignancy Except	0.9535	1.6	2.2
					Biopsy & Local Excision.			
262	No	No	09	SURG	Breast Biopsy & Local Excision for Non- Malignancy. Skin Graft &/or Debrid for Skn Ulcer or	0.9621 2.1230	3.3 8.3	4.7
					Cellulitis w CC.			
264	Yes	No	09	SURG	Skin Graft &/or Debrid for Skn Ulcer or Cellulitis w/o CC.	1.0980	4.9	6.4
265	Yes	No	09	SURG	Skin Graft &/or Debrid Except for Skin Ulcer or Cellulitis w CC.	1.6951	4.2	6.7
266	Yes	No	09	SURG	Skin Graft &/or Debrid Except for Skin Ulcer or Cellulitis w/o CC.	0.9136	2.3	3.0
267 268	No No	No No	09 09	SURG	Perianal & Pilonidal Procedures	0.9444 1.2219	2.9 2.4	4.2 3.6
269	Yes	No	09	SURG	Plastic Procedures. Other Skin, Subcut Tiss & Breast Proc w CC.	1.7920	6.0	8.3
270	Yes	No	09	SURG	Other Skin, Subcut Tiss & Breast Proc w/o CCc.	0.8209	2.7	3.6
271	Yes	No	09	MED	Skin Ulcers	1.0763	5.6	7.1
272	Yes	No	09	MED	Major Skin Disorders w CC	1.0356	4.5	5.9
273	Yes	No	09	MED	Major Skin Disorders w/o CC	0.5853	2.9	3.7

Table 5.— List of Diagnosis-Related Groups (DRGS), Relative Weighting Factors, and Geometric and Arithmetic Mean Length of Stay (LOS)—Continued

DRG	FY 07 final rule post- acute care DRG	FY 07 final rule spe- cial pay DRG	MDC	TYPE	DRG title	Weights	Geo- metric mean LOS	Arithmetic mean LOS
274	No	No	09	MED	Malignant Breast Disorders w CC	1.1315	4.5	6.2
275	No	No	09	MED	Malignant Breast Disorders w/o CC	0.5954	2.4	3.3
276	No	No	09	MED	Non-Maligant Breast Disorders	0.7430	3.6	4.6
277	Yes	No	09		Cellulitis Age >17 w CC		4.5	5.5
				MED	Cellulis Age >17 w CC	0.8958		
278	Yes	No	09	MED	Cellulitis Age >17 w/o CC	0.5649	3.4	4.0
279	No	No	09	MED *	Cellulitis Age 0–17	0.7922	4.2	4.2
280	Yes	No	09	MED	Trauma to the Skin, Subcut Tiss & Breast Age >17 w CC.	0.7716	3.2	4.0
281	Yes	No	09	MED	Trauma to the Skin, Subcut Tiss & Breast Age >17 w/o CC.	0.5207	2.3	2.8
282	No	No	09	MED *	Trauma to the Skin, Subcut Tiss & Breast Age 0–17.	0.2633		
283	Yes	No	09	MED	Minor Skin Disorders w CCc	0.7605	3.4	4.6
284	Yes	No	09	MED	Minor Skin Disorders w/o CC	0.4584	2.3	2.9
285	Yes	No	10	SURG	Amputat of Lower Limb For Endo-	2.1774	8.1	10.3
					crine, Nutrit, & Metabol Disorders.			
286	No	No	10	SURG	Adrenal & Pituitary Procedures	1.9098	3.8	5.2
287	Yes	No	10	SURG	Skin Grafts & Wound Debrid for Endoc, Nutrit & Metab Disorders.	1.9507	7.6	9.9
288	No	No	10	SURG	O.R. Procedures for Obesity	1.9130	2.9	3.7
289	No	No	10	SURG	Parathyroid Procedures	0.9245	1.6	2.4
290	No	No	10	SURG	Thyroid Procedures	0.8806	1.5	2.0
291	No	No	10	SURG	Thyroglossal Procedures	0.5849	1.3	1.5
292	Yes	No	10	SURG	Other Endocrine, Nutrit & Metab O.R.	2.6985	7.3	10.2
					Proc w CC.			
293	Yes	No	10	SURG	Other Endocrine, Nutrit & Metab O.R. Proc w/o CC.	1.3912	3.5	4.8
294	Yes	No	10	MED	Diabetes Age >35	0.7869	3.3	4.3
295	No	No	10	MED	Diabetes Age 0–35	0.7655	2.8	3.7
296	Yes	No	10	MED	Nutritional & Misc Metabolic Disorders Age >17 w CC.	0.8334	3.6	4.7
297	Yes	No	10	MED	Nutritional & Misc Metabolic Disorders Age >17 w/o CC.	0.5090	2.5	3.0
298	No	No	10	MED	Nutritional & Misc Metabolic Disorders Age 0–17.	0.5753	2.5	3.5
299	No	No	10	MED	Inborn Errors of Metabolism	1.0490	3.7	5.1
300	Yes	No	10	MED	Endocrine Disorders w CC	1.1193	4.6	5.9
301	Yes	No	10	MED	Endocrine Disorders w/o CC	0.6209	2.7	3.4
302	No	No	11	SURG	Kidney Transplant	3.1152	6.7	7.9
303	No	No	11	SURG	Kidney And Ureter Procedures for Neoplasm.	1.9776	5.0	6.3
304	Yes	No	11	SURG	Kidney And Ureter Procedures for Non-Neoplasm W CC.	2.3473	5.8	8.3
305	Yes	No	11	SURG	Kidney And Ureter Procedures for Non-Neoplasm W/o CC.	1.1520	2.5	3.0
306	No	No	11	SURG	Prostatectomy w CC	1.3390	3.6	5.6
307	No	No	11	SURG	Prostatectomy w/o CC	0.6411	1.7	2.0
308	No	No	11	SURG	Minor Bladder Procedures w CC	1.4594	3.3	5.3
309	No	No	11	SURG	Minor Bladder Procedures w/o CC	0.9022	1.4	1.7
310	No	No	11	SURG	Transurethral Procedures w CC	1.2131	3.1	4.5
311	No	No	11	SURG	Transurethral Procedures w/o CC	0.6552	1.5	1.9
312	No	No	11	SURG	Urethral Procedures, Age >17 w CC	1.1767	3.3	4.9
313	No	No	11	SURG	Urethral Procedures, Age >17 w/o CC	0.7465	1.8	2.4
314	No	No	11	SURG *	Urethral Procedures, Age 0-17	0.5076	2.3	2.3
315	No	No	11	SURG	Other Kidney & Urinary Tract O.R. Pro-	2.1173	3.7	6.8
316	Yes	No	11	MED	cedures. Renal Failure	1.2602	4.8	6.3
317	No	No	11	MED	Admit for Renal Dialysis	0.8067	2.4	3.5
318	No	No	11	MED	Kidney & Urinary Tract Neoplasms w CC	1.2376	4.4	6.0
319	No	No	11	MED	Kidney & Urinary Tract Neoplasms w/o	0.6084	1.9	2.6
320	Yes	No	11	MED	CC. Kidney & Urinary Tract Infections Age >17 w CC.	0.8769	4.1	5.1
321	Yes	No	11	MED	Kidney & Urinary Tract Infections Age >17 w/o CC.	0.5793	3.0	3.6
322	No	No	11	MED	Kidney & Urinary Tract Infections Age 0–17.	0.6160	3.1	3.6

Table 5.— List of Diagnosis-Related Groups (DRGS), Relative Weighting Factors, and Geometric and Arithmetic Mean Length of Stay (LOS)—Continued

DRG	FY 07 final rule post- acute care DRG	FY 07 final rule spe- cial pay DRG	MDC	TYPE	DRG title	Weights	Geo- metric mean LOS	Arithmetic mean LOS
323	No	No	11	MED	Urinary Stones w CC, &/or ESW Lithotripsy.	0.8259	2.3	3.1
324 325	No No	No No	11 11	MED MED	Urinary Stones w/o CC Kidney & Urinary Tract Signs & Symptoms Age >17 w CC.	0.5049 0.6904	1.6 2.9	1.8 3.7
326	No	No	11	MED	Kidney & Urinary Tract Signs & Symptoms Age >17 w/o CCc.	0.4544	2.1	2.6
327	No	No	11	MED	Kidney & Urinary Tract Signs & Symptoms Age 0–17.	0.2109	1.8	2.0
328 329	No No	No No	11 11	MED	Urethral Stricture Age >17 w CCUrethral Stricture Age >17 w/o CC	0.7294 0.5198	2.6 1.4	3.4 1.7
330 331	No Yes	No No	11 11	MED * MED	Urethral Stricture Age 0–17 Other Kidney & Urinary Tract Diagnoses	0.3268 1.0960	4.2	5.5
					Age >17 w CC.			
332	Yes	No	11	MED	Other Kidney & Urinary Tract Diagnoses Age >17 w/o CC.	0.6255	2.4	3.1
333	No	No	11	MED	Other Kidney & Urinary Tract Diagnoses Age 0–17.	1.0170	3.7	5.4
334 335	No No	No No	12 12	SURG	Major Male Pelvic Procedures w CC Major Male Pelvic Procedures w/o CC	1.4202 1.1174	3.3 2.2	4.0 2.5
336	No	No	12	SURG	Transurethral Prostatectomy w CC	0.8576	2.4	3.2
337	No		12	SURG	Transurethral Prostatectomy w/o CC	0.5877	1.6	1.8
338	No	No	12	SURG	Testes Procedures, For Malignancy	1.3797	3.8	5.8
339	No	No	12	SURG	Testes Procedures, Non-Malignancy Age	1.2553	3.3	5.2
340	No	No	12	SURG *	>17. Testes Procedures, Non-Malignancy Age 0–17.	0.2904		
341	No	No	12	SURG	Penis Procedures	1.3419	1.9	3.2
342	No	No	12	SURG	Circumcision Age >17	0.8103	2.3	3.0
343	No	No	12	SURG *	Circumcision Age 0–17	0.1579 1.2124	1.7	2.7
344	No	No	12	30nG	Other Male Reproductive System O.R. Procedures for Malignancy.	1.2124	1.7	2.7
345	No	No	12	SURG	Other Male Reproductive System O.R. Proc Except for Malignancy.	1.2987	3.4	5.4
346	No	No	12	MED	Malignancy, Male Reproductive System, w CC.	1.0716	4.5	5.9
347	No	No	12	MED	Malignancy, Male Reproductive System, w/o CC.	0.5385	2.0	2.7
348	No	No	12	MED	Benign Prostatic Hypertrophy w CC	0.7429	3.1	4.0
349	No	No	12	MED	Benign Prostatic Hypertrophy w/o CC	0.4615	2.1	2.6
350	No	No	12	MED	Inflammation of the Male Reproductive System.	0.7748	3.6	4.5
351	No	No	12	MED *	Sterilization, Male	0.2422		
352	No	No	12	MED	Other Male Reproductive System Diag-	0.7819	3.0	4.2
					noses.			
353	No	No	13	SURG	Pelvic Evisceration, Radical Hysterectomy & Radical Vulvectomy.	1.8192	4.5	6.0
354	No	No	13	SURG	Uterine, Adnexa Proc for Non-Ovarian/ Adnexal Malig w CC.	1.4966	4.5	5.6
355	No	No	13	SURG	Uterine,Adnexa Proc for Non-Ovarian/ Adnexal Malig w/o CC.	0.9074	2.8	3.0
356	No	No	13	SURG	Female Reproductive System Reconstructive Procedures.	0.7571	1.6	1.9
357	No	No	13	SURG	Uterine & Adnexa Proc for Ovarian Or Adnexal Malignancy.	2.2250	6.4	8.0
358	No	No	13	SURG	Uterine & Adnexa Proc for Non-Malignancy w CC.	1.1418	3.1	3.9
359	No	No	13	SURG	Uterine & Adnexa Proc for Non-Malignancy w/o CC.	0.8053	2.1	2.3
360	No	No	13	SURG	Vagina, Cervix & Vulva Procedures	0.8811	2.0	2.5
361	No	No	13	SURG	Laparoscopy & Incisional Tubal Interruption.	1.0626	2.1	2.9
362	No	No	13	SURG *	Endoscopic Tubal Interruption	0.3096	1.4	1.4
363	No	No	13	SURG	D&C, Conization & Radio-Implant, for Malignancy.	1.1028	2.9	4.2
364	No	No	13	SURG	D&C, Conization Except for Malignancy	0.8936	2.7	3.8
365	No	No	13	SURG	Other Female Reproductive System O.R.	2.0508	5.3	7.9
	I	I		I	Procedures.		l	

Table 5.— List of Diagnosis-Related Groups (DRGS), Relative Weighting Factors, and Geometric and Arithmetic Mean Length of Stay (LOS)—Continued

DRG	FY 07 final rule post- acute care DRG	FY 07 final rule spe- cial pay DRG	MDC	TYPE	DRG title	Weights	Geo- metric mean LOS	Arithmetic mean LOS
366	No	No	13	MED	Malignancy, Female Reproductive System w CC.	1.2466	4.6	6.3
367	No	No	13	MED	Malignancy, Female Reproductive System w/o CC.	0.5865	2.3	3.0
368 369	No No	No No	13 13	MED	Infections, Female Reproductive System Menstrual & Other Female Reproductive System Disorders.	1.1697 0.6598	5.0 2.5	6.4 3.3
370	No	No	14	SURG	Cesarean Section w CC	0.9002	4.1	5.0
371	No	No No	14 14	SURG MED	Cesarean Section w/o CCVaginal Delivery w Complicating Diag-	0.6565	3.1 2.6	3.4
372	No	NO	14	IVIED	noses.	0.5660	2.0	3.4
373	No	No	14	MED	Vaginal Delivery w/o Complicating Diagnoses.	0.3911	2.1	2.2
374	No	No	14	SURG	Vaginal Delivery w Sterilization &/or D&C	0.6505	2.4	3.0
375	No	No	14	SURG	Vaginal Delivery w O.R. Proc Except Steril &/or D&C.	1.1252	4.1	6.5
376	No	No	14	MED	Postpartum & Post Abortion Diagnoses w/o O.R. Procedure.	0.6150	2.5	3.3
377	No	No	14	SURG	Postpartum & Post Abortion Diagnoses w O.R. Procedure.	1.2457	3.2	4.5
378 379	No No	No No	14 14	MED MED	Ectopic Pregnancy Threatened Abortion	0.7163 0.4138	1.8 2.2	2.2 3.3
380	No	No	14	MED	Abortion w/o D&C	0.4130	1.5	2.0
381	No	No	14	SURG	Abortion w D&C, Aspiration Curettage or Hysterotomy.	0.7070	1.7	2.5
382	No	No	14	MED	False Labor	0.1817	1.3	1.5
383	No	No	14	MED	Other Antepartum Diagnoses w Medical Complications.	0.5103	2.6	3.7
384	No	No	14	MED	Other Antepartum Diagnoses w/o Medical Complications.	0.3790	1.7	2.6
385	No	No	15	MED *	Neonates, Died or Transferred to Another Acute Care Facility.	1.4107		
386	No	No	15	MED *	Extreme Immaturity or Respiratory Distress Syndrome, Neonate.	4.6519		
387 388	No No	No No	15 15	MED * MED *	Prematurity w Major Problems Prematurity w/o Major Problems	3.1771 1.9170		
389	No	No	15	MED *	Full Term Neonate w Major Problems	3.2636	4.7	4.7
390	No	No	15	MED *	Neonate w Other Significant Problems	1.1551	T.7	
391	No	No	15	MED *	Normal Newborn	0.1564		
392	No	No	16	SURG	Splenectomy Age >17	3.0202	6.3	8.9
393	No	No	16	SURG *	Splenectomy Age 0–17	1.3819		
394	No	No	16	SURG	Other O.R. Procedures of the Blood and Blood Forming Organs.	1.9299	4.5	7.3
	Yes		16	MED	Red Blood Cell Disorders Age >17 Red Blood Cell Disorders Age 0–17	0.7992	3.1	4.1
396 397	No No	No No	16 16	MED	Coagulation Disorders	0.6654 1.3267	2.6 3.7	3.1 5.1
398	Yes	No	16	MED	Reticuloendothelial & Immunity Disorders w CC.	1.1269	4.1	5.5
399	Yes	No	16	MED	Reticuloendothelial & Immunity Disorders w/o CC.	0.6720	2.6	3.2
400	No	No	17	SURG	No Longer Valid	0.0000	0.0	0.0
401	Yes	No	17	SURG	Lymphoma & Non-Acute Leukemia w Other O.R. Proc w CC.	2.9652	8.1	11.3
402	Yes	No	17	SURG	Lymphoma & Non-Acute Leukemia w Other O.R. Proc w/o CC.	1.1612	2.8	3.9
403	Yes	No	17	MED	Lymphoma & Non-Acute Leukemia w CC	1.8625	5.7	8.0
404	Yes	No	17	MED	Lymphoma & Non-Acute Leukemia w/o CC.	0.9224	3.0	4.1
405	No	No	17	MED *	Acute Leukemia w/o Major O.R. Procedure Age 0–17.	1.9592		
406	No	No	17	SURG	Myeloprolif Disord or Poorly Diff Neopl w Maj O.R.Proc w CC.	2.7201	6.7	9.4
407	No	No	17	SURG	Myeloprolif Disord or Poorly Diff Neopl w Maj O.R.Proc w/o CC.	1.1545	2.8	3.5
408	No	No	17	SURG	Myeloprolif Disord or Poorly Diff Neopl w Other O.R.Proc.	2.1651	5.1	8.2
409	No	NO	17	MED	Radiotherapy	1.2948	4.5	6.0

Table 5.— List of Diagnosis-Related Groups (DRGS), Relative Weighting Factors, and Geometric and Arithmetic Mean Length of Stay (LOS)—Continued

DRG	FY 07 final rule post- acute care DRG	FY 07 final rule spe- cial pay DRG	MDC	TYPE	DRG title	Weights	Geo- metric mean LOS	Arithmetic mean LOS
410	No	No	17	MED	Chemotherapy w/o Acute Leukemia as Secondary Diagnosis.	1.0908	2.9	3.8
411	No	No	17	MED *	History of Malignancy w/o Endoscopy	0.3681	4.7	4.7
412	No	No	17	MED *	History of Malignancy w Endoscopy	0.8559	2.0	2.0
413	No	No	17	MED	Other Myeloprolif Dis or Poorly Diff	1.3347	5.0	6.7
414	No	No	17	MED	Neopl Diag w CC. Other Myeloprolif Dis or Poorly Diff Neopl Diag w/o CC.	0.7678	3.0	4.1
415	No	No	18	SURG	No Longer Valid	0.0000	0.0	0.0
416	No	No	18	MED	No Longer Valid	0.0000	0.0	0.0
417	No	No	18	MED	Septicemia Age 0–17	1.8841	5.2	6.5
418	Yes	No	18	MED	Postoperative & Post-Traumatic Infections.	1.0993	4.7	6.1
419 420	No No	No	18 18	MED	Fever of Unknown Origin Age >17 w CC Fever of Unknown Origin Age >17 w/o CC.	0.8614 0.5957	3.4 2.6	4.4 3.2
421	No	No	18	MED	Viral Illness Age >17	0.7747	3.1	4.0
422	No	No	18	MED	Viral Illness & Fever of Unknown Origin Age 0–17.	0.6176	2.6	3.7
423	Yes	No	18	MED	Other Infectious & Parasitic Diseases Diagnoses.	1.8379	6.0	8.2
424	No	No	19	SURG	O.R. Procedure w Principal Diagnoses of Mental Illness.	2.2487	7.4	11.5
425	No	No	19	MED	Acute Adjustment Reaction & Psychosocial Dysfunction.	0.6299	2.6	3.5
426	No	No	19	MED	Depressive Neuroses	0.5122	3.1	4.3
427	No	No	19	MED	Neuroses Except Depressive	0.5580	3.1	4.6
428	No	No	19	MED	Disorders of Personality & Impulse Control.	0.7797	4.5	7.3
429	Yes	No	19	MED	Organic Disturbances & Mental Retardation.	0.8388	4.3	5.6
430	Yes	No	19	MED	Psychoses	0.7261	5.8	7.9
431	No	No	19	MED	Childhood Mental Disorders	0.6729	4.2	6.7
432 433	No	No	19 20	MED	Other Mental Disorder Diagnoses	0.6611 0.3284	2.7 2.1	4.0 2.8
434	No	No	20	MED	No Longer Valid	0.0000	0.0	0.0
435	No	No	20	MED	No Longer Valid	0.0000	0.0	0.0
436	No	No	20	MED	No Longer Valid	0.0000	0.0	0.0
437	No	No	20	MED	No Longer Valid	0.0000	0.0	0.0
438	No	No	20	MED	No Longer Valid	0.0000	0.0	0.0
439	No	No	21	SURG	Skin Grafts For Injuries	1.9071	5.4	8.3
440	Yes	No	21	SURG	Wound Debridements For Injuries	1.9291	5.6	8.5
441	No	No	21	SURG	Hand Procedures For Injuries	0.9920	2.3	3.4
442	Yes	No	21	SURG	Other O.R. Procedures For Injuries w CC	2.5533	6.0	8.9
443	Yes	No	21	SURG	Other O.R. Procedures For Injuries w/o CC.	1.0498	2.7	3.5
444	Yes	No	21	MED	Traumatic Injury Age >17 w CC	0.7795	3.2	4.1
445	Yes	No	21	MED *	Traumatic Injury Age >17 w/o CC	0.5301	2.3	2.8
446	No	No	21	MED *	Traumatic Injury Age 0–17	0.3037		
447	No	No	21	MED *	Allergic Reactions Age >17	0.5738	1.9	2.6
448	No	No	21	MED *	Allergic Reactions Age 0–17	0.1000		0.7
449	No	No	21	MED	Poisoning & Toxic Effects of Drugs Age >17 w CC.	0.8732	2.7	3.7
450 451	No	No	21 21	MED *	Poisoning & Toxic Effects of Drugs Age >17 w/o CC. Poisoning & Toxic Effects of Drugs Age	0.4420 0.2697	1.6 2.1	2.0
452	No	No	21	MED	0–17. Complications of Treatment w CC	1.0686	3.5	5.0
453	No	No	21	MED	Complications of Treatment w CC	0.5297	2.2	2.8
454	No	No	21	MED	Other Injury, Poisoning & Toxic Effect Diag w CC.	0.8616	3.0	4.1
455	No	No	21	MED	Other Injury, Poisoning & Toxic Effect Diag w/o CC.	0.4864	1.8	2.3
456	No	No	22	MED	No Longer Valid	0.0000	0.0	0.0
457	No	No	22	MED	No Longer Valid	0.0000	0.0	0.0
458	No	No	22	SURG	No Longer Valid	0.0000	0.0	0.0
459	No	∣ No	22	SURG	No Longer Valid	0.0000	0.0	0.0

TABLE 5.— LIST OF DIAGNOSIS-RELATED GROUPS (DRGS), RELATIVE WEIGHTING FACTORS, AND GEOMETRIC AND ARITHMETIC MEAN LENGTH OF STAY (LOS)—Continued

DRG	FY 07 final rule post- acute care DRG	FY 07 final rule spe- cial pay DRG	MDC	TYPE	DRG title	Weights	Geo- metric mean LOS	Arithmetic mean LOS
460	No	No	22	MED	No Longer Valid	0.0000	0.0	0.0
461	No	No	23	SURG	O.R. Proc w Diagnoses of Other Contact w Health Services.	1.5707	3.3	5.6
462	Yes	No	23	MED	Rehabilitation	0.9460	8.4	10.0
463	Yes	No	23	MED	Signs & Symptoms w CC	0.7158	3.1	3.9
464	Yes		23	MED	Signs & Symptoms w/o CC	0.5271	2.4	2.9
465	No	No	23	MED	Aftercare w History Of Malignancy As Secondary Diagnosis.	0.5954	2.4	3.5
466	No	No	23	MED	Aftercare w/o History of Malignancy as Secondary Diagnosis.	0.7634	2.7	4.9
467	No	No	23	MED	Other Factors Influencing Health Status	0.4759	1.9	2.7
468	Yes	No		SURG	Extensive O.R. Procedure Unrelated to Principal Diagnosis.	3.9925	9.6	13.0
469	No	No		**	Principal Diagnosis Invalid as Discharge Diagnosis.	0.0000	0.0	0.0
470	No	No		**	Ungroupable	0.0000	0.0	0.0
471	Yes	Yes	08	SURG	Bilateral or Multiple Major Joint Procs of Lower Extremity.	3.0424	4.1	4.6
472	No	No	22	SURG	No Longer Valid	0.0000	0.0	0.0
473	No	No	17	MED	Acute Leukemia w/o Major O.R. Procedure Age >17.	3.3623	7.3	12.7
474	No	No	04	SURG	No Longer Valid	0.0000	0.0	0.0
475	No	No	04	MED	No Longer Valid	0.0000	0.0	0.0
476	No	No		SURG	Prostatic O.R. Procedure Unrelated to Principal Diagnosis.	2.1654	6.9	9.9
477	Yes	No		SURG	Non-Extensive O.R. Procedure Unrelated to Principal Diagnosis.	2.0910	5.9	8.7
478	No	No	05	SURG	No Longer Valid	0.0000	0.0	0.0
479 480	No No	No No	05 PRE	SURG	Other Vascular Procedures w/o CC Liver Transplant &/or Intestinal Trans-	1.4401 9.4096	1.9 14.0	2.6 19.1
					plant.			
481 482	No Yes	No No	PRE PRE	SURG	Bone Marrow Transplant Tracheostomy for Face, Mouth & Neck	6.3929 3.3490	18.7 9.4	22.0 11.8
.02					Diagnoses.	0.0.00		
483	No	No	PRE	SURG	No Longer Valid	0.0000	0.0	0.0
484	No	No	24	SURG	Craniotomy For Multiple Significant Trauma.	5.0967	8.5	12.8
485	Yes	No	24	SURG	Limb Reattachment, Hip And Femur Proc for Multiple Significant Trauma.	3.5048	8.1	10.0
486	No	No	24	SURG	Other O.R. Procedures for Multiple Significant Trauma.	4.8346	8.5	12.3
487	Yes	No	24	MED	Other Multiple Significant Trauma	1.8930	5.2	7.0
488	No	No	25	SURG	HIV w Extensive O.R. Procedure	5.1298	12.2	17.7
489	No	No	25	MED	HIV w Major Related Condition	1.7921	5.8	8.2
490	No	No	25	MED	HIV w or w/o Other Related Condition	1.0408	3.9	5.3
491	No	No	08	SURG	Major Joint & Limb Reattachment Procedures of Upper Extremity.	1.7203	2.5	3.0
492	No	No	17	MED	Chemotherapy w Acute Leukemia or w Use of Hi Dose Chemoagent.	3.4892	8.9	13.8
493	No	No	07	SURG	Laparoscopic Cholecystectomy w/o C.D.E. w CC.	1.8280	4.6	6.0
494	No	No	07	SURG	Laparoscopic Cholecystectomy w/o C.D.E. w/o CC.	1.0320	2.1	2.7
495	No	No	PRE	SURG	Lung Transplant	8.4182	14.2	17.3
496	No	No	08	SURG	Combined Anterior/Posterior Spinal Fusion.	6.3782	6.4	8.8
497	Yes	Yes	08	SURG	Spinal Fusion Except Cervical w CC	3.8192	4.8	5.7
498	Yes	Yes	08	SURG	Spinal Fusion Except Cervical w/o CC	2.9896	3.3	3.7
499	No	No	08	SURG	Back & Neck Procedures Except Spinal Fusion w CC.	1.3887	3.0	4.2
500	No	No	08	SURG	Back & Neck Procedures Except Spinal Fusion w/o CC.	0.9223	1.8	2.2
501	Yes	No	08	SURG	Knee Procedures w PDX of Infection w CC.	2.6427	8.4	10.4
502	Yes	No	08	SURG	Knee Procedures w PDX of Infection w/o CC.	1.4274	4.9	5.8
503	No	No	08	SURG	Knee Procedures w/o PDX of Infection	1.2450	3.1	3.9

Table 5.— List of Diagnosis-Related Groups (DRGS), Relative Weighting Factors, and Geometric and Arithmetic Mean Length of Stay (LOS)—Continued

DRG	FY 07 final rule post- acute care DRG	FY 07 final rule spe- cial pay DRG	MDC	TYPE	DRG title	Weights	Geo- metric mean LOS	Arithmetic mean LOS
504	No	No	22	SURG	Exten. Burns or Full Thickness Burn w/ MV 96+Hrs w/Skin Gft.	11.2524	20.7	28.0
505	No	No	22	MED	Exten. Burns Or Full Thickness Burn w/ MV 96+Hrs w/o Skin Gft.	2.6330	2.8	6.9
506	No	No	22	SURG	Full Thickness Burn w Skin Graft or Inhal Inj w CC or Sig Trauma.	3.7856	10.8	15.2
507	No	No	22	SURG	Full Thickness Burn w Skin Grft or Inhal Inj w/o CC or Sig Trauma.	1.9328	5.4	7.7
508	No	No	22	MED	Full Thickness Burn w/o Skin Grft or Inhal Inj w CC or Sig Trauma.	1.4157	5.3	7.4
509	No	No	22	MED	Full Thickness Burn w/o Skin Grft Or Inh Inj w/o CC or Sig Trauma.	0.8347	3.7	5.3
510	No	No	22	MED	Non-Extensive Burns w CC or Significant Trauma.	1.2477	4.1	6.1
511	No	No	22	MED	Non-Extensive Burns w/o CC or Significant Trauma.	0.6819	2.6	3.6
512	No	No	PRE	SURG	Simultaneous Pancreas/Kidney Transplant.	6.2588	11.1	13.6
513	No	No	PRE	SURG	Pancreas Transplant	3.9771	8.9	10.6
514 515	No No	No No	05 05	SURG	No Longer ValidCardiac Defibrillator Implant w/o Cardiac	0.0000 5.2293	0.0 2.2	0.0 3.8
					Cath.	0.220		
516	No	No	05	SURG	No Longer Valid	0.0000	0.0	0.0
517	No	No	05	SURG	No Longer Valid	0.0000	0.0	0.0
518	No	No	05	SURG	Perc Cardio Proc w/o Coronary Artery Stent or AMI.	1.6388	1.8	2.5
519	No	No	08	SURG	Cervical Spinal Fusion w CC	2.5439	2.9	4.7
520	No	No	08	SURG	Cervical Spinal Fusion w/o CC	1.7569	1.6	1.9
521	Yes	No	20	MED	Alcohol/Drug Abuse or Dependence w	0.7338	4.0	5.3
522	Yes	No	20	MED	CC. Alc/Drug Abuse or Depend w Rehabilita-	0.5993	8.0	10.4
523	No	No	20	MED	tion Therapy w/o CC. Alc/Drug Abuse or Depend w/o Rehabili-	0.4196	3.1	3.8
524	No	No	01	MED	tation Therapy w/o CC. Transient Ischemia	0.7373	2.6	3.1
525	No	No	05	SURG	Other Heart Assist System Implant 1	2.2268	7.7	14.3
526	No	No	05	SURG	No Longer Valid	0.0000	0.0	0.0
527	No	No	05	SURG	No Longer Valid	0.0000	0.0	0.0
528	No	No	01	SURG	Intracranial Vascular Proc w PDX Hem-	7.0626	13.3	16.4
					orrhage.			
529	Yes	No	01	SURG	Ventricular Shunt Procedures w CC	2.1737	4.6	7.4
530	Yes	No	01	SURG	Ventricular Shunt Procedures w/o CC	1.2186	2.3	2.9
531	Yes	No	01	SURG	Spinal Procedures w CC	3.1169	6.4	9.3
532	Yes	No	01	SURG	Spinal Procedures w/o CC	1.4577	2.8	3.7
533	No No	No	01	SURG		1.5463	2.4	3.7
534 535	No	No No	01 05	SURG	Extracranial Procedures w/o CC Cardiac Defib Implant w Cardiac Cath w	0.9926 7.3741	1.4 6.9	1.7 9.3
536	No	No	05	SURG	AMI/HF/Shock. Cardiac Defib Implant w Cardiac Cath w/	6.6043	5.5	7.3
537	Yes	No	08	SURG	o AMI/HF/Shock. Local Excis & Remov of Int Fix Dev Ex-	1.8360	4.7	6.6
538	Yes	No	08	SURG	cept Hip & Femur w CC.	1.0282	2.2	2.9
539	No	No	17	SURG	cept Hip & Femur w/o CC. Lymphoma & Leukemia w Major or Pro-	3.1907	6.8	10.6
540	No	No	17	SURG	cedure w CC.	1.1759	2.6	3.5
541	Yes	No	PRE	SURG	cedure w/o CC. Ecmo or Trach w MV 96+Hrs or PDX	19.2551	37.0	44.3
542	Yes	No	PRE	SURG	Exc Face, Mouth & Neck w Maj O.R Trach w MV 96+Hrs or PDX Exc Face,	11.6440	27.2	32.6
543		No	01	SURG	Mouth & Neck w/o Maj O.R	4.3557	7.9	11.6
					Acute Complex CNS Principal Diagnosis.			
	Yes		08	SURG	Major Joint Replacement or Reattachment of Lower Extremity.	1.9878	4.0	4.4
545	Yes	Yes	08	SURG	Revision of Hip or Knee Replacement	2.5337	4.4	5.2

TABLE 5.— LIST OF DIAGNOSIS-RELATED GROUPS (DRGS), RELATIVE WEIGHTING FACTORS, AND GEOMETRIC AND ARITHMETIC MEAN LENGTH OF STAY (LOS)—Continued

DRG	FY 07 final rule post- acute care DRG	FY 07 final rule spe- cial pay DRG	MDC	TYPE	DRG title	Weights	Geo- metric mean LOS	Arithmetic mean LOS
546	No	No	08	SURG	Spinal Fusion Exc Cerv with Curvature of the Spine or Malig.	5.3812	7.0	8.8
547	Yes	No	05	SURG	Coronary Bypass w Cardiac Cath w Major CV Dx.	6.1390	10.9	12.4
548	Yes	No	05	SURG	Coronary Bypass w Cardiac Cath w/o Major CV Dx.	4.6440	8.1	8.9
549	Yes	Yes	05	SURG	Coronary Bypass w/o Cardiac Cath w Major CV Dx.	5.0246	8.6	10.2
550	Yes	Yes	05	SURG	Coronary Bypass w/o Cardiac Cath w/o Major CV Dx.	3.5904	6.2	6.8
551	No	No	05	SURG	Permanent Cardiac Pacemaker Impl w Maj CV Dx or Aicd Lead or Gnrtr.	3.0364	4.2	6.1
552	No	No	05	SURG	Other Permanent Cardiac Pacemaker Implant w/o Major CV Dx.	2.0860	2.5	3.5
553	Yes	No	05	SURG	Other Vascular Procedures w CC w Major CV Dx.	3.0124	6.2	9.2
554	Yes	No	05	SURG	Other Vascular Procedures w CC w/o Major CV Dx.	2.0773	3.7	5.6
555	No	No	05	SURG	Percutaneous Cardiovascular Proc w Major CV Dx.	2.3066	3.4	4.8
556	No	No	05	SURG	Percutaneous Cardiovasc Proc w Non- Drug-Eluting Stent w/o Maj Cv Dx.	1.7747	1.6	2.0
557 558	No	No	05 05	SURG	Percutaneous Cardiovascular Proc w Drug-Eluting Stent w Major Cv Dx. Percutaneous Cardiovascular Proc w	2.7616 2.0814	3.0 1.5	4.1 1.8
					Drug-Eluting Stent w/o Maj Cv Dx.			
559	No	No	01	MED	Acute Ischemic Stroke With Use of Thrombolytic Agent.	2.2524	5.4	6.9
560	No	No	01	MED	Bacterial & Tuberculous Infections of Nervous System.	2.9066	8.2	10.6
561	No	No	01	MED	Non-Bacterial Infections of Nervous System Except Viral Meningitis.	2.2187	7.4	9.5
562	Yes	No	01	MED	Seizure Age > 17 w CC	1.0586	3.7	4.9
563	Yes	No	01	MED	Seizure Age > 17 w/o CC	0.6440	2.6	3.2
564	No	No	01	MED	Headaches Age >17	0.6931	2.6	3.4
565	Yes	No	04	MED	Respiratory System Diagnosis with Ventilator Support 96+ Hours. Respiratory System Diagnosis with Venti-	5.2430	13.4	15.8
566	Yes	No	04	SURG	lator Support < 96 Hours. Stomach, Esophageal & Duodenal Proc	2.3355 5.2210	5.6 12.7	7.8 16.0
					Age > 17 w CC w Major GI Dx.			
568	Yes	No	06	SURG	Stomach, Esophageal & Duodenal Procedures Proc Age > 17 w CC w/o Major GI Dx.	3.3666	8.3	11.5
569	Yes	No	06	SURG	Major Small & Large Bowel Procedures w CC w Major GI Dx.	4.3427	11.9	14.6
570	Yes	No	06	SURG	Major Small & Large Bowel Procedures w CC w/o Major GI Dx.	2.6997	8.4	10.1
571 572	No Yes	No No	06 08	MED	Major Esophageal Disorders Major Gastrointestinal Disorders And Peritoneal Infections.	1.1109 1.3378	3.8 5.6	4.8 7.1
573	Yes	No	11	SURG	Major Bladder Procedures	3.3489	9.1	11.1
574	No	No	16	MED	Major Hematologic/Immunologic Diag Exc Sickle Cell Crisis & Coagul.	1.2703	4.3	5.7
575	Yes	No	18	MED	Septicemia w MV96+ Hours Age >17	5.9714	13.2	16.0
576	Yes	No	18	MED	Septicemia w/o MV96+ Hours Age >17	1.5996	5.5	7.3
577	No	No	01	SURG	Carotid Artery Stent Procedure	1.7859	1.6	2.3
578	Yes	No	18	SURG	Infectious & Parasitic Diseases w O.R. Procedure.	4.8650	12.7	16.6
579	Yes	No	18	SURG	Postoperative O.R. Post-Traumatic Infections w O.R. Procedure.	2.8408	8.4	11.5

DRGs 469 and 470 contain cases which could not be assigned to valid drgs.

Note: Arithmetic mean is presented for informational purposes only.

Note: Geometric mean is used only to determine payment for transfer cases.

Note: Relative weights are based on Medicare patient data and may not be appropriate for other patients.

It is important to note that in some cases this Table reflects withdrawal or termination decisions CMS has made on a hospital's behalf. For example, if CMS withdrew or terminated a hospital's reclassification(s) or redesignation on the hospital's behalf, such hospital

would not be shown on this Table. Requests to reverse a decision made on behalf of a hospital by CMS and to choose another wage index, reclassification, or adjustment for which the hospital is otherwise eligible must be received by CMS no later than 5 p.m.,

e.s.t., with a copy sent to the MGCRB, by October 30, 2006 (30 days from the date that information appears on the CMS Web site at http://www.cms.hhs.gov/AcuteInpatientPPS/WIFN/list.asp.)

TABLE 9A.—HOSPITAL RECLASSIFICATIONS AND REDESIGNATIONS BY INDIVIDUAL HOSPITALS AND CBSA FOR FY 2007

Provider No.	Geographic CBSA	Reclassified CBSA 10/1/2006– 3/31/2007	Reclassified CBSA 4/1/2007– 9/30/2007	LUGAF
010005	01	13820	13820	
010008	01	33860	33860	
010009	19460	26620	26620	
010012	01	16860	16860	
010022	01	40660	40660	LUGAF
010025	01	17980	17980	
010029	12220	17980	17980	
010035	01	13820	13820	
010044	01	13820	13820	
010045	01	13820	13820	
010054	19460	26620	26620	
010059	19460	26620	26620	
010065	01	33860	33860	
010072	01	11500	11500	LUGAF
010083	01	37860	37860	
010085	19460	26620	26620	
010100	01	37860	37860	
010101	01	11500	11500	LUGAR
010118	01	46220	46220	200/11
010126	01	33860	33860	
010143	01	13820	13820	
010150	01		33860	
1.1.11	01	19460	19460	
)10164	01	11500	11500	LUGAR
	02		11260	LUGAR
020008				
030007	03	22380	22380	
030033	03	22380	22380	
040014	04	30780	30780	
040017	04	22220	22220	
040019	04	32820	32820	
040020	27860	32820	32820	
040027	04	44180	44180	
040039	04	26	26	
040041	04	30780	30780	
040047	04	26	26	
040069	04	32820	32820	
040071	38220	30780	30780	
040076	04	30780	30780	
40078	26300	30780	30780	
040080	04	27860	27860	
040088	04	43340	43340	
040091	04	45500	45500	
040100	04	30780	30780	
040119	04	30780	30780	
)50006	05	39820	39820	
050009	34900	46700	46700	
050013	34900	46700	46700	
050014	05	40900	40900	
050022	40140	42044	42044	
050042	05	39820	39820	
050046	37100		31084	
050054	40140	42044	42044	
50065	42044	31084	31084	
050069	42044	31084	31084	
050071	41940	36084	36084	
)50073	46700	36084	36084	
)50076	41884	36084	36084	
50082	37100		31084	
)50089	40140	31084	31084	
050090	42220	41884	41884	
		31084	31084	

Table 9A.—Hospital Reclassifications and Redesignations by Individual Hospitals and CBSA for FY 2007—Continued

	Provider No.	Geographic CBSA	Reclassified CBSA 10/1/2006– 3/31/2007	Reclassified CBSA 4/1/2007– 9/30/2007	LUGAR
050101		46700	36084	36084	
		40140		42044	
			42044		
		40140	31084	31084	
		42220	41884	41884	
		40140	31084	31084	
		05	40900	40900	
		37100		31084	
050168		42044	31084	31084	
050173		42044	31084	31084	
050174		42220	41884	41884	
050193		42044	31084	31084	
050197		41884	36084	36084	
050224		42044	31084	31084	
050226		42044	31084	31084	
		41884	36084	36084	
		42044	31084	31084	
		37100		31084	
		40140	42044	42044	
			-		
		40140	31084	31084	
		05	39900	39900	
		40140	31084	31084	
		40140	31084	31084	
		42220	41884	41884	
		40140	42044	42044	
		40140	31084	31084	
050300		40140	31084	31084	
050327		40140	31084	31084	
		40140	42044	42044	
050348		42044	31084	31084	
050367		46700	36084	36084	
050385		42220	41884	41884	
050390		40140	42044	42044	
050394		37100		31084	
050423		40140	42044	42044	
050426		42044	31084	31084	
050430		05	39900	39900	
050510		41884	36084	36084	
050517		40140	31084	31084	
050526		42044	31084	31084	
050534		40140	42044	42044	
050535		42044	31084	31084	
050541		41884	36084	36084	
050543		42044	31084	31084	
050547		42220	41884	41884	
050548		42044	31084	31084	
050549		37100		31084	
		42044	31084	31084	
		42044	31084	31084	
		42044	31084	31084	
		05	42220	42220	
		42044	31084	31084	
		40140	42044	42044	
		42044	31084	31084	
		40140	31084	31084	
		42044	31084	31084	
		40140	31084	31084	
		42044	31084	31084	
		42044	31084	31084	
		42044	31084	31084	
		42044	31084	31084	
		42044	31084		
		42044 37100		31084 31084	
			46700		
		34900	46700	46700	
		42044	31084	31084	
		46700	36084	36084	
		40140	42044	42044	
		40140	42044	42044	
050690		42220	41884	41884	I

Continued							
	Provider No.	Geographic CBSA	Reclassified CBSA 10/1/2006– 3/31/2007	Reclassified CBSA 4/1/2007— 9/30/2007	LUGAR		
050693		42044	31084	31084			
		40140	42044	42044			
		40140	42044	42044			
050709		40140	31084	31084			
		40140	42044	42044			
050720		42044	31084	31084			
050728		42220	41884	41884			
050749		37100		31084			
060001		24540	19740	19740			
060003		14500	19740	19740			
		24300	19740	19740			
		14500	19740	19740			
		06	19740	19740			
		06	22660	22660			
		06		24300			
		06	19740	19740			
		14500	19740	19740			
		35300		35004	111045		
		07	25540	25540	LUGAR		
		35300		35004			
		14860		35644			
		14860		35644			
		35300 35300		35004 35004			
		14860		35644			
		35300		35004			
		35300		35004			
		14860		35644			
		35300		35004			
		14860	35644	35644			
		14860		35644			
		25540		35300			
		35300		35004			
		35300		35004			
080004		20100	48864	48864			
080006		08	20100	20100			
080007		08	36140	36140			
100022		33124	22744	22744			
100023		10	36740	36740			
100024		10	33124	33124			
100045		19660	36740	36740			
100049		10	29460	29460			
100081		10	23020	23020	LUGAR		
100109		10	36740	36740			
100118		10	27260	27260			
100139		10	23540	23540	LUGAR		
		10	33124	33124			
		29460	45300	45300			
		48424	38940	38940			
		42680	38940	38940			
		10	27260	27260			
		45300	42260	42260			
		10	45300	45300			
		10	38940	38940			
		48424	22744	22744	111045		
		10	23020	23020	LUGAR		
		19140	12060	12060			
		11	12060	12060			
		11	27260	27260			
		11	12060	12060			
		23580	12060	12060			
		11	10	10060	LUCAD		
		11	12060	12060	LUGAR		
		11	12020	12020	LUCAD		
		11	16860	16860	LUGAR		
		40660 47580	12060 31420	12060 31420			
		47580 11	42340	42340			
1100/5		11	42340	42340	ı		

Provider No.	Geographic CBSA	Reclassified CBSA 10/1/2006– 3/31/2007	Reclassified CBSA 4/1/2007– 9/30/2007	LUGAR
110088	11	12060	12060	LUGAR
110095	11	46660	46660	
110117	11	12060	12060	LUGAR
110122	46660	45220	45220	
110125	11	31420	31420	
110128	11	42340	42340	
110150	11	12060	12060	
110153	47580	31420	31420	
110168 110187	40660 11	12060 12060	12060 12060	LUGAR
110189	11	12060	12060	LUGAN
110205	11	12060	12060	
120028	12	26180	26180	
130002	13	14260	14260	
130003	30300	50	50	
130018	13	38540	38540	
130049	17660	44060	44060	
130067	13	26820	26820	LUGAR
140012	14	16974	16974	
140015	14 14	41180	41180 41180	
140032 140034	14	41180 41180	41180	
140040	14	37900	37900	
140043	14	40420	40420	
140046	14	41180	41180	
140058	14	41180	41180	
140064	14	37900	37900	
140110	14	16974	16974	
140143	14	37900	37900	
140160	14	40420	40420	
140161 140164	14 14	16974 41180	16974 41180	
140189	14	16580	16580	
140233	40420	16974	16974	
140234	14	37900	37900	
140236	14	28100	28100	LUGAR
140291	29404	16974	16974	
150002	23844	16974	16974	
150004	23844 33140	16974 43780	16974 43780	
150008	23844	16974	16974	
150011	15	26900	26900	
150015	33140	16974	16974	
150030	15	26900	26900	LUGAR
150034	23844	16974	16974	
150048	15	17140	17140	
150051	14020	26900	26900	
150065	15	26900	26900	
150069	15 15	17140 43780	17140 43780	
150088	11300	26900	26900	
150090	23844	16974	16974	
150102	15	23844	23844	LUGAR
150112	18020	26900	26900	
150113	11300	26900	26900	
150122	15	26900	26900	
150125	23844	16974	16974	
150126	23844	16974	16974	
150133 150146	15 15	23060 23060	23060 23060	
150147	23844	16974	16974	
160001	16	11180	11180	
160016	16	19780	19780	
160057	16	26980	26980	
160064	16		24	
160080	16	19340	19340	
160089	16	19780	19780	
160147	16	19780	19780	I

	Provider No.	Geographic CBSA	Reclassified CBSA 10/1/2006– 3/31/2007	Reclassified CBSA 4/1/2007– 9/30/2007	LUGAR
170006		17	27900	27900	
170010		17	46140	46140	
		17	48620	48620	
170013		17	48620	48620	
		17	48620	48620	
		17	48620	48620	
		17	48620	48620	
170058		17	28140	28140	
170068		17	11100	11100	
170120		17	27900	27900	
170142		17	45820	45820	
170175		17	48620	48620	
170190		17	45820	45820	
170193		17	48620	48620	
180005		18	26580	26580	
180011		18	30460	30460	
180012		21060	31140	31140	
180013		14540	34980	34980	
		18	21060	21060	
		18	30460	30460	
		18	17140	17140	
		18	31140	31140	
		18	17300	17300	
		18	28700	28700	
		18	26580	26580	
		18	31140	31140	
		18	34980	34980	
		18	26580	26580	LUCAD
		18	14540	14540	LUGAR
		18	26580	26580	
		18 18	30460 21780	30460 21780	
		18	17300	17300	
		18	17300	17300	
		18	14	14	
		14540	34980	34980	
		18	31140	31140	
		18	30460	30460	
		18	30460	30460	
		19	35380	35380	
190003		19	29180	29180	
190015		19	35380	35380	
190086		19	33740	33740	
190099		19	12940	12940	
190106		19	10780	10780	
190131		12940	35380	35380	
		19	12940	12940	LUGAR
		19	10780	10780	
		19	12940	12940	
		19	4	4	
		19	43340	43340	1110 45
		19	12940	12940	LUGAR
		38860	40484	40484	
		30340	38860	38860	
		30340	38860	38860	
		20	38860	38860	
		20	12620	12620	
		20 49340	38860 14484	38860 14484	
		15764	14484	14484	
		39300	14484	14484	
		21604	14484	14484	
		15764	14484	14484	
		49340	14484	14484	
		39300	14484	14484	
		49340	14484	14484	
		49340	14484	14484	
		21604	14484	14484	
		21004	1-10-1	17707	•

	Provider No.	Geographic CBSA	Reclassified CBSA 10/1/2006– 3/31/2007	Reclassified CBSA 4/1/2007– 9/30/2007	LUGAR
220033		21604	14484	14484	
		21604	14484	14484	
		15764	14484	14484	
		49340	14484	14484	
		14484	12700	12700	
		49340	14484	14484	
		15764	14484	14484	
		15764	14484	14484	
		39300	14484	14484	
		44140	25540	25540	
		21604	14484	14484	
		15764	14484	14484	
		15764	14484	14484	
		49340	14484	14484	
		49340	14484	14484	
		15764	14484	14484	
		15764	14484	14484	
		15764	14484	14484	
		15764	14484	14484	
		49340	14484	14484	
		15764	14484	14484	
		21604	14484	14484	
		19804		11460	
		26100		34740	
		47644		19804	
		47644		19804	
		19804		11460	
		23	29620	29620	
		19804		11460	
		47644		19804	
		23	40980	40980	
		23	24340	24340	LUGAR
		23		13020	
		23	11460	11460	
		47644	19804	19804	
		19804		11460	
		23	24580	24580	
		19804		11460	
		47644	22420	22420	
		47644		19804	
		26100		34740	
		40980	22420	22420	
230080		23	40980	40980	
		19804		11460	
230093		23	24340	24340	
		23	28020	28020	
		23		24340	
		33780	11460	11460	
		19804	10000	11460	
		23	13020	13020	
		19804		11460	111045
		23	29620	29620	LUGAR
		47644		19804	
		23	26100	26100	LUGAR
		19804		11460	
		19804		11460	
		19804		11460	
		47644		19804	
		19804		11460	
		26100		34740	
		19804	10004	11460	
		47644	19804	19804	
		47644	19804	19804	
		47644		19804	
		23	24340	24340	LUGAR
230217		12980	29620	29620	
					i e
230223		47644 47644	19804	19804 19804	

	Continuou				
Provider No.		Geographic CBSA	Reclassified CBSA 10/1/2006– 3/31/2007	Reclassified CBSA 4/1/2007– 9/30/2007	LUGAR
230244		19804		11460	
230254		47644		19804	
230257		47644	19804	19804	
230264		47644	19804	19804	
230269		47644		19804	
230270 230273		19804 19804		11460 11460	
230277		47644		19804	
230279		47644	22420	22420	
230293		19804		11460	
230295		23	26100	26100	LUGAR
240018		24	33460	33460	
240030		24	41060	41060	
240064		24	20260	20260	
240069		24	40340	40340	
240071 240075		24 24	40340 41060	40340 41060	
240075		24	41060	41060	
240093		24	33460	33460	
240105		24	40340	40340	LUGAR
240150		24	40340	40340	LUGAR
240187		24	33460	33460	
240211		24	33460	33460	
250002		25		22520	
250004		25	32820	32820	
250006		25	32820	32820	
250009250023		25 25	27180 25060	27180 25060	LUGAR
250023		25 25	27140	27140	LUGAN
250034		25	32820	32820	
250040		37700	25060	25060	
250042		25	32820	32820	
250044		25	22520	22520	
250069		25	46220	46220	
250079		25	27140	27140	
250081		25	46220	46220	
250082		25	38220	38220	
250094		25620 25	25060 12940	25060 12940	
250099		25	27140	27140	
250100		25	46220	46220	
250104		25	27140	27140	
250117		25	25060	25060	LUGAR
260009		26	28140	28140	
260015		26	27860	27860	
260017		26	41180	41180	
260022		26	16	16	
260025		26	41180	41180	LUCAD
260049		26 26	44180 41140	44180 41140	LUGAR
260050		26 26	17860	41140 17860	
260094		26	44180	44180	
260110		26	41180	41180	
260113		26	14	14	
260116		26	14	14	
260119		26	27860	27860	
260175		26	28140	28140	
260183		26	41180	41180	
260186		26	17860	17860	
270011		27	24500	24500	
270011 270017		27 27	24500 33540	24500 33540	
270017		27	33540	33540	
280009		28	30700	30700	
280023		28	30700	30700	
280032		28	30700	30700	
280061		28	53	53	
280065		28	24540	24540	

	Provider No.	Geographic CBSA	Reclassified CBSA 10/1/2006– 3/31/2007	Reclassified CBSA 4/1/2007– 9/30/2007	LUGAR
280077		28	36540	36540	
		28	43580	43580	
290002		29	16180	16180	LUGAR
		29	39900	39900	
290008		29	41620	41620	
290019		16180	39900	39900	
300005		30	31700	31700	
		40484	31700	31700	
300018		40484	31700	31700	
300019		30	49340	49340	
		35084	35644	35644	
310009		35084	35644	35644	
310013		35084	35644	35644	
310014		15804	37964	37964	
310015		35084	35644	35644	
310017		35084	35644	35644	
310018		35084	35644	35644	
310021		45940		35084	
310031		15804	20764	20764	
310038		20764	35644	35644	
310039		20764	35644	35644	
		20764	35084	35084	
		35084	35644	35644	
		35084	35644	35644	
		20764	35644	35644	
		35084	35644	35644	
		35084	35644	35644	
		15804	37964	37964	
		35084	35644	35644	
		35084	35644	35644	
		35084	35644	35644	
		20764 35084	35644 35644	35644 35644	
		22140	10740	10740	
		32	42140	42140	
		32	42140	42140	
		32	29740	29740	
		32	42140	42140	LUGAR
		32	36220	36220	
		32	36220	36220	
330004		28740	39100	39100	
330008		33	15380	15380	LUGAR
330027		35004	35644	35644	
330038		33	40380	40380	LUGAR
330073		33	40380	40380	LUGAR
330079		33	47	47	
		33	45060	45060	
		33	28740	28740	
		33	39	39	
		35004	45000	35644	
		33	45060	45060	
		33	45060	45060	
		35004		35644	
		35004 35004	35644	35644 35644	
		24020	10580	10580	
		35004		35644	
		28740	39100	39100	
		35004		35644	
		27460	21500	21500	
		33	45060	45060	LUGAR
		27460	21500	21500	
		33	15540	15540	
		35004		35644	
		33	27060	27060	
330331		35004		35644	
		35004 35004		35644 35644	

Provider No. Geographic CRSA CRSA	Continued						
303966 33 3 39100 39100 340000 340000 34500 3450000 345000 345000 345000 345000 345000 345000 3450000 345000 345000 345000 345000 345000 345000 345000 345000 345000 345000 345000 345000 345000 3450000 345000 345000 345000 345000 345000 345000 3450000 345000 345000 345000 345000 345000 345000 345000000 34500000 34500000 34500000 34500000 345000000 345000000 34500000000 345000000000000000000000000000000000000		Provider No.	Geographic CBSA	CBSA 10/1/2006-	CBSA 4/1/2007–	LUGAR	
33386 33 38100 39100 340000 340000 340000 340000 340000 340000 340000 340000 340000 340000 340000 340000 340000 340000 340000 340000 340000 340000 34000000 3400000 3400000 3400000 3400000 3400000 3400000 3400000 3400000 3400000 3400000 3400000 3400000 3400000 34000000 34000000 34000000 340000000 340000000 340000000 340000000 3400000000 3400000000 3400000000 3400000000 3400000000 3400000000 34000000000 34000000000 340000000000	330372		35004		35644		
340008 34 16740 39880 39880 39880 39880 300101 34 16740 16740 340011 34 16740 16740 340011 34 34 36740 3740 374001 34 36740 3740 374001 34 34 36740 3740 374001 34 36740 3740 374001 34 36740 36740 34001 34 368000 36800 36800 36800 36800 36800 36800 36800 36800 36800 36800 36800			33		39100		
340013	340004		24660	49180	49180		
340013	340008		34	16740	16740		
340021	340010		24140	39580	39580		
340027	340013		34	16740	16740		
340050 34 16740 16740 344 22180 22180 340055 34 22180 22180 340055 34 22180 340056 34 24800 23800 340058 34 24800 348000	340021		34	16740	16740		
340050 34 22180 22180 2360 2360 340051 34 25800 25800 340071 34 39580 39580 39580 340071 34 39580 39580 39580 3401091 34 39580	340027		34	24780	24780		
340066	340039		34	16740	16740		
340068	340050		34		22180		
340091	340051		34		25860		
340099	340068		34	48900	48900		
34 47260 47260 47260 344 20500 20500 340124 34 39580 395	340071		34	39580	39580	LUGAR	
340115 34 30500 20500 20500 340126 34 30580 39580 39580 3058	340091		24660	49180	49180		
340124 34 39580 39580 39580 301026 340127 34 20500 20500 340127 34 20500 20500 340127 34 20500 20500 340127 34 20500 20500 340127 34 20750 20500 340131 34 20750 20500 340136 34 20750 20500 340136 34 20750 20500 340136 34 16740 16740 340137 340136 34 16740 16740 340137 340137 340136 34 16740 340147	340109		34	47260	47260		
340126 34 20500 20500 340129 34 20500 20500 340129 34 16740 16740 340131 34 20500 20500 340129 34 20500 20500 340131 34 20500 20500 340131 34 20500 20500 340131 34 20500 20500 340134 34 20500 20500 340134 34 30134 36740 16740 340145 34 30144 34 30500 395000 395000 395000 395000 395000 395000 395000 395000 395000 3950	340115		34	20500	20500		
340127	340124		34	39580	39580	LUGAR	
340129	340126		34	39580	39580		
340131	340127		34	20500	20500		
341 20500 20500 LUGAR 341 16740 16740 340145 341 16740 3454 344 36740 34580 3958	340129		34	16740	16740		
340144	340131		34	24780	24780		
340145	340136		34	20500	20500	LUGAR	
340147	340144			16740	16740		
350003 35	340145		34	16740	16740	LUGAR	
350006 35 20200 20200 20200 20000 355 20200 20200 20200 20000 360008 36 26580 26580 26580 26580 360010 36 10420 10420 360011 36 18140 18140 360013 36 366000 3660	340147		40580	39580	39580		
35009 35	350003		35		13900		
360008 36 26580 26580 36 10420 10420 36011 36011 36 10420 10420 360011 36 18140 18140 380013 30620 30620 30620 30620 30620 306014 36 18140 18140 18140 18140 18140 18140 18140 18140 18140 18140 18140 18140 18140 18140 18140 18140 18140 18140 360027 10420 17460 17460 17460 17460 17460 17460 17460 360036 36 18140	350006				13900		
360010 36 10420 10420 36 10420 18140 18140 18140 18140 18140 360013 36 3620 30620 30620 30620 30620 30620 30620 30620 30620 306014 18140 18140 18140 18140 18140 18140 18140 1800 17460 17460 17460 17460 17460 17460 17460 17460 17460 17460 17460 17460 17460 18140 </th <th>350009</th> <th></th> <th>35</th> <th>22020</th> <th>22020</th> <th></th>	350009		35	22020	22020		
360011 36 18140 18140 30620 30620 30620 30620 30620 30620 30620 30620 30620 30620 30620 30620 30620 30620 30620 30620 30620 30620 17460 18140 1	360008		36	26580	26580		
360013 36 30620 30620 360014 36 18140 18140 360019 10420 17460 17460 360020 10420 17460 17460 360027 10420 17460 17460 360036 36 18140 18140 360039 36 18140 18140 360055 36 17460 17460 360079 19380 17140 17460 360079 19380 17140 17140 360095 36 45780 45780 360096 44220 19380 19380 360095 36 45780 45780 360096 36 45780 45780 360095 36 45780 45780 36017 36 45780 45780 36019 36 14560 11460 36015 36 14560 1460 36017 36 1814	360010		36	10420	10420		
360014 36 18140 18140 18140 17460 17460 360019 10420 17460 17460 17460 17460 17460 17460 17460 17460 17460 17460 17460 17460 17460 17460 360036 36 17460 17460 17460 360039 36 18140 18140 18140 360054 36 26580 26580 26580 26580 26580 360054 36 26580 26580 26580 26580 360054 36 17460 17460 17460 17460 17460 17460 17460 17460 17460 17460 17460 360059 48780 <th>360011</th> <th></th> <th>36</th> <th>18140</th> <th>18140</th> <th></th>	360011		36	18140	18140		
360019 10420 17460 17460 17460 360020 10420 17460 17460 360020 17460 17460 360020 17460 17460 17460 360020 17460 17460 17460 360036 36 17460 17460 360039 36 18140 18140 360056 36 26580	360013		36	30620	30620		
360020 10420 17460 17460 36027 17460 17460 36027 17460 17460 36028 36 17460 17460 360036 36 17460 17460 360039 36 18140 18140 360036 36 26580 26580 26580 26580 26580 36006 360078 36 17460 17460 360079 360079 360079 360079 360079 360079 36009 360	360014		36	18140	18140		
360027 10420 17460 17460 36	360019		10420	17460	17460		
360036 36 17460 17460 36 26580 2658	360020		10420	17460	17460		
360039 36 18140 18140 360 26580 26580 360054 36 17460 17460 17460 360078 10420 17460 17460 360078 10420 17480 17460 17460 360078 19380 17140 17140 17140 17140 360096 19380 19380 19380 19380 360096 45780	360027		10420	17460	17460		
360054 36 26580 26580 360065 36 17460 17460 360078 10420 17460 17460 360079 19380 17140 17140 360086 44220 19380 19380 360095 36 45780 45780 360107 36 45780 45780 360121 36 11460 11460 360150 10420 17460 17460 36015 36 18140 18140 360185 36 49660 49660 360187 36 18140 18140 360187 36 18140 18140 360187 36 18140 18140 360231 38300 38300 38300 360232 3840 3840 3840 360241 10420 17460 17460 360233 381740 17460 17460 360235 37	360036		36	17460	17460		
360065 36 17460 17460 360078 10420 17460 17460 360079 19380 17140 17140 360086 44220 19380 19380 360095 36 45780 45780 360096 36 49660 49660 3601107 36 11460 11460 360150 36 11460 17460 360159 36 18140 18140 360175 36 18140 18140 360185 36 49660 49660 360187 36 18140 18140 360187 36 18140 18140 360231 48260 3830 3830 360231 36 49660 49660 360231 36 49660 49660 4020 17460 17460 17460 360231 36 49660 49660 48260 3830 3830	360039		36	18140	18140		
360078 10420 17460 17460 360079 19380 17140 17140 360086 44220 19380 19380 360095 36 45780 45780 360096 36 45780 45780 360107 36 11460 11460 360150 10420 17460 17460 360159 36 18140 18140 360175 36 18140 18140 360185 36 18140 18140 360185 36 49660 49660 360187 36 18140 18140 36021 36 18140 18140 360187 36 18140 18140 36021 36 18140 18140 36021 36 18140 18140 36021 36 18140 18140 36021 36 18140 18140 36021 36 18140	360054		36		26580		
360079 19380 17140 17140 360086 44220 19380 19380 360095 36 45780 45780 360096 36 49660 49660 360107 36 45780 45780 360121 36 11460 11460 360150 10420 17460 17460 360175 36 18140 18140 360175 36 18140 18140 360175 36 18140 18140 360175 36 18140 18140 360185 36 49660 49660 LUGAR 360187 36 18140 <t< th=""><th>360065</th><th></th><th>36</th><th>17460</th><th>17460</th><th></th></t<>	360065		36	17460	17460		
360086 44220 19380 19380 360095 36 45780 45780 360096 36 49660 49660 360107 36 45780 45780 360121 36 11460 11460 360159 36 18140 18140 360185 36 49660 49660 360187 36 18140 18140 36021 36 18140 18140 360186 36 49660 49660 360187 36 18140 18140 36021 36 18140 18140 360187 36 18140 18140 36021 36 18140 18140 36021 36 18140 18140 36021 36 18140 18140 3601 36 18140 18140 3601 36 18140 18140 3601 36 18140 18140 36021 36 18140 18140 36024 36 18140 18140 36024 36 36 18140 18140 36024 36 36 18140	360078		10420	17460	17460		
360095 36 45780 45780 LUGAR 360096 36 49660 49660 LUGAR 360107 36 45780 45780 LUGAR 360121 36 11460 11460 11460 360150 10420 17460 17460 17460 360155 36 18140 <	360079		19380	17140	17140		
360096 36 49660 49660 LUGAR 360107 36 45780 45780 45780 360160 11460 360159 36 36 366 49660 3660	360086		44220	19380	19380		
360107 36 45780 45780 360121 36 11460 11460 360159 36 18140 18140 360159 36 18140 18140 360185 36 49660 49660 360187 36 18140 18140 360211 36 18140 18140 360238 36 49660 49660 360241 10420 17460 17460 360253 19380 17460 17460 360253 19380 17140 17140 370004 37 27900 27900 370015 37 46140 46140 370018 37 46140 46140 370022 37 36420 30020 370026 37 36420 36420 370026 37 36420 36420 370026 37 36420 36420 370026 37 36420 <th>360095</th> <td></td> <th>36</th> <td>45780</td> <td>45780</td> <td></td>	360095		36	45780	45780		
360121 36 11460 11460 11460 360150 10420 17460 17460 360150 360150 18140 18140 18140 360150 3601	360096		36	49660	49660	LUGAR	
360150 10420 17460 17460 17460 360150 366 18140 18140 18140 360175 36 18140 18140 360187 36 18140 18140 360187 36 18140 19380 19380 360197 36 18140 18140 18140 360211 36 18140 18140 360211 36 36 49660	360107		36	45780	45780		
360159 36 18140 18140 360175 36 18140 18140 360185 36 4960 49660 360187 44220 19380 19380 360197 36 18140 18140 360211 48260 38300 38300 360238 36 49660 49660 360241 10420 17460 17460 360245 36 17460 17460 360253 19380 17140 17140 370004 37 27900 27900 370015 37 46140 46140 370016 37 36420 36420 370018 37 46140 46140 370022 37 36420 3020 370025 37 36420 36420 370026 37 36420 36420 370034 37 22900 22900	360121		36	11460	11460		
360175 36 18140 1	360150		10420	17460	17460		
360185 36 49660 49660 LUGAR 360187 44220 19380 19380 360197 36 18140 18140 360211 48260 38300 38300 360238 36 49660 49660 360241 10420 17460 17460 360245 36 17460 17460 360253 19380 17140 17140 370004 37 27900 27900 370005 37 46140 46140 370016 37 36420 36420 370022 37 30020 30020 370025 37 46140 46140 370026 37 36420 36420 370034 37 22900 22900	360159		36	18140	18140		
360187 44220 19380 19380 360197 36 18140 18140 360211 48260 38300 38300 360238 36 49660 49660 LUGAR 360241 10420 17460 <th></th> <th></th> <th>36</th> <th>18140</th> <th></th> <th></th>			36	18140			
360197 36 18140 18140 360211 48260 38300 38300 360238 36 49660 49660 49660 360241 10420 17460 17460 17460 360245 36 17460						LUGAR	
360211 48260 38300 38300 LUGAR 360238 36 49660 49660 LUGAR 360241 10420 17460 174			44220				
360238 36 49660 49660 LUGAR 360241 10420 17460 17							
360241 10420 17460 17460 LUGAR 360245 36 17460 17460 LUGAR 360253 19380 17140 17140 370004 37 27900 27900 370005 37 46140 46140 370016 37 36420 36420 370018 37 46140 46140 370022 37 30020 30020 370025 37 46140 46140 370026 37 36420 36420 370034 37 22900 22900			48260				
360245 36 17460 17460 LUGAR 360253 19380 17140 17140 370004 37 27900 27900 370006 37 17 17 370015 37 46140 46140 370018 37 46140 46140 370022 37 30020 30020 370025 37 46140 46140 370026 37 36420 36420 370034 37 22900 22900	360238				49660	LUGAR	
360253 19380 17140 17140 370004 37 27900 27900 370006 37 17 17 370015 37 46140 46140 370018 37 46140 46140 370022 37 30020 30020 370025 37 46140 46140 370026 37 36420 36420 370034 37 22900 22900			10420				
370004 37 27900 27900 370006 37 17 17 370015 37 46140 46140 370016 37 36420 36420 370018 37 46140 46140 370022 37 30020 30020 370025 37 46140 46140 370026 37 36420 36420 370034 37 22900 22900						LUGAR	
370006 37 17 17 370015 37 46140 46140 370016 37 36420 36420 370018 37 46140 46140 370022 37 30020 30020 370025 37 46140 46140 370026 37 36420 36420 370034 37 22900 22900							
370015 37 46140 46140 370016 37 36420 36420 370018 37 46140 46140 370022 37 30020 30020 370025 37 46140 46140 370026 37 36420 36420 370034 37 22900 22900							
370016 37 36420 36420 370018 37 46140 46140 370022 37 30020 30020 370025 37 46140 46140 370026 37 36420 36420 370034 37 22900 22900			37				
370018 37 46140 46140 370022 37 30020 30020 370025 37 46140 46140 370026 37 36420 36420 370034 37 22900 22900	370015						
370022 37 30020 30020 370025 37 46140 46140 370026 37 36420 36420 370034 37 22900 22900	370016			36420	36420		
370025 37 46140 46140 370026 37 36420 36420 370034 37 22900 22900	370018						
370026 37 36420 36420 370034 37 22900 22900	370022		37	30020	30020		
370034	370025		37	46140	46140		
	370026		37	36420			
370047 37 43300 43300	370034		37	22900	22900		
	370047		37	43300	43300		

	Provider No.	Geographic CBSA	Reclassified CBSA 10/1/2006– 3/31/2007	Reclassified CBSA 4/1/2007– 9/30/2007	LUGAR
370049		37	36420	36420	
370099		37	46140	46140	
370103		37	45	45	
		37	22220	22220	
		38	38900	38900	
380022		38	18700	18700	LUGAR
380027		38	21660	21660	
380050		38	32780	32780	
380090		38		21660	
390006		39	25420	25420	
390013		39	25420	25420	
390030		39	10900	10900	
		39	39740	39740	LUGAR
		49620	29540	29540	
		39	25420	25420	
		39	11020	11020	
		39	47894	47894	
		30140	25420	25420	LUGAR
		39 39	48700 13780	48700	LUGAR
		39	44300	13780 44300	
		39	49660	49660	
		39	38300	38300	
		39	36	36	
		10900	37964	37964	
		39	47894	47894	
		39	13644	13644	
		39	48700	48700	
400048		25020	41980	41980	
410010		39300	14484	14484	
410012		39300	14484	14484	
		39300	35980	35980	
		43900	24860	24860	
		42	24860	24860	LUGAR
		42	16700	16700	
		11340	24860	24860	LUCAD
		42	44940	44940	LUGAR
		42 42	16700 16740	16700 16740	
		42	43900	43900	LUGAR
		42	42340	42340	LOGAIT
		42	12260	12260	
		42	44940	44940	LUGAR
		44940	17900	17900	200,7111
420071		42	24860	24860	
420080		42	42340	42340	
420083		43900	24860	24860	
420085		34820	48900	48900	
		43	43620	43620	
		43	22020	22020	
		43	53	53	
		27180	32820	32820	
		44	26620	26620	
		17420	16860	16860	
		17200	34 34980	34 34980	
		17300			
		44 44	11700 16860	11700 16860	
		44	34980	34980	
		34100	28940	28940	
		44	16860	16860	
		44	32820	32820	
		44	34980	34980	
		44	34980	34980	
		44	34980	34980	
		44	34980	34980	
440180		44	28940	28940	
440185		17420	16860	16860	

	Provider No.	Geographic CBSA	Reclassified CBSA 10/1/2006– 3/31/2007	Reclassified CBSA 4/1/2007– 9/30/2007	LUGAR
440192		44	34980	34980	
		45	41700	41700	
450032		45	43340	43340	
450039		23104	19124	19124	
450059		41700	12420	12420	
450064		23104	19124	19124	
450073		45	10180	10180	
450080		45	30980	30980	
450087		23104	19124	19124	
450099		45	11100	11100	
		23104	19124	19124	
		23104	19124	19124	
		23104	19124	19124	
		45	36220	36220	
		23104	19124	19124	
		45	26420	26420	
		45	19124	19124	
		45	19124	19124	
		45	19124	19124	
		45	26420	26420	
		45	26420	26420	
		45	46340	46340	LUCAD
		45 45	19124	19124	LUGAR
		43300	17780 19124	17780 19124	LUGAR
		43300	26420	26420	
		45	23104	23104	
		45	19124	19124	LUGAR
		43300	19124	19124	LOGAIT
		45 45	26420	26420	
		45	47380	47380	
		23104	19124	19124	
		45	26420	26420	
		45	19124	19124	
		45	23104	23104	
		43300	19124	19124	
		45	30980	30980	
450508		45	46340	46340	
450547		45	19124	19124	
		23104	19124	19124	
450639		23104	19124	19124	
450653		45	33260	33260	
450656		45	46340	46340	
450672		23104	19124	19124	
450675		23104	19124	19124	
450677		23104	19124	19124	
450694		45	26420	26420	
		45	19124	19124	
450770		45	12420	12420	LUGAR
		23104	19124	19124	
		45	41700	41700	
		45	36220	36220	
		45	43340	43340	
		23104	19124	19124	
		23104	19124	19124	
		23104	19124	19124	
		36260	41620	41620	
		36260	41620	41620	
		46	41100	41100	
		46	39340	39340	
		41100	29820	29820	
		46	36260	36260	
		36260	41620	41620	
		36260	41620	41620	
		47	30	30	
		47	15764	15764	
		47	38340	38340	
490004		25500	16820	16820	l

TABLE 9A.—HOSPITAL RECLASSIFICATIONS AND REDESIGNATIONS BY INDIVIDUAL HOSPITALS AND CBSA FOR FY 2007—Continued

Provider No.	Geographic CBSA	Reclassified CBSA 10/1/2006– 3/31/2007	Reclassified CBSA 4/1/2007– 9/30/2007	LUGAR
490005	49020	47894	47894	
490013	49	31340	31340	
490018	49	16820	16820	
490042	13980	40220	40220	
490079	49	49180	49180	
490092	49	40060	40060	
490105	49	28700	28700	
490106	49	16820	16820	
490109	47260	40060	40060	
500002	50	28420	28420	
500003	34580	42644	42644	
500016	48300	42644	42644	
500021	45104	42644	42644	
500039	14740	42644	42644	
500041	31020	38900	38900	
500072	50	42644	42644	
500079	45104	42644	42644	
500108	45104	42644	42644	
500129	45104	42644	42644	
510001	34060	38300	38300	
510002	51	40220	40220	
510006	51	38300	38300	
510018	51	16620	16620	LUGAR
510024	34060	38300	38300	200,711
510030	51	34060	34060	
510046	51	16620	16620	
510047	51	38300	38300	
510062	51	16620	16620	
510070	51	16620	16620	
510071	51	16620	16620	
510077	51	26580	26580	
520002	52	48140	48140	
520028	52	31540	31540	
520037	52	48140	48140	
520059	39540	29404	29404	
520060	52	22540	22540	LUGAR
520066	27500	31540	31540	200,711
520071	52	33340	33340	LUGAR
520076	52	31540	31540	200,711
520094	39540	33340	33340	
520095	52	31540	31540	
520096	39540	33340	33340	
520102	52	33340	33340	LUGAR
520107	52	24580	24580	
520113	52	24580	24580	
520116	52	33340	33340	LUGAR
520173	52	20260	20260	
530015	53	20200	26820	
530025	53	22660	22660	
	00	22300	22300	

It is important to note that in some cases this Table reflects termination decisions CMS has made on a hospital's behalf. For example, if CMS terminated a hospital's section 1886(d)(10) reclassification on the hospital's behalf to allow the hospital to receive a

section 508 reclassification, it would be shown on this Table. Requests to reverse a decision made on behalf of a hospital by CMS and to choose another wage index, reclassification, or adjustment for which the hospital is otherwise eligible must be received by CMS no later than 5 p.m., e.s.t, with a copy sent to the MGCRB, by October 30, 2006 (30 days from the date the information appears on the CMS Web site at: http://www.cms.hhs.gov/AcuteInpatientPPS/WIFN/list.asp.)

TABLE 9B.—Hospital Reclassifications and Redesignations by Individual Hospital Under Section 508 of Pub. L. 108–173—FY 2007

Provider No.	Note	Geographic CBSA	Wage Index CBSA— 10/1/2006— 3/31/2007	Wage Index CBSA— 4/1/2007— 9/30/2007*	Own Wage Index— 10/1/2006— 3/31/2007
010150		01	17980		

TABLE 9B.—Hospital Reclassifications and Redesignations by Individual Hospital Under Section 508 of Pub. L. 108–173—FY 2007—Continued

Provider No.	Note	Geographic CBSA	Wage Index CBSA— 10/1/2006– 3/31/2007	Wage Index CBSA— 4/1/2007— 9/30/2007*	Own Wage Index— 10/1/2006— 3/31/2007
020008		02			1.2183
050494		05	42220		
050549		37100	42220		
060075		06			1.0877
070001		35300	35004		1.0077
070005		35300	35004		
070006	*	14860	35644		
070010		14860	35644		
070016		35300	35004		
070017		35300	35004		
070018	*	14860	35644		
070019		35300	35004		
070022		35300	35004		
070028		14860	35644		
070031		35300	35004		
070034	*	14860	35644		
070036		25540			1.2930
070039		35300	35004		
140155	*	28100	16974	16974	
140186	*	28100	16974	16974	
160040		47940	16300		
160064		16			0.9701
160067		47940	16300		
160110		47940	16300		
220046		38340	14484		
230003		26100	28020		
230004		34740	28020		
230013		47644	22420		
230019		47644	22420		
230020		19804	11460		
230024		19804	11460		
230029		47644	22420		
230036		23	22420		
230038		24340	28020		
230053		19804	11460		
230059		24340	28020		
230066		34740	28020		
230071		47644	22420		•••••
230072		26100	28020		
230089 230097		19804 23	11460 28020		•••••
		19804	11460		
230104		24340	28020		
230119		19804	11460		
000100		47644	22420		•••••
230130		19804	11460		•••••
230146		19804	11460		
230151		47644	22420		
230165		19804	11460		
230174		26100	28020		
230176		19804	11460		
230207		47644	22420		
230223		47644	22420		
230236		24340	28020		
230254		47644	22420		
230269		47644	22420		
230270		19804	11460		
230273		19804	11460		
230277		47644	22420		
250002		25	25060		
250078	*	25620	25060	25060	
250122		25	25060		
270002	*	27	33540	33540	
270012	*	24500	33540	33540	
270023		33540	13740		
270032		27	13740		
270057		27	13740		
310021	ll	45940	35644		

TABLE 9B.—HOSPITAL RECLASSIFICATIONS AND REDESIGNATIONS BY INDIVIDUAL HOSPITAL UNDER SECTION 508 OF Pub. L. 108-173-FY 2007-Continued

	Provider No.	Note	Geographic CBSA	Wage Index CBSA— 10/1/2006— 3/31/2007	Wage Index CBSA— 4/1/2007— 9/30/2007 *	Own Wage Index— 10/1/2006– 3/31/2007
310028			35084	35644		
310051			35084	35644		
			10900	35644		
310115			10900	35644		
310120			35084	35644		
330023		*	39100	35644	35644	
330049			39100	35644		
330067		*	39100	35644	35644	
330106			35004			1.4779
330126			39100	35644		
330135			39100	35644		
330205			39100	35644		
330209			39100	35004		
330264			39100	35004		
340002			11700	16740		
350002			13900	22020		
350003			35	22020		
350006			35	22020		
350010			35	22020		
350014			35	22020		
350015			13900	22020		
350017			35	22020		
350019		*	24220	22020	22020	
			35	22020		
380090			38			1.1162
			42540	10900		
			39	10900		
		***	39	37964	37964	
		**	39	10900		
		***	39	37964	37964	
			42540	29540		
			39	10900		
			42540	10900		
			42540	10900		
			42540	10900		
			42540	10900		
			42540	29540		
			42540	10900		
			42540	10900		
			42540	29540		
			43	39660		
		*	43	43620	43620	
		*	43	43620	43620	
			43	43620	40020	
			43	43620		
			43	43620		
			43	43620		
			39660	43620		
			39660	43620		
			48660	32580		
			26420	26420		
			26420	26420		
			15540	14484		
			49	31340		
			40220	19260		
		*	53	16220	16220	
		*	53	16220	16220	
				10220	10220	
530015			53			1.006

^{*}These hospitals are assigned a wage index value under a special exceptions policy (see the FY 2005 IPPS final rule, 69 FR 49105).

**This hospital has been assigned a wage index for the 1st half of FY 2007 under a special exceptions policy (71 FR 48070).

***These hospitals are receiving the same wage index for FY 2007 as hospitals reclassified to the wage index CBSA under a special exceptions policy (71 FR 48072).

TABLE 9C.—HOSPITALS REDESIG-NATED AS RURAL UNDER SECTION 1886(D)(8)(E) OF THE ACT—FY 2007

Provider Number	Geographic CBSA	Redesignated Rural Area
50192	23420	05
050469	40140	05
050528	32900	05
050618	40140	05
070004	25540	07
100048	37860	10
100134	27260	10
140167	14	14
170137	29940	17
230078	35660	23
250126	32820	25
260006	41140	26
260047	27620	26
260195	44180	26
330044	46540	33
330245	46540 10580	33
330268 360125	36	33 36
370054	36420	36
380040	13460	38
440135	34980	44
440144	44	44
450052	45	45
450078	10180	45
450243	10180	45
450348	45	45
500148	48300	50
520060	52	52

This Table represents decisions CMS has made on a hospital's behalf to withdraw a redesignation under 1886(d)(8)(B) in order for the hospital to receive an out-migration adjustment. Because such withdrawal removes the hospital's urban status, we have published this separate Table 9D. Requests to reverse a decision made on behalf of a hospital by CMS and to choose another wage index, reclassification, or adjustment for which the hospital is otherwise eligible must be received by CMS from the date the information appears on the CMS Web site at no later than 5 p.m., e.s.t, with a copy sent to the MGCRB, by October 30, 2006 (30 days from the date the information appears on the CMS Web site at: http://www.cms.hhs.gov/ AcuteInpatientPPS/WIFN/list.asp.)

TABLE 9D.—HOSPITALS WHO WAIVED LUGAR STATUS TO RE-**OUT-MIGRATION** CEIVE JUSTMENT

Provider No.	Lugar CBSA	Geographic CBSA
070021	25540	07
390150	38300	39

TABLE 10.—GEOMETRIC MEAN PLUS THE LESSER OF 0.75 OF THE NA-TIONAL **A**DJUSTED **OPERATING** STANDARDIZED PAYMENT AMOUNT (INCREASED TO REFLECT THE DIF-FERENCE BETWEEN COSTS AND CHARGES) OR 0.75 OF ONE STAND-ARD DEVIATION OF MEAN CHARGES DIAGNOSIS-RELATED GROUP (DRG)—SEPTEMBER 2006 1

(Brid) GEI	TEMBER 200		tinued	TEMBER 2
DRG	Number of cases	Threshold	DRG	Number of cases
1	24,393	\$53,936		Cases
2	10,183	\$37,116	72	1,326
3	3	\$58,151	73	9,957
6	288	\$16,761	74	3
7	15,032	\$41,305	75	46,852
8	3,441	\$31,218	76	48,155
9	1,775	\$25,448	77	2,111
10	19,625	\$25,064	78	49,690
11	3,083	\$19,015	79	160,357
12	55,944	\$18,885	80	7,158
13	7,525	\$17,709	81	6
14	278,664	\$24,949	82	63,188
15	19,988	\$20,868	83	7,153
16	17,297	\$26,485	84	1,403
17	2,973	\$15,690	85	22,222
18	33,443	\$21,281	86	1,717
19	8,461	\$15,797	87	96,688
21	2,220	\$26,882	88	427,043
22	3,168	\$23,893	89	553,977
23	10,670	\$17,130	90	43,487
26	25	\$20,794	91	53
27	5,971	\$25,133	92	16,513
28	19,908	\$25,479	93	1,440
29	6,522	\$15,839	94	13,655
31	5,039	\$21,151	95	1,577
32	1,903	\$14,225	96	59,616
34	27,626	\$21,196	97	26,688
35	7,908	\$14,378	98	13
36	307	\$17,809	99	21,386
37	1,219	\$24,783	100	6,410
38	50	\$12,362	101	23,368
39	328	\$14,783	102	4,930
40	1,187	\$22,552	103	886
42	1,636	\$17,152	104	20,120
43	125	\$12,945	105	32,626
44	1,290	\$14,832	106	3,440
45	2,770	\$16,515	108	8,757
46	3,929	\$16,801	110	57,708
47	1,309	\$12,127	111	10,783
49	2,415	\$31,299	113	34,728
50	2,024	\$19,215	114	7,959
51	193	\$19,093	117	5,349
52	234	\$14,094	118	7,619
53	2,145	\$26,688	119	963
55	1,368	\$20,105	120	33,555
56	451	\$19,428	121	150,046
57	742	\$20,317	122	54,522
59	126	\$14,906	123	29,563
60	3	\$18,895	124	120,511
61	222	\$28,833	125	92,405
62	4	\$7,231	126	5,422
63	2,827	\$26,807	127	667,286
64	3,234	\$23,214	128	4,210
65	40,485	\$13,518	129	3,521
66	8,195	\$12,932	130	87,464
67	379	\$17,209	131	22,952
68	18,913	\$14,133	132	101,373
69	5,146	\$10,686	133	5,853
70	25	\$7,496	134	39,815

70

\$15,634

135

TABLE 10.—GEOMETRIC MEAN PLUS THE LESSER OF 0.75 OF THE NA-**TIONAL A**DJUSTED **OPERATING** STANDARDIZED PAYMENT AMOUNT (INCREASED TO REFLECT THE DIF-FERENCE BETWEEN COSTS CHARGES) OR 0.75 OF ONE STAND-ARD DEVIATION OF MEAN CHARGES BY DIAGNOSIS-RELATED GROUP (DRG)—SEPTEMBER 2006 1—Con-

7,164

963

13

53

Threshold

\$16,706

\$18.059

\$48,047

\$43,568 \$25,944

\$26,250

\$29,338

\$18,890 \$26,040

\$26,606

\$21,619

\$12,794

\$25,173

\$15,489

\$26,941

\$19,079

\$22.015

\$13,141

\$11,532

\$24,871

\$16,325

\$23,739

\$12,582

\$15,886

\$11,792

\$12,385

\$15,725

\$12,207

\$18,532

\$12,464

\$234,790

\$123,941

\$110,979

\$93.509

\$89,257

\$59,154

\$45,072

\$45,319

\$30,164

\$25,616

\$33,285

\$25,968

\$36,452

\$29,680

\$20,942

\$25,710

\$29,663

\$23,754

\$40,934

\$21,971

\$15,620

\$21.831

\$20,073

\$12,066

\$13,642

\$12,329

\$13,569

\$19,619

\$8,077

TABLE 10.—GEOMETRIC MEAN PLUS THE LESSER OF 0.75 OF THE NATIONAL ADJUSTED OPERATING STANDARDIZED PAYMENT AMOUNT (INCREASED TO REFLECT THE DIFFERENCE BETWEEN COSTS AND CHARGES) OR 0.75 OF ONE STANDARD DEVIATION OF MEAN CHARGES BY DIAGNOSIS-RELATED GROUP (DRG)—SEPTEMBER 2006 1—Continued

TABLE 10.—GEOMETRIC MEAN PLUS THE LESSER OF 0.75 OF THE NATIONAL ADJUSTED OPERATING STANDARDIZED PAYMENT AMOUNT (INCREASED TO REFLECT THE DIFFERENCE BETWEEN COSTS AND CHARGES) OR 0.75 OF ONE STANDARD DEVIATION OF MEAN CHARGES BY DIAGNOSIS-RELATED GROUP (DRG)—SEPTEMBER 2006 1—Continued

TABLE 10.—GEOMETRIC MEAN PLUS THE LESSER OF 0.75 OF THE NATIONAL ADJUSTED OPERATING STANDARDIZED PAYMENT AMOUNT (INCREASED TO REFLECT THE DIFFERENCE BETWEEN COSTS AND CHARGES) OR 0.75 OF ONE STANDARD DEVIATION OF MEAN CHARGES BY DIAGNOSIS-RELATED GROUP (DRG)—SEPTEMBER 2006 1—Continued

	DRG	Number of cases	Threshold	DRG	Number of cases	Threshold	DRG	Number of cases	Threshold
136		943	\$14,096	198	4,109	\$26,007	265	4,035	\$28,311
		206,123	\$17,779	199	1,481	\$37,168	266	2,229	\$19,608
		74,037	\$11,515	200	1,017	\$39,819	267	276	\$20,117
		31,103	\$11,148	201	2,717	\$52,822	268	1,007	\$25,617
		123,084	\$16,561	202	27,495	\$25,144	269	11,061	\$30,458
142		49,143	\$13,263	203	32,424	\$26,193	270	2,581	\$17,775
		237,810	\$12,620	204	69,425	\$23,001	271	21,574	\$21,522
		104,876	\$24,607	205	32,781	\$23,350	272	6,063	\$20,960
145		5,742	\$12,887	206	2,069	\$16,175	273	1,268	\$12,686
146		10,269	\$45,085	207	38,290	\$24,723	274	2,214	\$22,741
		2,614	\$31,236	208	9,444	\$15,567	275	181	\$13,452
		19,522	\$30,220	210	126,742	\$36,048	276	1,611	\$15,546
		22,971	\$44,985	211	25,766	\$26,709	277	118,986	\$18,413
		5,403	\$27,722	212	10	\$18,640	278	33,859	\$11,767
		5,011	\$33,345	213	9,549	\$33,765	279	6	\$9,146
		1,951	\$23,305	216	19,882	\$35,321	280	19,325	\$16,074
155		6,015	\$27,713	217	15,719	\$41,774	281	6,587	\$11,105
		4	\$42,483	218	30,183	\$32,723	283	6,750	\$15,606
		8,316	\$25,978	219	21,169	\$23,471	284	1,860	\$9,719
		3,718	\$14,380	220	2	\$23,950	285	8,075	\$35,310
		19,222	\$28,297	223	12,680	\$25,338	286	2,868	\$34,890
		11,939	\$18,842	224	9,900	\$18,613	287	5,459	\$31,321
		10,145	\$25,543	225	6,275	\$26,106	288	11,449	\$36,433
		4,950	\$15,310	226	6,770	\$29,359	289	6,343	\$19,733
		5	\$14,037	227	4,857	\$18,625	290	11,873	\$18,847
		5,996	\$38,812	228	2,678	\$24,536	291	60	\$12,885
		2,457	\$25,557	229	1,121	\$15,636	292	7,589	\$41,617
		5,154	\$29,283	230	2,473	\$26,449	293	318	\$27,403
		4,909	\$19,618	232	570	\$20,932	294	96,809	\$16,328
		1,640 895	\$25,297 \$16,754	233	18,488 9,054	\$34,645 \$27,557	295 296	4,384 247,066	\$16,246 \$17,313
		17,930	\$44,495	234 235	4,763	\$16,225	297	42,865	\$10,814
		1,408	\$26,705	236	41,768	\$15,378	298	42,865	\$11,206
		33,048	\$26,765	237	1,924	\$13,851	299	1,529	\$21,388
173		2,225	\$17,067	238	9,693	\$26,241	300	21,667	\$23,240
		253,126	\$21,935	239	40,335	\$23,048	301	3,928	\$13,559
		29,235	\$12,619	240	12,890	\$24,453	302	10,492	\$53,338
		14,648	\$23,980	241	2,848	\$14,337	303	19,976	\$35,840
		7,654	\$20,567	242	2,722	\$22,539	304	13,647	\$37,446
		2,557	\$15,456	243	100,966	\$17,005	305	2,957	\$25,330
		14,726	\$22,991	244	16,921	\$15,401	306	5,818	\$25,924
		91,333	\$20,898	245	5,808	\$10,457	307	1,947	\$13,770
		25,350	\$12,543	246	1,393	\$13,422	308	5,453	\$27,143
		255,695	\$17,111	247	21,347	\$12,738	309	2,963	\$19,770
183		79,006	\$13,062	248	16,397	\$18,895	310	25,376	\$25,325
184		72	\$12,788	249	13,488	\$15,481	311	5,890	\$14,282
185		6,251	\$18,891	250	4,164	\$15,047	312	1,328	\$24,333
186		7	\$5,682	251	2,060	\$10,726	313	505	\$16,723
		646	\$18,329	253	24,800	\$16,488	314	2	\$63,668
188		87,004	\$22,793	254	10,027	\$10,231	315	34,913	\$34,744
189		12,389	\$13,014	256	7,605	\$17,982	316	205,564	\$24,392
190		10	\$13,844	257	13,112	\$19,590	317	2,713	\$17,237
		10,586	\$54,763	258	11,382	\$15,403	318	5,910	\$24,034
192		1,379	\$32,585	259	2,660	\$21,569	319	386	\$13,859
		4,041	\$51,627	260	2,420	\$15,136	320	224,863	\$18,222
		461	\$32,149	261	1,569	\$20,684	321	31,969	\$12,283
		2,846	\$50,151	262	602	\$20,906	322	67	\$13,256
		594	\$32,373	263	22,523	\$32,388	323	20,412	\$18,199
197		16,420	\$41,918	264	3,924	\$22,371	324	4,635	\$11,384

TABLE 10.—GEOMETRIC MEAN PLUS THE LESSER OF 0.75 OF THE NATIONAL ADJUSTED OPERATING STANDARDIZED PAYMENT AMOUNT (INCREASED TO REFLECT THE DIFFERENCE BETWEEN COSTS AND CHARGES) OR 0.75 OF ONE STANDARD DEVIATION OF MEAN CHARGES BY DIAGNOSIS-RELATED GROUP (DRG)—SEPTEMBER 2006 1—Continued

TABLE 10.—GEOMETRIC MEAN PLUS THE LESSER OF 0.75 OF THE NATIONAL ADJUSTED OPERATING STANDARDIZED PAYMENT AMOUNT (INCREASED TO REFLECT THE DIFFERENCE BETWEEN COSTS AND CHARGES) OR 0.75 OF ONE STANDARD DEVIATION OF MEAN CHARGES BY DIAGNOSIS-RELATED GROUP (DRG)—SEPTEMBER 2006 1—Continued

TABLE 10.—GEOMETRIC MEAN PLUS THE LESSER OF 0.75 OF THE NATIONAL ADJUSTED OPERATING STANDARDIZED PAYMENT AMOUNT (INCREASED TO REFLECT THE DIFFERENCE BETWEEN COSTS AND CHARGES) OR 0.75 OF ONE STANDARD DEVIATION OF MEAN CHARGES BY DIAGNOSIS-RELATED GROUP (DRG)—SEPTEMBER 2006 1—Continued

DRG	Number of cases	Threshold	DRG	Number of cases	Threshold	DRG	Number of cases	Threshold
325	9,919	\$14,511	395	101,473	\$16,889	471	15,630	\$55,525
326	2,592	\$9,803	396	18	\$13,731	473	8,578	\$38,344
327	11	\$4,287	397	16,392	\$23,042	476	2,850	\$35,320
328	574	\$15,451	398	6,706	\$23,195	477	28,197	\$34,214
329	54	\$11,775	399	1,080	\$14,886	479	27,646	\$30,661
331	56,121	\$22,455	401	6,451	\$43,898	480	908	\$128,375
332	3,962	\$13,809	402	1,356	\$25,234	481	1,198	\$89,005
333	244	\$18,783	403	31,326	\$29,951	482	5,081	\$49,252
334	9,525	\$29,895	404	3,820	\$20,323	484	472	\$75,143
335	12,194	\$24,054	406	2,303	\$42,395	485	3,713	\$51,989
336	28,188	\$18,058	407	615	\$24,808	486	2,712	\$69,289
337	21,485	\$12,514	408	1,948	\$33,924	487	5,016	\$32,012
338	674	\$26,937	409	1,748	\$25,090	488	828	\$63,441
339	1,237	\$24,400	410	29,053	\$23,878	489	13,547	\$28,616
341	3,131	\$26,325	411	5	\$9,689	490	5,252	\$21,801
342	457	\$16,760	412	9	\$9,325	491	22,663	\$35,766
344	2,341	\$26,264	413	5,741	\$25,503	492	3,924	\$44,487
345	1,390	\$24,260	414	487	\$16,459	493	61,082	\$34,534
346	3,961	\$22,442	417	33	\$28,277	494	24,547	\$22,726
347	235	\$12,271	418	29,977	\$22,170	495	342	\$121,280
348	4,262	\$15,658	419	17,634	\$18,501	496	3,726	\$96,585
349	554	\$10,030 \$16,403	420	3,100	\$12,987	497	31,201	\$62,709
350 352	7,276 1,177	\$16,583	421 422	13,255	\$16,161 \$11.719	498 499	21,280	\$52,054 \$28,358
	· '	\$31,220	423	8,962	\$28,700	500	35,237	
353 354	3,089 7,566	\$29,704	424	1,041	\$36,317	501	46,425 3,200	\$19,847 \$42,457
355	4,987	\$19.286	425	13,096	\$13,579	502	764	\$29,384
356	22,032	\$16,331	426	4,235	\$10,364	503	5,910	\$26,642
357	5,537	\$37,764	427	1,579	\$11.172	504	192	\$146,686
358	20,928	\$24,273	428	845	\$13,787	505	180	\$28,342
359	28,584	\$17,298	429	23,937	\$16,841	506	963	\$50,252
360	13,855	\$18,950	430	75,525	\$13,560	507	323	\$31,921
361	287	\$23,686	431	333	\$12,622	508	654	\$23,708
362	2	\$6,796	432	402	\$14,045	509	155	\$16,122
363	2,155	\$23,016	433	4,471	\$6,874	510	1,782	\$21,231
364	1,799	\$19,267	439	1,759	\$29,662	511	627	\$13,442
365	1,617	\$32,699	440	5,216	\$29,532	512	550	\$90,296
366	4,645	\$23,868	441	686	\$20,412	513	226	\$67,441
367	446	\$12,998	442	18,596	\$37,581	515	58,659	\$86,726
368	4,145	\$23,496	443	3,589	\$22,657	518	23,762	\$34,527
369	3,723	\$14,363	444	6,012	\$16,341	519	12,586	\$44,237
370	2,249	\$17,564	445	2,242	\$11,493	520	16,525	\$35,867
371	2,705	\$12,728	447	6,323	\$11,529	521	29,364	\$15,479
372	1,376	\$10,829	449	40,846	\$18,259	522	3,423	\$12,533
373	5,273	\$7,559	450	7,445	\$9,450	523	14,462	\$8,530
374	153	\$13,086	451	2	\$19,075	524	109,013	\$16,166
375	12	\$22,690	452	28,815	\$21,740	525	205	\$156,390
376	476	\$12,879	453	5,394	\$11,430	528	1,845	\$107,946
377	109	\$24,191	454	4,738	\$17,873	529	5,026	\$36,171
378	201	\$16,303	455	887	\$10,736	530	3,360	\$25,619
379	499	\$8,235	461	2,290	\$27,973	531	4,993	\$45,629
380	111	\$9,375	462	7,863	\$17,177	532	2,882	\$28,150
381	169	\$15,153	463	32,884	\$15,102	533	43,711	\$29,870
382	48	\$3,957	464	7,661	\$11,329	534	40,201	\$21,434
383	2,806	\$10,566	465	163	\$12,758	535	8,826	\$119,455
384	151	\$7,395	466	1,204	\$14,616	536	8,259	\$109,010
389	3 2 120	\$47,550 \$45,749	467	1,026	\$10,056 \$57,130	537	8,983	\$32,598 \$32,345
392	2,139	\$45,748	468	52,034	l : 1	538	5,459	\$22,345 \$44,611
394	2,759	\$31,095	470	128	\$25,337	539	4,973	\$44,6

TABLE 10.—GEOMETRIC MEAN PLUS THE LESSER OF 0.75 OF THE NATIONAL ADJUSTED OPERATING STANDARDIZED PAYMENT AMOUNT (INCREASED TO REFLECT THE DIFFERENCE BETWEEN COSTS AND CHARGES) OR 0.75 OF ONE STANDARD DEVIATION OF MEAN CHARGES BY DIAGNOSIS-RELATED GROUP (DRG)—SEPTEMBER 2006 1—Continued

TABLE 10.—GEOMETRIC MEAN PLUS THE LESSER OF 0.75 OF THE NATIONAL ADJUSTED OPERATING STANDARDIZED PAYMENT AMOUNT (INCREASED TO REFLECT THE DIFFERENCE BETWEEN COSTS AND CHARGES) OR 0.75 OF ONE STANDARD DEVIATION OF MEAN CHARGES BY DIAGNOSIS-RELATED GROUP (DRG)—SEPTEMBER 2006 1—Continued

TABLE 10.—GEOMETRIC MEAN PLUS THE LESSER OF 0.75 OF THE NATIONAL ADJUSTED OPERATING STANDARDIZED PAYMENT AMOUNT (INCREASED TO REFLECT THE DIFFERENCE BETWEEN COSTS AND CHARGES) OR 0.75 OF ONE STANDARD DEVIATION OF MEAN CHARGES BY DIAGNOSIS-RELATED GROUP (DRG)—SEPTEMBER 2006 1—Continued

DRG	Number of cases	Threshold	DRG	Number of cases	Threshold
540	1,504	\$25,501	555	37,378	\$42,659
541	25,104	\$251,059	556	18,973	\$37,602
542	23,115	\$151,522	557	124,154	\$51,160
543	5,718	\$64,397	558	192,637	\$42,298
544	445,799	\$39,439	559	2,894	\$40,731
545	44,802	\$44,851	560	3,457	\$44,405
546	2,360	\$83,437	561	2,952	\$35,694
547	32,710	\$97,734	562	52,954	\$22,156
548	32,249	\$79,397	563	21,145	\$14,021
549	13,141	\$80,495	564	16,327	\$15,310
550	34,566	\$63,327	565	46,823	\$78,345
551	53,869	\$51,351	566	73,082	\$39,133
552	82,058	\$40,481	567	10,363	\$72,728
553	39,292	\$46,800	568	16,695	\$48,820
554	77,351	\$36,871	569	60,814	\$63,237

DRG	Number of cases	Threshold
570	72,247	\$44,163
571	11,153	\$23,681
572	48,983	\$25,165
573	6,683	\$51,724
574	26,619	\$24,474
575	10,978	\$86,104
576	277,472	\$28,309
577	5,596	\$35,353
578	35,312	\$65,007
579	20,665	\$39,583

¹ Cases taken from the FY 2005 MedPAR file; DRGs are from GROUPER Version 24.0.

[[]FR Doc. 06–8471 Filed 9–29–06; 4:00 pm] BILLING CODE 4120–01–P

Wednesday, October 11, 2006

Part IV

Department of Education

Discretionary Grant Programs; Notice

DEPARTMENT OF EDUCATION

Discretionary Grant Programs

AGENCY: Department of Education. **ACTION:** Notice of final priorities.

SUMMARY: The Secretary of Education establishes priorities that the Department of Education (Department) may use for any appropriate discretionary grant program in fiscal year (FY) 2007 and in FY 2008. We take this action to focus Federal financial assistance on expanding the number of programs and projects Department-wide that support activities in areas of greatest educational need. Although we expect that these priorities will have the greatest applicability to programs authorized by the Elementary and Secondary Education Act of 1965 (as amended by the No Child Left Behind Act of 2001), we are establishing the priorities on a Department-wide basis, so that Department offices can use one or more of these priorities in any discretionary grant competition, as appropriate.

DATES: Effective Date: These priorities are effective November 13, 2006.

FOR FURTHER INFORMATION CONTACT:

Margo Anderson, U.S. Department of Education, 400 Maryland Avenue, SW., Room 4W311, Washington, DC 20202– 5910. Telephone: (202) 205–3010 or via Internet at: Margo.Anderson@ed.gov.

If you use a telecommunications device for the deaf (TDD), you may call the Federal Relay Service (FRS) at 1–800–877–8339.

Individuals with disabilities may obtain this document in an alternative format (e.g., Braille, large print, audiotape, or computer diskette) on request to the contact person listed under FOR FURTHER INFORMATION

SUPPLEMENTARY INFORMATION:

Genera

In the more than four years since the enactment of the No Child Left Behind Act of 2001 (NCLB), there have been significant changes in our educational system that provide a strong framework for reaching the goal that all students will be proficient in reading/language arts and mathematics by the year 2014. States have put in place rigorous new accountability systems and in the last school year (2005-2006) administered reading and mathematics assessments covering all students in grades 3 to 8 and at least once for students in grades 10 to 12. By school year 2007-2008, States will be assessing students in science at least once in each of three

grade spans (3–5, 6–9, 10–12). A focus on professional development and teacher qualifications is helping States to ensure that increasing numbers of students are being taught by highly-qualified teachers. School districts are providing new support and assistance to schools in need of improvement, while making available public school choice and supplemental educational services options to eligible students who attend these schools.

National Assessment of Educational Progress (NAEP) results for older students provide a reminder of the need to continue to emphasize high standards and accountability for all students, especially those in the higher grades. The 2005 NAEP math results for 8th graders, for example, are both illustrative and alarming: less than onethird of 8th graders, and just 13 percent of low-income 8th graders, scored at the proficient or above level. High school test scores in mathematics have barely budged since the 1970's and less than half of high school graduates in 2005 were ready for college-level math and science coursework, according to American College Testing, Inc. (ACT).

America's rapidly changing economy requires an educational system that is producing high school graduates with the skills needed to be successful in postsecondary education and the workforce. In addition to improving the academic achievement of students in mathematics and science, we must expand the number of Americans mastering foreign languages critical to national security and to our participation in the global economy. High schools must develop a larger pool of technically adept and numerically literate Americans, a continual supply of highly trained mathematicians, scientists, and engineers, and more students with higher levels of proficiency in critical-need languages. The Department believes that highquality professional development for secondary school teachers is a critical part of the solution, because it can help ensure that these teachers have the content knowledge and expertise required to improve student achievement.

Rigorous instruction, high standards, and accountability for results are helping to raise achievement in the early grades. Now America must complete the task. We must focus on improving the mathematics and science achievement of secondary school students, expanding foreign language learning to critical need languages, providing teachers with better training and support, helping districts improve all their schools, and ensuring that all

students meet rigorous State mathematics and science academic standards and graduate from high school. Student performance is not just an education issue; it is an economic issue, a civic issue, a social issue, and a national security issue.

In addition to content-specific priorities, the Secretary is establishing a priority for collecting data to assess the effect of projects on the academic achievement of student participants relative to appropriate comparison or control groups. The Secretary believes that interventions must be designed to collect the best available data to determine the impact of the proposed intervention on student achievement and to inform future improvement efforts. Finally, to assist schools and districts in using data effectively, we are establishing a priority for projects that will help educators use information from State data systems to improve student achievement or other appropriate outcomes.

We published a notice of proposed priorities in the **Federal Register** on August 7, 2006 (71 FR 44671). The Department has made one change to priority three since publication of the notice of proposed priorities. We explain this change in the Analysis of Comments and Change elsewhere in this notice.

Analysis of Comments and Change

In response to our invitation in the notice of proposed priorities, seven parties submitted comments on the proposed priorities. Although we received several substantive comments, we determined that the comments did not warrant changes to the priorities. However, based on intradepartmental review of the notice of proposed priorities, we made a change to priority three. An analysis of the comments and the change to priority three follows.

Generally, we do not address technical and other minor changes—and suggested changes the law does not authorize us to make under the applicable statutory authority.

Comment: One commenter recommended the addition of a priority for technology.

Discussion: The Secretary believes

Discussion: The Secretary believes that technology issues can be addressed in the context of the content priorities.

Change: None.

Comment: One commenter recommended the addition of a priority for language arts.

Discussion: The Secretary identified the content areas of the priorities (math, science, and critical foreign languages) based on a determination that these are the most important areas on which to focus next in terms of the skills needed for our students to successfully compete in the global economy. The Secretary believes that language arts can be addressed through existing Department programs on reading.

Change: None.

Comment: One commenter expressed concern that there was not an emergent and beginning literacy component to the priorities and wondered if this type of activity could be supported in the critical-need languages priority.

Discussion: The Secretary believes that an emerging literacy component could, depending on how it is designed, be one of many appropriate activities to address the critical-need languages priority.

Change: None.

Comment: One commenter suggested that for the critical-need languages priority, the Department consider using such resources as highly educated foreign immigrants and faculty and students from area colleges and universities. The commenter also suggested using summer foreign language institutes for high school students to encourage their pursuit of foreign language studies in college.

Discussion: Depending on the individual program competition requirements, the Secretary believes that these activities, if properly designed, could address this priority.

Change: None. Comment: None.

Discussion: Based on intradepartmental review of the notice of proposed priorities, we added to priority three language that expands the applicability of this priority to include activities to develop programs in certain critical needs languages. The proposed language of priority three limited the priority to activities to enable students to achieve proficiency or advanced proficiency in certain critical needs languages. This change is necessary to ensure that the broadest range of the Department's programs can use the priority.

Change: We have amended priority three by adding language that expands the applicability of this priority to include activities to develop programs in certain critical needs languages.

Comment: One commenter recommended adding a priority for after-school programs.

Discussion: The Department supports after-school programs through its existing, State-administered after-school program, 21st Century Learning Centers, which received approximately \$981,000,000 in FY 2006 funding.

Change: None.

Comment: One commenter recommended that the Department provide a definition of secondary school.

Discussion: The term "secondary school" is already defined in section 9101(38) of the Elementary and Secondary Education Act, 20 U.S.C. 7801(38), and in the Department's regulations at 34 CFR 77.1.

Change: None.

Comment: One commenter asked why the first two priorities on mathematics and science proficiency, respectively, weren't more explicit about teacher recruitment.

Discussion: Teacher recruitment and training could be one of the many possible activities that, if properly designed, could address these two priorities. The Secretary believes that applicants should have the flexibility to use a variety of strategies to achieve the goals of proficiency or advanced proficiency in mathematics and science.

Change: None.

Comment: One commenter recommended that, for the professional development for secondary school teachers priority, consideration be given to preparing secondary school teachers to integrate advanced literacy skills and mathematics concepts and applications into their areas of specialization.

Discussion: Depending upon the individual program competition requirements, the Secretary believes that this activity, if properly designed, could address this priority.

Change: None.

Comment: One commenter asked what the purpose was of the priority for State data systems.

Discussion: The purpose of this priority is to encourage educators to use State data systems to track individual student achievement (including for students who move across schools and districts) in order to improve instruction, design and implement interventions for students at risk of failure, and hold schools and districts accountable for performance.

Change: None.

Note: This notice does not solicit applications. In any year in which we choose to use one or more of these priorities, we invite applications for new awards under the applicable program through a notice in the Federal Register. When inviting applications we designate each priority as absolute, competitive preference, or invitational. The effect of each type of priority follows:

Absolute priority: Under an absolute priority we consider only applications that meet the priority (34 CFR 75.105(c)(3)).

Competitive preference priority: Under a competitive preference priority we give competitive preference to an application by either (1) awarding additional points, depending on how well or the extent to which the application meets the competitive preference priority (34 CFR 75.105(c)(2)(i)); or (2) selecting an application that meets the competitive priority over an application of comparable merit that does not meet the priority (34 CFR 75.105(c)(2)(ii)).

Invitational priority: Under an invitational priority we are particularly interested in applications that meet the invitational priority. However, we do not give an application that meets the invitational priority a competitive or absolute preference over other applications (34 CFR 75.105(c)(1)).

Priorities

The Secretary establishes priorities that the Department may use for discretionary grant competitions in FY 2007 and FY 2008, as appropriate. The Secretary intends that these priorities will allow program participants and the Department to focus limited Federal resources in areas of greatest educational need. The Secretary recognizes that some of the priorities will not be appropriate for particular programs.

Priority 1—Mathematics. Projects that support activities to enable students to achieve proficiency or advanced proficiency in mathematics.

Priority 2—Science. Projects that support activities to enable students to achieve proficiency or advanced proficiency in science.

Priority 3—Critical-Need Languages.
Projects that support activities to enable students to achieve proficiency or advanced proficiency or to develop programs in one or more of the following less commonly taught languages: Arabic, Chinese, Korean, Japanese, Russian, and languages in the Indic, Iranian, and Turkic language families.

Priority 4—Secondary Schools.
Projects that support activities and interventions aimed at improving the academic achievement of secondary school students who are at greatest risk of not meeting challenging State academic standards and not completing high school.

Priority 5—Professional Development for Secondary School Teachers. Projects that support high-quality professional development for secondary school teachers to help these teachers improve student academic achievement.

Priority 6—School Districts With Schools in Need of Improvement, Corrective Action, or Restructuring. Projects that help school districts implement academic and structural interventions in schools that have been identified for improvement, corrective action, or restructuring under the Elementary and Secondary Education Act of 1965, as amended by the No Child Left Behind Act of 2001.

Priority 7—Student Achievement Data. Projects that collect pre- and post-intervention test data to assess the effect of the projects on the academic achievement of student participants relative to appropriate comparison or control groups.

Priority 8—State Data Systems.
Projects that help educators use information from State data systems to improve student achievement or other appropriate outcomes.

Executive Order 12866

This notice of final priorities has been reviewed in accordance with Executive Order 12866. Under the terms of the order, we have assessed the potential costs and benefits of this regulatory action.

The potential costs associated with the notice of final priorities are those resulting from statutory requirements and those we have determined as necessary for administering the Department's discretionary grant programs effectively and efficiently.

In assessing the potential costs and benefits—both quantitative and

qualitative—of this notice of final priorities, we have determined that the benefits of the final priorities justify the costs.

We have also determined that this regulatory action does not unduly interfere with State, local, and tribal governments in the exercise of their governmental functions.

Executive Order 12372

Some of the programs affected by these final priorities are subject to Executive Order 12372 and the regulations in 34 CFR part 79. One of the objectives of the Executive order is to foster an intergovernmental partnership and a strengthened federalism. The Executive order relies on processes developed by State and local governments for coordination and review of proposed Federal financial assistance.

This document provides early notification of our specific plans and actions for these programs.

Electronic Access to This Document

You may view this document, as well as all other Department of Education documents published in the **Federal** **Register**, in text or Adobe Portable Document Format (PDF) on the Internet at the following site: http://www.ed.gov/news/fedregister.

To use PDF you must have Adobe Acrobat Reader, which is available free at this site. If you have questions about using PDF, call the U.S. Government Printing Office (GPO), toll free, at 1–888–293–6498; or in the Washington, DC, area at (202) 512–1530.

Note: The official version of this document is the document published in the Federal Register. Free Internet access to the official edition of the Federal Register and the Code of Federal Regulations is available on GPO Access at: http://www.gpoaccess.gov/nara/index.html.

(Catalog of Federal Domestic Assistance Number does not apply.)

Program Authority: 20 U.S.C. 1221e–3; 20 U.S.C. 6301 *et. seq.*

Dated: October 4, 2006.

Margaret Spellings,

Secretary of Education.

[FR Doc. 06-8608 Filed 10-10-06; 8:45 am]

BILLING CODE 4000-01-P

Wednesday, October 11, 2006

Part V

The President

Proclamation 8064—National School Lunch Week, 2006 Proclamation 8065—Columbus Day, 2006

Federal Register

Vol. 71, No. 196

Wednesday, October 11, 2006

Presidential Documents

Title 3—

Proclamation 8064 of October 5, 2006

The President

National School Lunch Week, 2006

By the President of the United States of America

A Proclamation

For 60 years, the National School Lunch Program has contributed to the health and well-being of America's youth. National School Lunch Week highlights the many achievements of the National School Lunch Program and the importance of helping children develop good nutrition habits.

Eating healthy foods and maintaining an active lifestyle are vital for children's health and reduce their risk of serious long-term health problems, such as obesity, asthma, and diabetes. The National School Lunch Program, part of the United States Department of Agriculture (USDA), provides more than 29 million children with healthy meals each day. The program raises awareness about the importance of good food choices and trains food service professionals to prepare nutritious breakfasts, lunches, and snacks that include foods rich in vitamins, minerals, and fiber. In addition, the USDA offers educational resources for school nutrition directors, managers, and staff based on the requirements for healthy school meals established in the Dietary Guidelines for Americans. By promoting good nutrition and exercise, schools can help children develop well-balanced diets and lead healthier lives.

During National School Lunch Week, we recognize dedicated parents, school officials, community leaders, and food service professionals for their efforts to ensure that our children are provided with nutritious meals each day.

In recognition of the contributions of the National School Lunch Program to the health, education, and well-being of America's children, the Congress, by joint resolution of October 9, 1962 (Public Law 87–780), as amended, has designated the week beginning on the second Sunday in October of each year as "National School Lunch Week," and has requested the President to issue a proclamation in observance of this week.

NOW, THEREFORE, I, GEORGE W. BUSH, President of the United States of America, do hereby proclaim the week of October 8 through October 14, 2006, as National School Lunch Week. I call upon all Americans to join the dedicated individuals who administer the National School Lunch Program in appropriate activities that support the health and well-being of our Nation's children.

IN WITNESS WHEREOF, I have hereunto set my hand this fifth day of October, in the year of our Lord two thousand six, and of the Independence of the United States of America the two hundred and thirty-first.

/zu3e

[FR Doc. 06–8648 Filed 10–10–06; 8:45 am] Billing code 3195–01–P

Presidential Documents

Proclamation 8065 of October 5, 2006

Columbus Day, 2006

By the President of the United States of America

A Proclamation

More than five centuries ago, Christopher Columbus boldly set out on a long and challenging journey across the Atlantic that led the way for exploration of the Americas. On Columbus Day, we celebrate the historic voyages of the Italian explorer and honor his life, heritage, and lasting legacy.

Columbus' brave expeditions expanded the horizons of human knowledge and inspired generations of risk-takers and pioneers in America and around the world. Our Nation is built on the efforts of men and women who possess both the vision to see beyond what is and the desire to pursue what might be. Today, the same passion for discovery that drove Columbus is leading bold visionaries to explore the frontiers of space, find new energy sources, and solve our most difficult medical challenges.

Columbus Day is also an opportunity to celebrate the heritage we share with the legendary explorer, the important relationship between the United States and Italy, and the proud Italian Americans who call our Nation home. Italian Americans have strengthened our country and enriched our culture, and through service in our Armed Forces, many have defended our Nation with courage and helped lay the foundation of peace for generations to come.

In commemoration of Columbus' journey, the Congress, by joint resolution of April 30, 1934, and modified in 1968 (36 U.S.C. 107), as amended, has requested that the President proclaim the second Monday of October of each year as "Columbus Day."

NOW, THEREFORE, I, GEORGE W. BUSH, President of the United States of America, do hereby proclaim October 9, 2006, as Columbus Day. I call upon the people of the United States to observe this day with appropriate ceremonies and activities. I also direct that the flag of the United States be displayed on all public buildings on the appointed day in honor of Christopher Columbus.

IN WITNESS WHEREOF, I have hereunto set my hand this fifth day of October, in the year of our Lord two thousand six, and of the Independence of the United States of America the two hundred and thirty-first.

/zu3e

[FR Doc. 06–8649 Filed 10–10–06; 8:45 am] Billing code 3195–01–P

Reader Aids

Federal Register

Vol. 71, No. 196

1.....58914

Wednesday, October 11, 2006

CUSTOMER SERVICE AND INFORMATION

Federal Register/Code of Federal Regulations	
General Information, indexes and other finding aids	202–741–6000
Laws	741–6000
Presidential Documents	
Executive orders and proclamations	741-6000
The United States Government Manual	741–6000
Other Services	
Electronic and on-line services (voice)	741-6020
Privacy Act Compilation	741-6064
Public Laws Update Service (numbers, dates, etc.)	741-6043
TTY for the deaf-and-hard-of-hearing	741-6086

ELECTRONIC RESEARCH

World Wide Web

Full text of the daily Federal Register, CFR and other publications is located at: http://www.gpoaccess.gov/nara/index.html

Federal Register information and research tools, including Public Inspection List, indexes, and links to GPO Access are located at: http://www.archives.gov/federal register

E-mail

FEDREGTOC-L (Federal Register Table of Contents LISTSERV) is an open e-mail service that provides subscribers with a digital form of the Federal Register Table of Contents. The digital form of the Federal Register Table of Contents includes HTML and PDF links to the full text of each document.

To join or leave, go to http://listserv.access.gpo.gov and select Online mailing list archives, FEDREGTOC-L, Join or leave the list (or change settings); then follow the instructions.

PENS (Public Law Electronic Notification Service) is an e-mail service that notifies subscribers of recently enacted laws.

To subscribe, go to http://listserv.gsa.gov/archives/publaws-l.html and select Join or leave the list (or change settings); then follow the instructions.

FEDREGTOC-L and PENS are mailing lists only. We cannot respond to specific inquiries.

Reference questions. Send questions and comments about the Federal Register system to: fedreg.info@nara.gov

The Federal Register staff cannot interpret specific documents or regulations.

FEDERAL REGISTER PAGES AND DATE, OCTOBER

57871–58242
58243-58480
58481-58734 4
58735-59004 5
59005-593606
59361-5964810
59649-6005411

CFR PARTS AFFECTED DURING OCTOBER

At the end of each month, the Office of the Federal Register publishes separately a List of CFR Sections Affected (LSA), which lists parts and sections affected by documents published since

the revision date of each title.	•
3 CFR	2158914
Proclamations:	3958314, 58318, 58320,
805758481	58323, 58755
805858483	4358914 4558914
805958999	7158758, 58760, 58761,
806059001	58762, 58764, 58765, 59031
806159003	33158546
806259359	
806359362	15 CFR
806460051	Proposed Rules:
806560053	71559032
7 CFR	71659032
30157871, 58243, 59649	72159032 92258767, 59039, 59050,
36058735	59338
36158735	39330
92058246	16 CFR
95558249	Proposed Rules:
121859363	31058716
Proposed Rules:	17 CFR
5659028	-
7059028	27058257
30559694	18 CFR
31859694 290259862	38858273
356558545	Proposed Rules:
	3558767
8 CFR	3758767
100357873	4057892
9 CFR	38858325
• • • • • • • • • • • • • • • • • • • •	21 CFR
7758252	
30759005 38159005	18959653
38139003	20158739 52059374
10 CFR	606
42057885	61058739
Proposed Rules:	70059653
43059204, 58410	Proposed Rules:
43158308	2057892
12 CFR	2557892
	20157892
95159262	20257892
13 CFR	20757892 22557892
Proposed Rules:	22657892
12059411	50057892
	510 57892
14 CFR	51157892
2358735	51557892
3957887, 58254, 58485,	
	51657892
58487, 58493, 59363, 59366,	516
59368, 59651	516 57892 558 57892 589 57892
59368, 59651 4358495	516
59368, 59651 4358495 7158738, 59006, 59007,	516 57892 558 57892 589 57892
59368, 59651 4358495 7158738, 59006, 59007, 59008, 59372	516
59368, 59651 4358495 7158738, 59006, 59007,	51657892 55857892 58957892 131258569 22 CFR 5158496
59368, 59651 4358495 7158738, 59006, 59007, 59008, 59372 9358495	516 57892 558 57892 589 57892 1312 58569 22 CFR 51 58496 58496
59368, 59651 4358495 7158738, 59006, 59007, 59008, 59372 9358495 9758256	51657892 55857892 58957892 131258569 22 CFR 5158496
59368, 59651 4358495 7158738, 59006, 59007, 59008, 59372 9358495 9758256 12559373	516 57892 558 57892 589 57892 1312 58569 22 CFR 51 58496 58496

15......58994

25 CFR	
Proposed Rules: 2925876	9
26 CFR	
1	'6 •0 •6
3005969	Ю
28 CFR 165827	7
30 CFR	
Proposed Rules: 701 .5959 773 .5959 774 .5959 778 .5959 843 .5959 847 .5959)2)2)2)2
31 CFR	
594 5874 595 5874 597 5874	2
32 CFR	
283	4

Proposed Rules:	.59411
33 CFR	
10058279, 11758283, 58285, 58744,	
Proposed Rules:	
11058332, 58334, 165	58776
36 CFR	
Proposed Rules: Ch. I	.59697
37 CFR	
350 351 370	.59010
40 CFR	
51	59674 .58745 .58499 .58498 .58504 58518 .58521
355	

Proposed Rules:	
5257894, 57905,	59413,
59414,	59697
63	.59302
8157894, 57905,	
174	
281	
721	
721	.00000
42 CFR	
409	.58286
410	.58286
412	.58286
413	.58286
414	.58286
424	.58286
485	.58286
489	
505	
44 CFR	
65	.59385
67	.59398
45 CFR	
1310	.58533
48 CFR	
205	.58536
205	
207	.58537
207 212	.58537 .58537
207	.58537 .58537 .58537

234	58540 58541
52 49 CFR	
49 CFR	
213	59677
541	59400
Proposed Rules:	
211	59698
591	
592	
593	
594	
334	
50 CFR	
50 CFR 17	58176
17	58234
1720	58234 58058
17 20 300	58234 58058 58058
17 20 300 600	58234 58058 58058 59019
17	
17	
17	
17	
17	
17	
17	
17	

REMINDERS

The items in this list were editorially compiled as an aid to Federal Register users. Inclusion or exclusion from this list has no legal significance.

RULES GOING INTO EFFECT OCTOBER 11, 2006

AGRICULTURE DEPARTMENT

Agricultural Marketing Service

Specialty Crop Block Grant Program; implementation; published 9-11-06

HOMELAND SECURITY DEPARTMENT

Coast Guard

Drawbridge operations:
Delaware; published 9-11-06

TRANSPORTATION DEPARTMENT

Federal Aviation Administration

Airworthiness directives:

Airbus; published 9-6-06

Empresa Brasileira de Aeronautica S.A. (EMBRAER); published 9-

Goodyear Aviation Tires; published 9-6-06

McDonnell Douglas; published 9-6-06

TREASURY DEPARTMENT Internal Revenue Service

Income taxes:

Partnership liabilities; disregarded entities treatment; published 10-11-06

COMMENTS DUE NEXT WEEK

AGRICULTURE DEPARTMENT

Energy Policy and New Uses Office, Agriculture Department

Biobased products; designation guidance for federal procurement; comments due by 10-16-06; published 8-17-06 [FR 06-06920]

AGRICULTURE DEPARTMENT

Forest Service

Alaska National Interest Lands Conservation Act; Title VIII implementation (subsistence priority):

Kenai Peninsula; fish and wildlife; subsistence

taking; seasonal adjustments; comments due by 10-20-06; published 8-14-06 [FR 06-06903]

COMMERCE DEPARTMENT Foreign-Trade Zones Board

Applications, hearings, determinations, etc.:

Georgia

Eastman Kodak Co.; x-ray film, color paper, digital media, inkjet paper, entertainment imaging, and health imaging; Open for comments until further notice; published 7-25-06 [FR E6-11873]

COMMERCE DEPARTMENT National Oceanic and Atmospheric Administration

Fishery conservation and management:

Alaska; fisheries of Exclusive Economic Zone—

Gulf of Alaska pelagic shelf rockfish; comments due by 10-17-06; published 10-5-06 [FR 06-08511]

COMMODITY FUTURES TRADING COMMISSION

Commodity Exchange Act: Introducing brokers; financial reporting requirements; comments due by 10-19-06; published 9-19-06 [FR 06-07739]

ENERGY DEPARTMENT Energy Efficiency and Renewable Energy Office

Consumer products; energy conservation program:

Energy conservation standards—

Distribution transformers; comments due by 10-18-06; published 8-4-06 [FR 06-06537]

ENVIRONMENTAL PROTECTION AGENCY

Pesticides; tolerances in food, animal feeds, and raw agricultural commodities:

Endothall; comments due by 10-16-06; published 8-16-06 [FR E6-13293]

Superfund program:

National oil and hazardous substances contingency plan priorities list; comments due by 10-19-06; published 9-19-06 [FR E6-15337]

FEDERAL COMMUNICATIONS COMMISSION

Common carrier services:

Broadcasting-satellite service; policies and service rules; establishment; comments due by 10-16-06; published 8-2-06 [FR 06-06630]

HOMELAND SECURITY DEPARTMENT

Customs and Border Protection Bureau

Organization and functions; field organization, ports of entry, etc.:

St. Louis, MO; port limits extension; comments due by 10-16-06; published 8-16-06 [FR E6-13446]

HOMELAND SECURITY DEPARTMENT

Coast Guard

Ports and waterways safety; regulated navigation areas, safety zones, security zones, etc.:

Trent River, New Bern, NC; comments due by 10-19-06; published 9-12-06 [FR 06-07601]

HOUSING AND URBAN DEVELOPMENT DEPARTMENT

Freedom of Information Act; implementation:

Testimony and production of information by HUD employees; comments due by 10-16-06; published 8-15-06 [FR 06-06882]

Mortgage and loan insurance programs:

Accelerated claim and asset disposition program; comments due by 10-16-06; published 9-15-06 [FR E6-15285]

INTERIOR DEPARTMENT Fish and Wildlife Service

Alaska National Interest Lands Conservation Act; Title VIII implementation (subsistence priority):

Kenai Peninsula; fish and wildlife; subsistence taking; seasonal adjustments; comments due by 10-20-06; published 8-14-06 [FR 06-06903]

Endangered and threatened species:

Critical habitat designations—

Spikedace and loach minnow; comments due by 10-16-06; published 10-4-06 [FR E6-16423]

Critical habitat designations: Hawaiian picture-wing flies; comments due by 10-16-06; published 8-15-06 [FR 06-06840]

INTERIOR DEPARTMENT Reclamation Bureau

Colorado River water in the lower basin; regulating noncontract use; comments due by 10-17-06; published 8-18-06 [FR E6-13687]

NATIONAL LABOR RELATIONS BOARD

Debt collection procedures; comments due by 10-17-06; published 8-18-06 [FR E6-13688]

PERSONNEL MANAGEMENT OFFICE

Pay administration and pay under General Schedule:

Locality-based comparability and evacuation payments; comments due by 10-16-06; published 8-17-06 [FR 06-06990]

TRANSPORTATION DEPARTMENT

Federal Aviation Administration

Airworthiness directives:

Aerospatiale; comments due by 10-20-06; published 8-21-06 [FR E6-13651]

B-N Group Ltd.; comments due by 10-16-06; published 9-15-06 [FR 06-07706]

BAE Systems (Operations) Ltd.; comments due by 10-20-06; published 9-20-06 [FR E6-15592]

Cessna Aircraft Co.; comments due by 10-17-06; published 8-18-06 [FR E6-13442]

EADS SOCATA; comments due by 10-16-06; published 9-15-06 [FR E6-15332]

General Electric Co.; comments due by 10-17-06; published 8-18-06 [FR E6-13437]

Pilatus Aircraft Ltd.; comments due by 10-16-06; published 9-15-06 [FR E6-15342]

Stemme GmbH & Co.; comments due by 10-19-06; published 9-19-06 [FR E6-15329]

Airworthiness standards:

Special conditions—
Gulfstream Aerospace
Corp. Model G150
airplanes; comments

airplanes; comments due by 10-18-06; published 9-18-06 [FR E6-15401]

TRANSPORTATION DEPARTMENT

Federal Motor Carrier Safety Administration

Motor carrier safety standards:

Driving of commercial motor vehicles—

Railroad-highway grade crossing; safe clearance; meeting; comments due by 10-20-06; published 8-30-06 [FR E6-14462]

TRANSPORTATION DEPARTMENT Maritime Administration

Coastwise-qualified launch barges; availability determination; comments due by 10-16-06; published 8-15-06 [FR E6-13391]

TRANSPORTATION DEPARTMENT National Highway Traffic Safety Administration

Motor vehicle safety standards:

Occupant crash protection— Belted frontal barrier crash test; maximum test speed and phase-in schedule; comments due by 10-16-06; published 8-31-06 [FR 06-07225]

TRANSPORTATION DEPARTMENT

Pipeline and Hazardous Materials Safety Administration

Hazardous materials transportation:

Registration and Fee Assessment Program; comments due by 10-16-06; published 8-15-06 [FR E6-13312]

Hazardous materials:

Transportation—

Harmonization with UN Recommendations, International Maritime Dangerous Goods Code, and International Civil Aviation Organization's technical instructions; comments due by 10-16-06; published 8-31-06 [FR 06-07200]

TREASURY DEPARTMENT Internal Revenue Service

Procedure and administration:

Third-party and John Doe summons disputes; statutes of limitations suspension and expansion of taxpayers' rights; comments due by 10-19-06; published 7-21-06 [FR E6-11543]

LIST OF PUBLIC LAWS

This is a continuing list of public bills from the current session of Congress which have become Federal laws. It may be used in conjunction with "PLUS" (Public Laws Update Service) on 202–741–6043. This list is also available online at http://www.archives.gov/federal-register/laws.html.

The text of laws is not published in the **Federal Register** but may be ordered in "slip law" (individual pamphlet) form from the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402 (phone, 202–512–1808). The text will also be made available on the Internet from GPO Access at http://www.gpoaccess.gov/plaws/index.html. Some laws may not yet be available.

H.R. 1036/P.L. 109-303

Copyright Royalty Judges Program Technical Corrections Act (Oct. 6, 2006; 120 Stat. 1478)

H.R. 1442/P.L. 109-304

To complete the codification of title 46, United States Code, "Shipping", as positive law. (Oct. 6, 2006; 120 Stat. 1485)

H.R. 5074/P.L. 109-305

Railroad Retirement Technical Improvement Act of 2006 (Oct. 6, 2006; 120 Stat. 1719)

H.R. 5187/P.L. 109-306

To amend the John F. Kennedy Center Act to authorize additional appropriations for the John F. Kennedy Center for the Performing Arts for fiscal year 2007. (Oct. 6, 2006; 120 Stat. 1720)

H.R. 5574/P.L. 109-307

Children's Hospital GME Support Reauthorization Act of 2006 (Oct. 6, 2006; 120 Stat. 1721)

Last List October 10, 2006

Public Laws Electronic Notification Service (PENS)

PENS is a free electronic mail notification service of newly enacted public laws. To subscribe, go to http:// listserv.gsa.gov/archives/publaws-l.html

Note: This service is strictly for E-mail notification of new laws. The text of laws is not available through this service. PENS cannot respond to specific inquiries sent to this address.